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Abstract  
 It is common to use past information about the system modeled in 
probabilistic statistics to make predictions about the future. Especially in the 
area of climate modeling and forecasting this is done. Here it is argued that 
doing this in a purely empirical way is full of perils and pitfalls. Without 
knowledge of the underlying physical laws it will go wrong sooner or later. 
Specifically, the distribution functions are analyzed, which are normally 
assumed to be well-behaved gaussian-like not because there is a reason for it, 
but only because they don’t cause mathematical problems. Real functions 
(like power laws) will prohibit any statistical analysis and thus prediction 
model. Furthermore, correlations and extrapolations are considered. The first 
show that correlations come in many types and not all of them have a direct 
causation link. The specific case of extreme events is used as an example to 
highlight the difficulty and the pitfalls of empirical forecasting in general. 
The conclusion is that empirical forecasting cannot be used for science. 

Keywords: Empirical forecasting, extreme events, bell curve, extrapolation, 
correlations 
 
Introduction 
 It has always been popular to analyze past events and make some 
kind of ’statistical analysis’ of them to allow for making statements about the 
future of the system under study. This, actually, is common practice in many 
areas, such as the stock markets, the climate, finance, epidemics, etc. Society 
needs predictions as a base for implementing measures. The current handling 
of the economic crisis is a good example, where past financial data is used to 
do stress-testing of financial institutions. Yet, it is highly dubious whether 
this kind of approaches is adequate, even if it satisfies our inherent need to 
’do something’. 
 The stock market is a nice example where we can recognize the 
underlying processes. We understand that the forecast itself can and is often 
influencing the outcome. This immediately proves, according to the efficient 
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market hypothesis (EMH), that the open and efficient market prices are not 
forecastable, since otherwise anyone would be able to attain unlimited gains 
(Timmermann and Granger, 2004); If we know for sure that the stock of X 
tomorrow will be higher than today by y%, we’ll buy already today and the 
stock will already be y% higher today and not tomorrow. A typical adage 
”Go away in May, but remember to return in September” is thus void and 
useless. It is at best market manipulation (the manipulator sells in April and 
comes back in August), and forecasting – stock recommendations – should 
be ignored by wise investors, since at best they are self-fulfilling prophecies 
that benefit only the forecasters. This is a commonplace, though. 
 But even in systems without feedback to the prediction itself (like 
natural processes), care has to be taken to not over-rely on the predictions. 
Purely empirical predictions, by definition, are based on past events only, 
without understanding the dynamics and underlying laws that govern the 
system. This paper discusses in a mostly philosophical way (of Aristotle) 
why a purely empirical forecasting (EF) approach is meaningless. We use the 
weather/climate forecasting to exemplify our points, because it is 
prototypical; it can serve as an archetype of a system where the empirical 
approach is widely used. The weather prediction is based on extremely poor 
knowledge of the system – atmosphere, oceanosphere, landmasses, earth 
mantle, etc. As an example, so far nobody can predict El Niños and La Niñas 
(generally ENSO, El Niño Southern Oscillation) reliably, while the impact of 
them on the climate is large and irrefutable. Many other systems are in this 
category, no or poor knowledge of the laws combined with an abundance of 
data and thus an overuse of the empirical approach. 
 To give a (classical) example of pitfalls in EF, think of a roulette 
table. Imagine that the outcome was ’red’ twenty consecutive times. There 
are now two extreme ways of looking at it, both considered ’cognitive 
biases’ (wrong estimations of probabilities). We can either say that next time 
there is a high probability of winding up ’red’ again (>> 0.5), since not 
knowing anything about the table, obviously this table has a preference for 
’red’ as proven by past data. This is called ’hindsight bias’ and is the purely 
empirical approach. The other bias is exactly the opposite, ”It must be 
’black’ next time, since I know the physical processes and know it must be 
50-50 over time and thus it must be ’black’ now”. This is called the 
Gambler’s Fallacy. Both are wrong (for a non-fixed table). We focus here on 
the former bias, the purely empirical approach. 
 The idea of empirical forecasting even became a science in 1693 
when Edmond Halley published his article on life annuities. By looking at 
the death tables of Breslau (now Wrocław), without any attempt of 
explaining these data, he calculated how much people in a community should 
set aside for allowing them to have a pension and receive a yearly ’annuity’ 
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until death. A research area was born, Actuary, the mother of all empirical 
forecasting. By looking at past data – ’tables’ – probabilities are determined 
and the future is planned. The (economical) success of this science ensured a 
wide dissemination of the ideas. In 2017 most events are seen as 
