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Abstract 
          According to the notion of a fuzzy metric due to George and Veeramnai, we study and 

extends some topological  Properties  to fuzzy metric spaces such as uniform continuity- 

uniformly convergence – equicontinuous sequences of   functions, also some topological 

properties  for product of fuzzy metric spaces with contractively and fixed point theorem are  

studied ,  some important and interesting results of their properties are obtained. 
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Introduction and Preliminaries 
 In 1965, the concept of fuzzy set was introduced by Zadeh  [21]. One of the most 

important problems in fuzzy topology is to obtain an appropriate concept of fuzzy metric 

space ,this problem has been investigated by Many authors [4,5,7,8,13,14],they  introduced 

the concept of fuzzy metric  space in different ways. In particular George and Veeramani [8] 

have introduced and studied a notion of fuzzy metric space with the help of continuous t-

norms, which constitutes a slight but appealing modification of the one due to Kramosil and 

Michalek [14] and defined a Hausdorff topology on this fuzzy metric space. In [1]we  study  

the zero-dimensionality and small inductive dimension in fuzzy metric spaces . Many authors 

have studied fixed theory in fuzzy metric spaces such as [2,3,10,11,12,13,19] . Also R. Mohd, 

and S. Mohd,  in [16 ]  have introduced and studied a concept of Product of fuzzy metric.  

 The aim of this paper is to extend some concepts to fuzzy metric spaces such as 

(uniformly continuous and isometry  of mappings between fuzzy metric spaces-convergence 

uniformly and equicontinuous of sequences of functions from fuzzy metric space to other, we 

obtain some results about them),Also we investigate some topological properties for Product 

of fuzzy metric spaces with fixed point property, some results about all concepts are given. 

 We now recall some notation and basic definitions used in this paper 
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 Definition1.1[18] A binary operation ∗:[0,1]×[0,1] → [0,1] is a continuous triangular 

norm (shortly t-norm) if ∗ satisfies the following conditions:  

1. ∗ is associative and commutative. 

2. ∗ is continuous. 

3. a∗1= a for all a∈ [0,1]. 

4. a∗b ≤ c∗d  whenever a ≤ c and b ≤ d for all a,b,c,d∈ [0,1]. 

 Example1.2 The following are examples of t-norm:  

(1). a ∗b = ab.  (2) a ∗ b = min {a, b}. (3) a*b = max {0,a+b−1}, for all 

 a, b ∈ [0, 1] 

 Definition1.3[8] A fuzzy metric space is an ordered triple (X,M,∗) such that X is an 

arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a function defined on X2×]0,+ ∞ 

[ with values in ]0,1[ satisfying the following conditions, for all x, y, z ∈ X, and s,t > 0 :  

(i)   M(x,y,t) > 0,  

(ii)  M(x,y,t) =1 if and only if x = y,  

(iii) M(x,y,t) = M(y,x,t),  

(iv) M(x,y,t) ∗M(y,z,s) ≤ M(x,z,t+s),  

(v)  M(x,y,·):]0,+ ∞ [→ [0,1] is continuos. 

 Then M is called a fuzzy metric on X. The function M(x, y, t) denote the degree of 

nearness between x and y with respect to t, also condition (ii) is equivalent to 

 M(x, x, t) = 1 for all x ∈ X and t > 0, and M(x, y, t) < 1 for all x ≠ y and t > 0. 

 Remark 1.4 [10] In fuzzy metric space X, M(x, y,.) is non-decreasing for all x, y ∈ 

X. 

 Example1.5 Let (X, d) be a metric space. Denote a * b = ab for all a, b ∈ [0, 1] and 

let Md be a fuzzy set on X2 ×] 0, ∞ [defined as follows: 

Md(x, y, t) = ,
),( yxmdkt

kt
n

n

+
for all k, m, n∈R+, x ,y∈ X , Then (X, Md,*) is a fuzzy metric 

space.  

 Remark 1.6 Note the above example holds even with the t-norm a ∗ b = min {a, b} 

and hence M is a fuzzy metric with respect to any continuous t-norm. 

In above example by putting k = m = n = 1, we get 

 Md (x, y, t) = 
),( yxdt

t
+

 

 We call this fuzzy metric induced by a metric d the standard fuzzy metric. 
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 Definition 1.7[8] Let (X, M, ∗) be a fuzzy metric space and let r ∈ (0, 1),t > 0 and 

x∈X. The set B(x, r, t) = {y ∈ X: M(x, y, t) > 1 − r} is called the open ball with center x and 

radius r with respect to t. 

 Theorem 1.8[8] Every open ball B(x, r, t) is an open set. 

 George and Veeramani proved in [8] that every fuzzy metric space (X, M,∗) on X 

generates a topology τM on X which has as a base the family of open sets of the form  

 {BM(x ,r ,t) : x ∈X; 0 < r <1 ,t > 0} ,they proved that (X,τM) is Hausdorff first 

countable topological space, where 

 τM = {A ⊂ X :for each x ∈ X, there exist t > 0, r ∈(0, 1) such that B(x, r, t) ⊂ A}.Also 

if (X,τ) metric space, then the topology induced by d coincides with the topology 
dMτ  

induced by the fuzzy metric Md. 

 Example1.9 Let X = N (where N is the set of natural numbers) and we define  

 a * b = max{0, a + b −1} for all a, b ∈ [0, 1] and let M be a fuzzy set on X2 × (0,∞) 

defined as follows: 










≤

≤
=

xyif
x
y

yxif
y
x

tyxM
,

,
),,(  

 For all x, y ∈X, and t > 0 then (X, M, *) is a fuzzy metric space. M induces on X the 

discrete topology, (in fact, for x ≠ y we have M(x, y, t)
)1( +

≤
x

x  .Now, if we choose r such 

that 

 0 < r < 
)1( +x

x , then y ∈B(x, r, t) if and only if M(x, y, t) > 1 − r > 
)1( +x

x  and 

,therefore, B(x, r, t) ={x}). 

 Definition 1.10[9] Let (X,M,∗)  be a fuzzy metric space and let 

 r ∈ (0,1),t > 0 and  x ∈ X. 

 The set B[x, r, t] = {y ∈ X: M(x, y, t) ≥ 1 − r} is called the closed ball with center x 

and radius r with respect to t. 

 Theorem 1.11[9] Every closed ball B[x, r, t] is a closed set. 

 Theorem 1.12 [8] A sequence (xn) in a fuzzy metric space (X,M, ∗) converges to x if 

and only if M(xn, x, t)→1 as n→∞. 

 Example 1.13 Let X = R, the set of all real numbers, and a ∗ b = min {a, b}. 
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 For x; y ∈X; t ≥ 0, define 

 






=

>
−+=

0,0

0,
),,(

tif

tif
yxt

t
tyxM  

 Then M is a fuzzy metric on R. Let (sn) be a sequence defined as 

 
n

sn
1

=  , for n∈ N. Then  1),,( →txsM n  as n→∞ . 

 Definition 1.14 [8] A sequence(xn) in a fuzzy metric space (X,M,∗) is a Cauchy 

sequence if and only if for each r∈(0, 1) and each t > 0 there exists n0 ∈N such that  

 M(xn, xm, t) >1 − r for all n, m ≥ n0, i.e. limn→∞M (xn,xm,t)=1, 

 for every t > 0. 

 Definition 1.15 [8] A fuzzy metric space in which every Cauchy sequence is 

convergent is called a complete fuzzy metric space. 

 Example 1.16 Let X = R+, with the metric d defined by d(x,y) = x− y, and t-norm 

a ∗ b = min {a, b},we defined  

 M (x, y, t) =
),( yxdt

t
+

, for all x, y ∈ X, t > 0.Clearly (X,M,∗) is a complete fuzzy 

metric spaces. 

 Theorem 1.17 [9] Let (X,M, ∗) be a fuzzy metric space ,then for each metric d on X 

compatible with M ,the following hold; 

1. A sequence (xn) in X is Cauchy in (X,M, ∗) if and only if it  

   - is Cauchy in (X, d ). 

2. (X, M,∗) is complete if and only if (X,d) is complete. 