probabilistic whose distribution parameters can be found in past data. This 
ranges from the weather to the stock markets to sports events, etc. 
 With the advent of computational power, empirical forecasting got a 
new dimension. It now also includes ’artificial intelligence’ approaches, like 
using Neural Networks (NN) or Principal Component Analysis (PCA) for 
finding correlations in and between data. However, there is no logical 
difference between human empirical analysis and computer-aided empirical 
analysis, although AI can help us do it faster. 
 A modern variant of the empirical approach that also involves large 
computational power is finite-elements calculations as for instance used in 
weather and climate predictions, and is a slightly improved version of the 
pure empirical approach in that it does have a small amount of knowledge in 
the system incorporated. In this method, the system is divided into many 
individually-acting tiny cells that interact with each other through well 
known laws (so seemingly not empirical). For instance, for the weather and 
climate the atmosphere is divided into millions of cells that each follow basic 
well-known physical laws, like classical gas laws, thermodynamics and fluid 
dynamics (Lynch, 2008). Similarly, in an artificial stock market approach, a 
stock market can be divided into many heterogeneous interacting adaptive 
traders, a system that thus shows emergent properties not seen at the level of 
individual agents (Chen and Yeh, 2002). (Interestingly, a similar analysis, 
when applied to interacting scientists, governed by the ’laws of publication’, 
results in a rapid formation of a consensus among scientists on any subject 
that has high relevance to society, without the need for the consensus to 
represent the truth (Stallinga and Khmelinskii, 2014)). 
 The problems with this empirical approach are myriad. Starting with 
the least severe and increasing severity: i) The underlying laws may be 
incorrect, ii) They may not be applicable to the system under study (for 
example – very popular – applying physical laws like those of Statistical 
Physics to non-physical systems like the financial markets (Cordier, 
Pareschi, and Toscani, 2005)), iii) It is not clear if it is the only set of laws, 
iv) It is not clear if they are sufficient, v) boundary conditions or initial 
conditions may be unknown, i.e., the ’data’ may be unreliable, vi) It is not 
clear if this reductionist approach (system is sum of parts) is adequate in the 
first place. vii) After successfully describing (retro-predicting) past data the 
empirical models might not work for future data, since the system may have 
changed, something that was not included in the simulation because it was 
not needed to explain the data. An example is the problem of obesity in 
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society, a health risk for the young people overrepresented in the current 
demography, but maybe not so for the abundant elder in the future (Gibbs, 
2005). viii) Afterwards, in turn, the simulations have to be studied, which are 
as complex as the original system and nothing was gained in knowledge of 
the system. We are as far away from home as where we started. An example 
in Biology of this last point is the prediction of the tertiary and quaternary 
(3D) structure of proteins based on their primary (chemical) and secondary 
(grouping) structure (Holbrook, Muskal, and Kim, 1993); (Angiulli, Fionda, 
and Rombo, 2007). In fact, the best method, with 100% accuracy, is a black 
box in which are joined together a protein-construction machine and an X-
ray analysis machine, both technologies already existing. It can 100%-
accurately ’predict’ the structure of a protein, but no knowledge whatsoever 
will be gained by doing so. 
 Sometimes the mere fact that the simulations can simulate the past is 
seen as a proof that the model is correct. Yet, this is dubious if no knowledge 
is gained. To show this, ad absurdum, imagine a computer program that 
retrodicts a time series xi = {3, 5, 8, 3, 4 ...} that consists of the following 
code: 
 if (i=1) then x := 3 
 else if (i=2) then x := 5 
 ... 
which is obviously 100% correct, but has no underlying knowledge of the 
system and can thus not be trusted when used for predicting the future. In 
other words, the fact alone that the simulations can predict the past does not 
mean anything in itself. Imagine now adding after 100 real measurement 
data, explained with the above program, a prediction of the program 
 else if (i=101) then x := 200 
We will believe our predictions for the data point (year?) 101 because our 
model manages to explain the past with complete accuracy. Who needs more 
proof of our model? 
 Philosophically, the empirical approach is a form of pure inductivism 
(induction plus reduction) which has been rejected as a correct approach 
since it is only applicable to past data (Chalmers, 1982); If you have seen 
only lemons in your life, you’ll conclude that all citrus-fruit are yellow – no 
finite elements simulation will make you see it otherwise, because you’ll 
adjust the parameters of your simulations until the outcome coincides with 
the data, that is, all citrus-fruit are yellow – and see your model shattered the 
first moment you see an orange. This is what Taleb calls a Black Swan 
(Taleb, 2011) and is the most severe pitfall of the empirical approach and 
inductivism in general. 
 Yet, scientific literature is full of papers on understanding past data. 
In an example of a study of the Forex market (dollar/rial), it was concluded 