  

Lemma 1.18 

 Let (X,M,∗) be a fuzzy metric space. If xxnn =∞→lim and yynn =∞→lim then 

limn→∞M (xn,yn, ∗) = M (x,y, ∗). 

 Defnition1.19[8]. A fuzzy metric space (X,M,∗)is called compact if every sequence 

has a convergent subsequence. 

 Theorem1.20[8,13] Let (X,M,∗) be a compact fuzzy metric space and let T : X →X 

be a self-map satisfying: 

                                     M(Tx, Ty, t) > M(x, y, t) 

 for all x, y ∈ X such that x ≠ y, and t > 0. Then T has a unique fixed point. 
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Some topological properties in fuzzy metric spaces 
In the first of this section, we introduce the following concepts: 

 The definition of continuity of a mapping ƒ from a fuzzy metric space (X,M) to a 

fuzzy metric space (Y,N) can be given using four parameters as follows. 

 Definition2.1 A mapping ƒ from fuzzy metric space (X, M,*) to (Y,N,) is called 

continuous at x0 ∈ X if given  0 < r < 1 and t > 0 there exists  0 < r0 < 1 and t0> 0 such that 

M(x0,x,s) > 1−r0 implies N(ƒ(x0),(ƒ(x),t) > 1−r . 

 Obviously the condition of continuity of a mapping ƒ between stationary fuzzy metric 

spaces only needs two parameters. Then, thinking in stationary fuzzy metric spaces and 

according to the concept of t-uniformly continuous function we give the next definition, by 

mean of three parameters. 

 Definition2.2. A mapping ƒ from fuzzy metric space (X, M,*) to (Y,N,) is called 

uniformly continuous if for each 0< r < 1 and each t > 0 there exists  0 < r0 < 1 (depending on 

r alone) and t0 > 0 such that N(ƒ(x),(ƒ(y),t) > 1−r whenever M(x,y,t0) > 1− r0. 

 It is clear that every uniformly continuous mapping from the fuzzy metric space 

(X,M,∗) to the fuzzy metric space (Y,N,) is continuous from (X,τM) to(Y,τN). 

 It is easy to verify that this definition is equivalent to considerƒ: (X, UM) → (Y, UN) 

as uniform continuous with respect to the uniformities UM and UN deduced from M and 

 N respectively, and then it is continuous from (X, τM) to (Y, τN). 

 Similarly to the classical metric case, if ƒ : (X,M) → (Y,N) is uniformly continuous 

and (xn) is a Cauchy sequence in X then {ƒ (xn)} is a Cauchy sequence in Y . 

 Definition 2.3 Let (X, M,*) be a fuzzy metric space. M is said to be continuous on X2 

× ]0,∞[ if 

           ),,(lim nnnn
tyxM

∞→
= M(x,y,t) 

 Definition2.4 Let (X, M,*) and (Y,N,) be two fuzzy metric spaces .A mapping ƒ 

from X to Y is called isometry if for each x, y ∈ X and each t > 0 M(x,y,t) = N(ƒ(x),(ƒ(y),t) 

and, in this case, if ƒ is a bijection, X and Y are called isometric.  

 A fuzzy metric completion of (X,M) is a complete fuzzy metric space (X∗,M∗) such 

that (X,M) is isometric to a dense subspace of X∗. X is called completable if it admits a fuzzy 

metric completion.. 
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 Theorem 2.5 (uniform continuity theorem). Let ƒ be a continuous mapping of 

compact fuzzy metric space (X, M,*) to fuzzy metric space, (Y,N,)  then ƒ  is uniformly 

continuous. 