European Scientific Journal June 2017 edition Vol.13, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 
 

22 

that ”. . . profitable [. . . ] trades could be made using past data” (Abounoori, 
Shahrazi, and Raseki, 2012). Of course, on past data profit could have been 
made, but will the algorithm also enable profit in the future? We suspect that 
the authors are not as rich as they were implying they could become. Another 
example is the analysis of a soccer championship or sports in general (Karlis 
and Ntzoufras, 1998); (Karlis and Ntzoufras, 2003). After the final match, it 
can be analyzed why exactly the winning team has won the championship. 
Physical strength, agility, endurance, intelligence, etc. The championship can 
be fully parametrized and retro-predicted. Yet, since a lot of the game is pure 
luck, it is highly unlikely the model will adequately predict next season’s 
result. The parameters will have seemingly changed next year. Suddenly, 
having a lot of Swedish players on your team will prove to be the decisive 
factor, while last year they had to be bearded, the latter a-posteriori explained 
by a sophisticated physical local-friction-coefficient argument (to be 
published in a fancy journal). Next year, the model will be adjusted in a 
Bayesian way and will again accurately retrodict the past. An example is the 
climate, previously unforeseen recent cooling fully retrodicted again 
(Guemas et al., 2013). Real data not used to reject the hypotheses, but used 
to adjust them instead. Another example of Bayesian ’science’ – adaptive 
predictions – is summarized by Anthony Watts in his entry ”We’ll have an 
ice free Arctic by the year xxxx” on his blog (Watts, 2013). 
 Why do we still spend so much time on these kinds of empirical 
analysis then, so many researchers doing this type of work, if it is so 
unreliable? The answer is quite simple. It is better than nothing, and maybe 
by sheer coincidence we will find some answers one day. Inductivism is part 
of the scientific method (Chalmers, 1982). There are many such papers in 
literature. That is also because it is easy to get such an analysis accepted in a 
journal; After all, it is very difficult to reject a manuscript that presents an 
idea that is consistent with the data. Yet, in the meantime, we should not 
heed so much the predictions and not give them the benefit of the doubt; 
”They are right because they are consistent with the data”. A winning theory 
will have been submitted to heavy scrutiny (falsification), and, among other 
things, shown to be the only theory that can explain the data and on top, be 
able to predict future data (without having to adjust the theory). As such, we 
actually need as many ideas and theories as possible. The fancier the better. 
Let people be creative and imaginative in their thinking. The erroneous 
papers will eventually be forgotten, and the few good ideas – those that made 
accurate predictions over and over again – will float to the top. In the next 
sections we will look at the probability functions used, discuss the difference 
between stochastic and deterministic processes, treat interpolation and 
extrapolation, and describe correlations between and in data. 
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Empirical statistics, the bell curve 
 The reader by now already has an idea of what we are trying to say 
from what was written above. The perils of empirical forecasting, which is in 
fact an implementation of what is in psychology called ’hindsight bias’ 
(predicting the past, or ’retrodiction’). In this part we analyze the actual 
distribution functions used for empirical forecasting. These are normally of 
bell-curve types, or similar functions. Taleb, fully understanding the 
philosophical problem of the empirical forecasting, mentions them in his 
book The Black Swan by ”Deluded by the simplicity of the bell curve” 
(Taleb, 2011). This we find a quite adequate description. We give here an 
example of weather and climate, since it is easiest understood. For this we 
first have to introduce the weather and the climate, the bell curve and then 
show where it goes wrong. 
 The World Meteorological Organization defines climate as the 30-
year unweighted average weather normal that is to be recomputed every 10 
years (Arguez and Vose, 2011), i.e., a semi-moving-averaging filter. A more 
human definition of weather and climate comes allegedly from Mark Twain: 
”Climate is what you expect, weather is what you get”, which is nicely 
relevant for this work, since it includes both the past and future prediction 
parts of the subject. Thus, climate is the average of the past and is used as a 
prediction for the weather of the future. Nature, paying no attention to our 
human analysis, has its own agenda and basically ignores our predictions and 
gives us what we get. To give an example of contemporary climate 
reasoning, look at Figure 1. It shows the analysis of winter temperatures in 
Laputa (the country of Gulliver’s Travels), similar to the plot used by the 
IPCC – the consensual authority on climate analysis – in their FAQ pages 
addressing the point if weather events are signs of climate change(IPCC, 
2007). The figure shows that the data, until one exceptional year, followed 
nicely a Gaussian pattern; the probability density p(x) of having a value x is 
given by �(�) = ��√	
 exp(�(���)�	�� )                                         (1) 

with μ and σ descriptive parameters, the first one being the expectation value 
and the second the spread. Synonyms for the ’Gaussian curve’ are the ’bell 
curve’ or ’normal distribution’; they are all identical. The bell curve was 
invented in the eighteenth century as a way to represent binomial 
probabilities, for example the fraction of heads in an infinite number of n 
coin tosses (Fendler and Muzaffar, 2008). 
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If the past data falls nicely on a Gaussian distribution, this alone is seen 
as empirical proof that the distribution is Gaussian. (There is no other 
justification for the Gaussian assumption, other than the past data. 
Remember the roulette table). The reasoning is now that the exceptional data 
point is a sign of climate change, because it falls outside the prediction error 
margin, namely 5.4 ’sigma’ (σ); The probability of finding a value so far 
away from the mean can be calculated with the cumulative probability 
function, �(� ≥ �) = ��� �(�)d�= �	 [1 − erf(����√	)]                                         (2) 

 
and for X = μ + 5.4σ this is too tiny (0.0000033%) to be reasonably possible. 
It is more likely that the system (parameters) – the climate – has changed. 
This, at least, is the reasoning used by the climate reference institute, the 
IPCC. However, this is a form of circular reasoning, a logical pitfall. 
Experimental data is used and forced into a certain distribution (Gaussian 
here), and then any data not conforming the distribution statistics is called an 
’outlier’ and thrown away – as often done by ’stickers to the model’; ”Trust 
your model, facts can be disposed of” – or used as proof of parameter 
changes (μ models the climate, i.e., the prediction of the weather; μ change is 
climate change and thus tomorrow’s weather change), as done by people 
who want to change the model in a Bayesian, adaptive way. (An example is 
Lovejoy who analyzed the bicentennial temperature data in a stochastic 
concept with Gaussian-like distributions and concludes with high level of 
confidence that the climate changes are man-made (Lovejoy, 2014)). 
 Nobody’ll say that the assumption of the (Gaussian) probability 
distribution is wrong in the first place, even while that might be the most 

 
Fig. 1: Fictional data showing a normal distribution and an outlier of winter temperatures 
in Laputa (the country from Gulliver’s Travels). Similar to the plot of summer temperatures 
in Switzerland presented in FAQ 9.1 of Ref. (IPCC, 2007) by the alleged climate authority, 