Proof :Let 0 < s < 1and t > 0 be given, then we can find 0 < r < 1 such that(1−r)* 

(1−r) > 1−s. Since ƒ: X→ Y is continuous, for each x∈ X we can find 0 < rx < 1 and tx > 0 

such that M(x,y,tx) > 1−rx implies N(ƒ(x),(ƒ(y), 2
t ) > 1−r, but 0 < rx < 1 then we can find sx < 

rx such that(1− sx) * (1− sx) > 1− rx. Since X is compact and 






 ∈ XxtsxB x

x :)
2

,,( is an open 

covering of X ,there exist x1,x2,…,xk in X such that 
k

i

x
xi

i

i

t
sxBX

1 2
,,

=








=  .put }min{0 ixss =

and }
2

min{0
ixtt = ,i = 1,2,…,k. For any  

 x, y∈X if M(x,y,t0) > 1−s0,then )
2

,,( ixt
yxM > 

ixs−1 .Since x∈ X, there exist a xi such 

that )
2

,,( ix
i

t
xxM > 

ixs−1 , hence we have N(ƒ(x),(ƒ(xi), 2
t ) > 1−r. Now 

 )
2

,,(),,( i

i

x
xi

t
yxMtxyM ≥  * .111)

2
,(

iii

i
xxx

x
i rss
t

xxM −>−∗−≥  

 Therefore N(ƒ(x),(ƒ(xi), 2
t ) > 1−r. Now we have 

 .1)1()1()
2

),(),(()
2

),(),(()),(),(( srrtxfyfNtxfxfNtyfxfN ii −>−∗−≥∗≥ Hence 

ƒ  is uniformly continuous.     ■ 

 Now we give the definition of t- uniformly continuous mapping. 

 Definition2.6[13] (X,M,∗) be a fuzzy metric space We will say the mapping ƒ : X →  

X is t-uniformly continuous if for each 0 < r < 1 there exists  0 < r0 < 1 such that M(x,y,t) > 

1−r0 implies M(ƒ(x),(ƒ(y),t) > 1−r. for each x, y  ∈ X and t > 0 

 Clearly if ƒ is t-uniformly continuous it is uniformly continuous for the uniformity 

generated by M, and then continuous for the topology deduced from M 

 The proofs of the following propositions are Straightforward and are omitted. 

 Proposition 2.7 [13] Let (X,M,∗) be a fuzzy metric space and ƒ : X →  X a mapping. 

Then ƒis t-uniformly continuous iff for each δ> 0 there exists η > 0 such that
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η≤
−1),,(

1
tyxM

 implies 

 δ≤−1
)),(),((

1
tyfxfM

, for each x, y  ∈ X and t > 0. 

 Definition 2.8[13] Let (X, M, ∗) be a fuzzy metric space .We will say the mapping ƒ 

: X →  X is fuzzy contractive if there exists k  ∈ ]0, 1[ such that 

 )1
),,(

1(1
)),(),((

1
−≤−

tyxM
k

tyfxfM
 

Or equivalent 

 
),,(1(),,(

),,()),(),((
tyxMktyxM

tyxMtyfxfM
−+

≥ ,for each x, y  ∈ X and  

 t > 0. (where K is the contractive constant of ƒ). 

 Theorem 2.9 Let (X, d) be a metric space and let (X, M, ∗) be a fuzzy metric space 

satisfying: 

                  M (x, y, t) =
),( yxdt

t
+

, for all x, y ∈ X, t ∈ (0, 1]  

 Then a map ƒ: X → X is fuzzy contractive if and only if it is a contractive map on the 

metric space (X, d). 

 Proof. Let ƒ : X → X and k∈(0, 1). We have for all t ∈(0, 1] 

 
),,(1(),,(

),,()),(),((
tyxMktyxM

tyxMtyfxfM
−+

≥ , 

then 

 
),(),,(1(),,(

),,(
yxkdt

t
tyxMktyxM

tyxM
+

=
−+

 

And 

 
))(),((

)),(),((
yfxfdt

ttyfxfM
+

=  

Therefore  

 d(f(x),f(y)) ≤ kd(x, y) 

        ⇔ ))(),((
),,(1(),,(

),,( yfxfM
tyxMktyxM

tyxM
≤

−+
,for all x,y ∈X. 

 This shows that ƒ is an fuzzy contractive map on(X, M, ∗) if and only if it is a 

contractive map on the metric space 

(X, d). ■ 
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 Proposition 2.10[13] Let (X, M, ∗) be a fuzzy metric space. If 

ƒ : X →X is fuzzy contractive then ƒ is t-uniformly continuous. 