the IPCC 
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logical conclusion. Even worse, the authors of the altered model do not even 
realize that the outlying data point is also inconsistent within the allegedly 
changed climate; it remains an outlier (probably something like 5.1 sigma, 
i.e., 0.000017% probability) after an adjustment of μ, i.e., the same data 
point should be used to immediately reject the new hypothesis. A statistical 
alternative is increasing sigma, to incorporate the new data point, i.e., talk 
about ”increased incidence of weather extremes”, which is equally 
rejectable, since the rest of the data are nicely following the bell curve. Any 
Gaussian distribution function used will make that there are data points that 
should not have occurred for that distribution. A way out would be to say 
that the climate (μ and σ) has instantly changed, from one data point to the 
other. However, that goes against the common belief that climate changes 
are gradual. We are left with an inconsistent story that is representative for 
all empirical analysis and applies to all distribution functions used, and to the 
bell curve in particular. 
 The only distribution function that can be used is one that is equal to 
the distribution of data points that occurred, namely a sum of delta-dirac 
functions at the data points. This predicts the past data with complete 
accuracy, there where the bell-curve fails; the bell curve is in fact infinitely 
wrong in an infinite number of places, either non-zero where it should be 
zero and non-infinite where it should be infinite (Look again at Figure 1, the 
data are actually plotted differently than the model, each data line is a delta 
function). 
 This leads to strange results. If we have data points at 10.0 degrees, 
10.2 degrees and 10.3 degrees, and make our correct triple-delta-function 
model, 10.1 degrees cannot occur? Well, it never did occur, so the best 
empirical model, by definition, is one that never predicts it. That is the 
definition of empirical forecasting. Only that what happened had a 
probability of happening. We seem to be sinking ever more in the empirical 
forecasting swamp. We mentally force the data into a nice and human-
understandable probability distribution, to avoid any logical or 
computational analysis. (More about probabilities later). The bell curve 
masks our ignorance. 
 Continuing, empirical modelers often divide the data into two sets, a 
set to develop the model and a test set to validate the model. However, this 
does not help. The winning model will be that one that is validated best, so 
the one that describes the entire set best. What remains is that the better the 
past can be predicted, the better is the model, by definition. Up to and 
including abandoning the Gaussian distribution and alike functions (fat-tails, 
etc.), something that was never justified anyway, since it is not at all obvious 
that reality consists of multiple-coin-flip processes. Or, as Einstein said it 
”God does not throw dice”. It is more likely that events in nature are the 
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result of dependent processes governed by rigorous physical laws, making 
the outcome deterministic and nothing like Gaussian at all. Reality is a delta-
function ’distribution’; what happens happens with 100% certainty. These 
words were already uttered by Aristotle, ”Only what will happen can 
happen” (Kenny, 2012). The fact that we do not know what exact delta 
function, does not make it Gaussian, even if often it looks Gaussian, which 
anyway it doesn’t since reality is a sum of delta functions. 
 We’ll get back to distribution functions later. For the moment the 
figure suffices to introduce the empirical reasoning used by most statistical 
analysts. Note that no physical reason is used to explain the outlier; the fact 
of ’lying out’ is considered sufficient proof of climate change, as argued by 
the IPCC report. However, it is an empty statement, since any data point that 
moves into the moving averaging function mentioned above that is not equal 
to the value of the data point moving out of the window causes a change of 
average and thus μ (and possibly σ) and thus change of the climate, by its 
sheer definition. This explains why empirical predictions for the future 
always are mere extrapolations of trends. This happens in the climate and the 
stock markets alike. That is the fate of the empirical approach. 
 To give a financial example. Most insurance companies use bonus-
malus systems for car insurance. If a person has had an accident this year, so 
the reasoning goes, the risk of that person apparently was underestimated, 
and that person has a higher probability of having an accident next year. 
They may even prove this reasoning by statistics and justify it 
mathematically by hindsight prediction (analyzing the ’roulette table’). 
However, in reality a person may well have a steady probability x to have an 
accident and any accident is ... well ... accidental. In that case it is just the 
probability estimate that has changed, because the model has been adjusted 
to account for the recent data. By looking only at the accident itself, without 
looking at its cause, the bonus-malus system is merely a scheme of delayed 
payment of the ’insured’ person that had the accident, thereby eliminating 
any risk for the insurer. Modern insurance techniques use foresight 
prediction, basing the probabilities on factors such as the gender of the 
insured, which brings with it other moral complications such as the unjust 
generalization of groups of people, and moreover, the estimation of the risk 
parameters of the group members is normally based on ... yes, you guessed it 
. . . empirical evidence. 
 