The above definition is justified by the following Proposition : 

 Proposition 2.11[13] Let (X,d) be a metric space. The mapping 

  ƒ : X  →X is contractive (a contraction) on the metric space (X,d) with contractive 

constant k iff ƒis fuzzy contractive, with contractive constant k,on the standard fuzzy metric 

space (X,Md, ∗) induced by d. 

 Definition2.12 Let X be any nonempty set and (X,M, *) be an fuzzy metric space. 

Then a sequence {ƒn } of functions from X to Y is said to be convergence uniformly to a 

function ƒ from X to Y if for given 0 < r < 1 ,t > 0,there exists n0 ∈ N such that M(ƒn(x) ,ƒ(x) 

,t ) > 1− r for all n ≥ n0 and for all x ∈X. 

 Definition2.13. A family F of functions from a fuzzy metric space X to a complete 

fuzzy metric space Y is said to be equicontinuous if for given 0 < r < 1 ,t > 0, there exist 0 < 

r0 < 1 ,t0 > 0 such that M(x ,y,t0) > 1− r0 ⇒ M(ƒ (x) ,ƒ(y) ,t ) > 1− r for all ƒ∈ F  . 

 Lemma 2.14 Let {ƒn} be an equicontinuous sequence of functions from an fuzzy 

metric space X to a complete fuzzy metric space Y. If {ƒn} converges for each point of a 

dense subset D of X, then {ƒn} converges for each point of X and the limit function is 

continuous. 

 Proof Let 0 < s < 1, and t > 0 be given. Then we can find 0 < r < 1, such that ( 1− r) * 

(1− r) * (1− r ) >1− s . Since F = {ƒn}  is equicontinuous family, for given 0 < r < 1 , and t > 

0, there exist 0 < r1 < 1 ,and t1 > 0 such that for each x, y ∈ X, M(x ,y,t1) >1− r1 ⇒ M(ƒn (x) 

,ƒn(y), 3
t ) > 1−r for all ƒn∈ F . Since D is dense in X, there exists y ∈ B(x,r1,t1) ∩ D and 

{ƒn(y)}converges for that y. Since {ƒn(y)} is a Cauchy sequence, for given 0 < r < 1 ,t > 0, 

there exists n0 ∈ N such that M(ƒn (x) ,ƒm(y), 3
t ) > 1−r, for all m, n ≥ n0. Now for any x ∈ X, 

we have 

                    M(ƒn (x) ,ƒm(y),t) 

  ≥ M(ƒn (x) ,ƒn(y), 3
t ) * M(ƒn(y) ,ƒm(y), 3

t ) *M(ƒm (x) ,ƒm(y), 3
t )  

   ≥  ( 1− r) * (1− r) * (1− r ) ≥1− s . 

 Hence {ƒn(x)} is a Cauchy sequence in Y. Since Y is complete, ƒn(x) converges.  

 Let ƒ(x) = limƒn(x). We claim that f is continuous. Let 0 < s0 < 1, and t0 > 0 be given. 

Then we can find 0 < r0 < 1 , such that 
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  (1− r0) * (1− r0) * (1− r0) ≥ 1−s0. Since F is equicontinuous, for given 0 < r0 < 1 and t0 

> 0, there exist 0 < r2 < 1and t2 > 0 such that M(x, y,t2)>1− r2 ⇒ M(ƒn(x) ,ƒn(y), 3
0t ) > 1−r0 for 

all fn ∈F.  

 Since ƒn(x) converges to ƒ(x), for given 0 < r0 < 1 and t0 > 0, there exists n1∈ N such 

that M(ƒn (x) ,ƒn(x), 3
0t ) > 1−r0 . 

 Also since ƒn(y) converges to ƒ(y), for given 0 < r0 < 1 and t0 > 0, there exists n2∈ N 

such that M(ƒn (y) ,ƒn(y), 3
0t ) > 1−r0 for all n ≥ n2. Now for all n ≥ max {n1,n2}, we have 

 M(ƒ(x),ƒ(y),t0)  

 ≥ M( ƒ(x),ƒn(x), 3
0t ) * M(ƒn(x),ƒn(y), 3

0t )*M(ƒn (y) ,ƒ (y), 3
0t ) 

  ≥ ( 1− r0) * (1− r0) * (1− r0 ) ≥ 1−s0. 