Stochastic vs. deterministic 
 The Aristotelian quote of the previous section brings us to an 
important point. The difference between deterministic and stochastic 
processes. Statistics are a very nice but also dangerously complicated and a 
tricky instrument. Let us give you an example: We roll a 6-face die. Imagine 
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we roll it 1000 times and find the statistics. They are more-or-less as 
expected, with maybe a couple of times more a ’3’ compared to a ’5’, etc. 
But, let’s assume that actually the die was completely regular and had the 
expected statistics with 1/6 probability for each number. That is, that we 
cannot exclude this possibility from our statistics of repeated throws, and we 
thus assume it because we like the symmetrical probabilities, i.e., we have a 
non-empirical model. Let’s assume it is a probability function when trowing 
and that the dice is fully symmetric. 
 Now let’s empirically analyze it. We roll it again, 3 times, and find 
’1’, ’6’ and ’4’. Have the probabilities of the die changed? Absolutely! If we 
only look at the last rolls, ’6’ and ’4’, we can say that the probabilities for 
these rolls have changed from (average) 
 
1/6, 1/6, 1/6, 1/6, 1/6, 1/6 
 
to (the last single rolls) 
 
0, 0, 0, 0, 0, 1 
 
And 
 
0, 0, 0, 1, 0, 0 
 
as proven by the statistics. Well, it happened, didn’t it? Whatever the laws of 
nature underlying it, the final outcome was ’4’, so the best model is the one 
that predicts (retroactively) a ’4’. Actually, both physically (understanding 
the laws of underlying physics) as well as empirically (just looking at the 
data). The real model, had we had knowledge of all of the underlying 
physics, would have predicted the above outcome. Continuing with 1/6 
probabilities just shows our ignorance of the physical laws or initial 
conditions of the system. But, without knowing why the outcome was ’4’, 
the probabilities must have been 100% for a ’4’, because that is what 
happened. The system is deterministic to the bone. Now, for the future, the 
two approaches diverge: An empirical model will say that the next trow has 
high probability of ’4’. An educated guess model will continue saying 1/6 for 
all numbers (because we philosophically like that because of symmetry and 
we keep it until we can reject this simple model), while nature itself will 
have a 100% probability for a certain number. What number we do not know 
yet, but the better we study it, the better we will know what number it is. 
 To see this better, take the extreme example of a deterministic but for 
a bystander seemingly random event as the Pharaoh shuffle of a deck of 
cards, a trick often used by magicians. For the ignorant audience it looks like 



European Scientific Journal June 2017 edition Vol.13, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 
 