  Hence ƒ is continuous.    ■ 

Product of Fuzzy Metric Spaces 
 In [16] R. Mohd, and S. Mohd are  introduced the definition of product two fuzzy 

metric spaces in the sense of Egbert [6] as follows: 

 Definition 3.1[16] Let (X, MX,*) and (Y, MY,*) are two fuzzy metric spaces defined 

with same continuous t-norms *.Let ◊ be a continuous t-norm. The ◊-product of (X, MX ,*) 

and (Y, MY ,* ) is the product space (X × Y, M◊ , * ) where X × Y is the Cartesian product 

of the sets X and Y , and M◊  is the mapping from (X × Y × (0, 1)) × (X × Y × (0, 1)) into [0, 

1] given by 

 M◊ (p, q, t + s) = M1(x1,x2,t) ◊ M2(y1,y2,s) ………….(1) 

for every p = (x1,y1) and q =(x2,y2) in X × Y and t + s ∈ (0,1). 

 As an immediate consequence of Definition 3.1, we have from [16] 

 Theorem 3.2. [16]  If (X, MX ,* ) and (Y, MY ,*)  are fuzzy metric spaces under the 

same continuous t-norm  *, then their * -product (X × Y, M* ,  *) is a fuzzy metric space 

under * . 

 Example 3.3. Let (X, dX ) and (Y, dY ) are metric spaces and (X × Y, d) be their 

product with  

 d(p, q) = Max{dX (x1,x2),dY (y1,y2)}for each p = (x1,y1 )and  

 q = (x2,y2) in X × Y .  

Define a ◊ b = Min{a, b} for all a, b ∈ [0, 1] and let 
),(

1),,(
qpdt

tqpM d +
= . 

 Then (X × Y, Md,*  ) is a ◊ - product of (X, dX ) and (Y, dY ). 
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 Proof It is suffices to prove the condition (1).To this end 

 

{ }
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yydxxdtMax
t

yydxxdMaxt
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qpd
ttqpM

YX

YX

YX

YX
d

+
◊

+
=
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=

+
=

+
=

+
=

 

 Whence, =),,( tqpM d YX dd MM ◊ .          ■ 

 Definition3.4 [16] Let ◊ and * are continuous t-norms. We say that ◊ stronger than *, 

if for each a1, a2, b1, b2  ∈ [0, 1],   

(a1 * b1) ◊ (a2* b2) ≥  (a1◊ a2) *  (b1◊ b2). 

 Lemma 3.5 If ◊ is stronger than  * then ◊ ≥ *      

Proof: From Definition 3.4, by setting a2 = b1 = 1, so, get 

a1 ◊ b2  ≥ a1  * b2, 

i.e.,◊ ≥ *.                   ■ 

 Theorem3.6[16] Let (X, MX,*) and (Y, MY,*) are two fuzzy metric spaces defined 

with same continuous t-norms *. If there exists a continuous t-norm ◊ stronger than *, then 

the ◊ -product (X × Y, M◊ ,*) is a fuzzy metric space under *.   

 Proof: The axioms (i, ii, and iii,) of definition (1.3) are obvious, it is suffices to 

prove axiom (V) and (iv) . 

 Let p = (x1,y1),q = (x2,y2),r = (x3,y3) are in X × Y . Then 

M (p, r, 2λ ) = (MX (x1,x3, λ) ◊ MY (y1,y3, λ)) 

≥(MX(x1,x2,λ/2)*MX(x2,x3,λ/2))◊(MY(y1,y2,λ/2)*MY(y2,y3,λ/)  

≥(MX(x1,x2,λ/2)◊MX(x2,x3,λ/2))*(MY(y1,y2,λ/2)◊MY(y2,y3,λ/2) 

=M◊(p, q,λ) * M◊ (q, r,λ). 

The continuity of the t-norms implies the function  

M◊ (p, q, ·): (0, ∞ ) →  [0, 1] is continuous. ■ 

 Corollary 3.7 If (X, MX,*1) and (Y, MY,*2) are fuzzy metric spaces and if there exists 

a continuous t-norm stronger than *1and *2 then their ◊ product is a fuzzy metric space under 

◊.  

 We now turn to the question of topologies in the -product spaces and give the 
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following result: 

 Theorem 3.8 Let (X1,M1,*) and (X2,M2,* ) be fuzzy metric spaces under the same 

continuous t-norm * .Let U denote the neighborhood system in(X1 × X2,M* , * ) and let V 

denote the neighborhood system in (X1 × X2,M* ,*  ) consisting of the Cartesian products 

B(x1, r, t) × B(x2 r, t ) where x1  ∈ X1, x2∈ X2, r  ∈ (0, 1) and t > 0. Then U and V induce the 

same fuzzy topology on(X1 × X2,M* , * ) . 

 Proof: Clearly, since * is continuous, U and V are bases for their respective 

topology. So, it is suffices to prove that for each V`  ∈ V there exists a U` ∈ U such that U  

⊆ V, and conversely. Let A1 × A2∈ V. Then there exist neighborhoods B(x1,r, t) and B(x2,r, 

t) contained in A1 and A2 respectively. Let r = Min {r1,r2}, t = Min{t1,t2}, and let x = (x1,x2). 

Here, we shall show that B(x1,r, t) ∈ A1 × A2. Let y = (y1,y2)   ∈B(x,r, t), then we have 

 M1(x1,y1,t1) =M1(x1,y1,t1) * 1  ≥ M1(x1,y1,t1) * M1(x2,y2,t2) 

  ≥ M1(x1,y1,t) ≥ M1(x2,y2,t) 

  = M(x, y, t) > 1−   r  ≥ 1 −  r1. 

 Similarly, we can show that M2(x2,y2,t2) > 1 − r2. Thus y1 ∈ B(x1, r1,t1) and y2 

∈B(x2,r2,t2) which implies that B(x,r,t ) ∈  A1 ×A2.  

 Conversely, suppose that B(x,r, t) ∈ U . Since *is continuous, there exists an   σ∈  

(0, 1) such that 

(1 − σ )  * (1 − σ ) > 1 −  r.  

Let y  = (y1,y2) ∈ B(x1, σ , t) × B(x2,σ  , t). Then 

M (x, y,  t) =M1(x1,y1,t) * M2(x2,y2,t) ≥  (1 −σ   )*  (1 −σ   ) > 1 −  r 

so that y  ∈ B(x,r, t ) and B(x1,r, t) × B(x2, r, t)  ⊆ B(x,r, t). This completes the proof. ■ 

 Definition3.9 Let (X, M,*) be a fuzzy metric space.A mapping ƒ : X→X is said to be 

fuzzy contraction if there exists a k ∈ (0, 1) such that 

         M(ƒ(x),ƒ(y),t) ≥  M (x, y, t/k) for all x, y ∈  X 

 Theorem 3.10 [9] Let (X, M, *) be a complete fuzzy metric space such that ∞→tlim  

M (x, y, t) = 1for all x, y  ∈ X. 

 Let ƒ: X→X   be a contractive mapping. Then ƒ has a unique fixed point. 

 We use now concept of convergence uniformly with contraction for fixed point 

 Theorem 3.11 Let (X, M, *) be a fuzzy metric space with 

a*b = Min {a,b}.Let ƒn: X →  X be a mapping with at least one fixed point xn for each n =1, 

2, ···,and ƒ : X  → X be a fuzzy contraction mapping with fixed point x0. 
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If the sequence (ƒn) converges uniformly toƒ, then the sequence (xn) converges to x. 

 Proof: Let k ∈(0, 1) and choose a positive number n0∈� such that  

 n  ≥ n0 implies 

                      M (ƒn(x), ƒ (x), (1 −  k)t) > 1 −  r 

 where r ∈  (0, 1) and x  ∈ X . Then, if n ≥  n0, we have 

 M(xn ,x,t) =M(ƒn(xn), ƒ (x), t) 

                ≥M(ƒn(xn), ƒ (xn), (1 −  k)t) ∗  M (ƒn(x), ƒ (x), kt) 

               >Min(1 −  r, M (xn ,x,t)). 