28 

a random shuffle. The magician (steering the laws of distribution) makes it 
completely predictable by n times precisely interleaving the cards, which he 
learned to do repeatedly and reliably, i.e., predictably. Normal shuffles are 
less predictable by humans but equally deterministic by nature. The 
reasoning we use is: If I shuffle the deck in an equal way, the probability of 
card X being on top again is 1/52. However, in reality, how we should think 
is: If I shuffle the initially identical deck of cards in an equal way under 
exactly equal conditions, the probability of card X being on top again is 
100%. Something our magician does. The 1/52 probability models our 
ignorance of the conditions and the way of shuffling. 
 The same is true for the weather. The weather events, like die-roll 
events and card shuffles, are completely deterministic. We are only blinded 
by our own ignorance into thinking there are some kind of probabilities 
involved. The fact that we cannot determine the physical laws of the system 
and calculate the outcomes, doesn’t make it non-deterministic. As an 
example, the flows of air in the atmosphere and water in the oceans are 
turbulent and this is a stochastic process in our eyes. However, nature is 
deterministic – governed by the laws of thermodynamics – and only looks 
random to us. Thus, we are doomed to make wrong statements about the 
weather. It looks like asubtle difference, but the consequences are enormous, 
as will be shown. 
The usual reasoning has an even greater flaw. It implicitly uses one essential 
axiom, something that is often forgotten. The distribution function used has 
to be of a probability type. That is, it should be integrable, and the 
integration should yield unity. That while, as we have just argued above, 
nature is deterministic. This limitation of functions is thus ungrounded; it is 
trying to force nature into a non-deterministic idea through probability 
functions, because we, mindless humans, only can work with it like that. 
Such functions thus get us into trouble by giving us misplaced confidence. 
We’ll get back to function types later. Let’s for the moment use the standard 
tactics of modeling the past data with docile probability functions and use 
them to make predictions for the future. Even then we get into trouble. That 
is because we use past data for parameter determination. 
 Let’s go back to the situation of the definition of the climate as 
prediction of weather. Climate is the 30-point average of the weather. We 
could also use an example of the stock-market, where often a 50-day average 
is used to empirically see a trend and to invest (predict) on basis of this 
indicator, or we talk in technical terms of ’resistance levels’ and ’support 
levels’, in case of absence of any other, non-empirical, information. Just the 
data themselves. Now let’s see what happens. 
 Take this simplified imaginary situation: The only information we 
have is this: There was never a flooding in Pakistan in 99 years of our 
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measurement set. Thus, the probability – our best-estimator for the risk for 
the next year – of flooding in Pakistan was 0%. Mind you, we use statistics 
only, and do not include any knowledge of physics whatsoever in our 
prediction model. 
 Then Pakistan gets hit by flooding. What is now our best-estimator of 
probability of flooding in the next year? 1%? Namely, once every 100 years? 
Depends on how the climate is defined! Our reasoning may go something 
like this: 
• The probability of flooding was 0% and the occurrence of flooding 
was 0% until last year, as proven by facts. Our best model for the past was 
0% probability. 
• The probability of flooding (and occurrence of flooding) last year 
was 100%, as proven by facts. Without understanding why, our best model 
of last year was 100% probability. 
• The probability of flooding for the coming years is 3.3%. Namely, it 
happened once in the thirty-year climate window. The climate is now defined 
as ”Flooding? Once in thirty years, i.e., 3.3%.” Any other conclusion is a 
wrong interpretation either of the statistical data or of the definition of 
climate. 
 Note that the probability of a flood (in the coming years), depends on 
our quite arbitrary definition of climate. p = 1/n, with n the number of years 
used for the definition of the climate. Part of the events are ’swept up’ into 
climate, and part of it in the variability within the climate, i.e., weather, and 
the demarcation line between them chosen quite arbitrarily. If we don’t 
understand the physics behind the system, and use only the data, we naturally 
wind up with this conclusion. The probability of a flood tomorrow depends 
on the (arbitrary) definition of climate. That is absurd, but is the only 
possible outcome of the empirical approach. 
 To show how weird this is, imagine we were to do this with the roll 
of a die, if the probabilities of the die were purely empirically determined by 
the last thirty rolls. This seems ridiculous to us, since we do have a physical 
explanation for the probabilities of this system. A die has octahedral 
symmetry (called Oh), and we know it has 6 symmetrically-equivalent 
minimal-gravitational-energy positions (plus 8 maximums and 12 saddle 
points). That makes us ignore the 30-roll-statistics and stick to our non-
empirical probabilities, since we deem our derived physical/mathematical 
laws of higher order than the actual data. (But this also seems wrong, since it 
cannot even retrodict the past. What model is that?!) 
 For the stock-market, or the climate, or any poorly-understood 
system, for lack of something better, we use an empirical approach of data 
only. To be able to say if the market (bull or bear market) or climate has 
changed we look if the average in the past data has changed. From a human 
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point of view the system is described as best-estimators of 
market/weather/climate parameters (price, temperature, precipitation, etc.) 
and they are the averages of those parameters in our averaging window, any 
event that has a value for a particular parameter that is not exactly equal to 
the current average value will change the average and thus our best-estimator 
for that parameter and thus our estimation of the market or climate. ”Did the 
climate change?” is thus converted into nothing more than ”Has the average 
value changed?” This is a trivial result of our definitions. The only 
discussion we can now have is about the direction and magnitude of changes 
and eventually about the permanency of these changes, where the latter 
cannot be decided on statistics alone. 
 Meanwhile, empirical agencies find correlations in and between data 
and (re)invent an ad hoc explanation for them and use the hindsight 
predictiveness of the model to prove the correctness of the model. Ironically, 
applying the empirical method to these agencies themselves – the failed past 
predictions as input ’data’ – will make us completely ignore them altogether. 
It is just a matter of empirical analysis; the probability they are right this time 
is estimated to be zero, since they have never been right before in the past. 
 Coming back to the climate and weather events, if we abandon the 
empirical track, and study more, namely the underlying physical processes, 
we can determine what it is exactly that has changed in the climate, why the 
event occurred. But that the climate has changed is irrefutable. Any 
statement about the climate on basis of a past weather event is therefore 
completely void of information. Yet, it appears in literature over and over 
again (Stott, Peterson, and Herring, 2012). 
 The more we study and understand the physical laws governing the 
weather, the more we stop talking about probabilities and start talking about 
certainties: ”It flooded because of X, Y and Z. These things were absent in 
the years before, and last year they were there. So, the system – the climate – 
has changed, namely in the aspects X, Y and Z”. If we had the mother-of-all-
computers, combined with an infinite knowledge of physics and facts, 
including all butterflies in Buenos Aires or whatever tiny event on our planet 
and the rest of the universe, we would also see the weather as something 
deterministic. There is no reason to believe that quantum mechanical 
fundamental Heisenberg uncertainties influence the large-scale physics and 
make weather and climate non-deterministic (and even there the final word 
has not been said yet). In fact, Chaos Theory – very relevant for the weather 
– is the embodiment of the idea that nature is deterministic but too complex 
for humans to understand, it is pseudo-random. We cannot see the difference 
between a stochastic and a deterministic system, and to nearly all effects they 
are the same, but they are fundamentally different. Nature is deterministic 
and our probabilistic models have no base. These ideas can be transposed to 
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other systems. For example, the similarity of weather and stock markets is 
plain enough, as both are chaotic fractal systems based on intricate feedback 
processes. 
 