 Hence, M (xn,x,t) → 1 as n  →∞ . This proves that (xn) converges to x. ■ 

 In [8, Theorem 8], the author gives the following Edelstein contraction theorem: “Let 

(X, M, *) be a compact fuzzy metric space.  

 Let T: X →X be a mapping satisfying 

                               M(T(x),T(y), ·) ≥ M(x, y, ·) for all x≠y.  

 Then, T has a unique fixed point. 

 Now, if T : X →X is a fuzzy contractive mapping satisfying, for some k ∈]0, 1[: 

)1
),,(

1(1
)),(),((

1
−≤−

tyxM
k

tyfxfM
 ,t  > 0 

 then M(T(x),T(y),t) ≥M(x, y, t),x ≠y and thus, the mentioned Edelstein contraction 

theorem is satisfied for fuzzy contractive mappings. 

 Now, we prove the following theorem 

 Theorem 3.12 letƒ be a mapping of a compact fuzzy metric space (X,M,*) into itself 

and let for some positive integer n,ƒn be fuzzy contractive. Then ƒ has a unique fixed point. 

 Proof If the contractive map ƒn moves all the point of X then by compactness there 

exists a point x such that M(ƒn(x),x ,t) is minimal. 

 But M(ƒn(x),ƒn(ƒn(x)),t) > M(x,ƒn(x),t),which contradicts the minimality of M(x, 

ƒn(x),t).Therefore, we must have  

 M(x, ƒn(x), t) = 1 if and only if ƒn(x) = x. To show uniqueness, assume ƒn(x) = y for 

some y ∈ X, then for t > 0 we have 

 1 ≥ M (x, y, t) = M (ƒn(x), ƒn(y),t) ≥ M(x,y,t) implying there by that x is a unique 

fixed point of ƒn, then x is a fixed point of ƒ is as follows: 

                  x =ƒn(x) ⇒ ƒ(x) = ƒ(ƒn(x) 

                                           = ƒn (ƒ(x) 
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                 ⇒ x = ƒ(x). 

 Lastly, uniqueness of x as a fixed point of ƒ may be easily verified. ■ 

 Remark 3.13: The ideas used in above proof may also be used to give a different 

proof of the contraction mapping principle. Which proceeds as follows (recall the hypotheses 

of the contraction mapping principle). 

 For any x ∈ M and any natural number n with using induction we have 

1 ≥ M (x, y, t) = M (ƒn(x), ƒn(y),
k
t ) ≥ M (x, y, 

k
t )≥ M (x, y, 

2k
t )≥…≥ M (x, y, 

nk
t ). 

 Clearly )( nk
t

 is an increasing sequence, then by assumption and clearly, limn→∞ M (x, 

y, 
nk

t ) =1 hence M (x, y, t) = 1and x = y 

 Theorem 3.14 Let ƒn be a fuzzy contractive mappings in each variable separately on 

compact fuzzy metric space (X × Y, M◊, * ) into itself. Then ƒ has unique fixed point. 

 Proof. For every p = (x1,y1) and q = (x2,y2) in X × Y and 

 t + s ∈ (0,1) we have  

         M (p, q, t + s) = M1(x1,x2,t) ◊ M2(y1,y2,s)  

= (M1(x1,x2,t)◊1)∗(1◊M2(y1,y2,s))  

= (M1(x1,x2, 2
t ) ◊ M2(y1,y1, 2

s ))∗ (M1(x2,x2, 2
t ) ◊ M2(y1,y2, 2

s ))   

= M( (x1,y1),(x2,y1), 2
t + 2

s ) ∗ M( (x2,y1),(x2,y2), 2
t + 2

s ) 

< M(ƒn(x1,y1),ƒn(x2,y1), 2
t + 2

s )∗ M(ƒn(x2,y1),ƒn(x2,y2), 2
t + 2

s ) 

≤ M(ƒn(x1,y1),ƒn(x2,y2),t + s). 

 Therefore ƒn is contractive and by Theorem (3.12) has unique fixed point          ■ 
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