Distribution functions: 
 We have already briefly mentioned the aspect of the type of function 
used for statistics in the previous section. There is no logical base for 
requiring probabilistic functions at all, and even less so for using the Gauss-
like curves for past and future predictions of all systems. In this part we 
criticize specifically the use of the bell curve. Others have gone before us. 
As, for instance Fendler and Muzaffar write, ”Our purpose is to criticize [...] 
the belief that a normal-curve distribution is a representation of real things in 
nature” (Fendler and Muzaffar, 2008). For some systems it might work. For 
others blatantly not. To give you an example where it doesn’t fit: people’s 
performances. Until recently thought to be Guassian, the real distribution of 
the performance of people has a clearly non-Gaussian long tail (O’Boyle Jr. 
and Aguinis, 2012). To give an example where it does fit reasonably well, 
take again the die rolls. This is a nice docile system. The number of 
possibilities is finite (exactly 6), and even if it is a biased die, we can predict 
the die roll to some degree, and cannot expect outliers. 
 It boils basically down to this idea. For nice docile systems like die 
rolls, statistics can be used. We can make a prediction on the average – the 
expectation value – of future die rolls. Actually, if we are knowledgeable, we 
can ’predict’ the die roll with certainty, just as we can predict card shuffles, 
especially of the Pharaoh type. For this type of systems, our level of 
knowledge is represented in the level of our statistical approach. This then 
ranges from completely ignorant (empirical; functions and parameters are 
derived from data themselves) to mildly ignorant (functions and parameters 
are found on basis of reason, like the die), to fully sapient, where there is no 
’distribution’ at all, but prediction entails just working out the calculation for 
the future, like in Pharaoh shuffles and billiard ball collisions. 
 Note, however, that we have to be at least sapient enough to know 
that we can use the probability-functions-statistics approach in the first place. 
We have to know that the system has an expectation value to start with. This 
is not the case for all systems. While the next die roll has an ’average’, an 
expectation value, other systems do not have this quality. For example, it is 
not possible to say anything about the expectation value of the next 
earthquake in San Francisco. That is because these do not follow probability-
like statistics. Remember that a probability function was not required for 
deterministic systems and that nature is a fully deterministic system and thus 
not restricted by our simplistic mathematics. Earthquakes, and many natural 
systems, do not follow Gauss or Gauss-like distributions, but other, much 
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more troublesome functions instead. This changes the game completely, as 
we will exemplify using the climate again. 
 In a completely-ignorant way of analyzing the system, the idea is that 
some weather parameter (like temperature or rainfall) is assumed to be 
normally-distributed with a Gaussian probability function (Eq. (1)), see 
Figure 1. If an event then lies more than 2σ or 3σ away from the median μ, it 
is considered abnormal and thus a sign of climate change. Although any 
average-changing event is climate change – ’outliers’ as well as ’inliers’, as 
discussed above – this particular reasoning is false. 
 The reasoning normally followed is this: 
1. Assume the events are normally distributed with a Gaussian 
probability distribution function (Eq. (1)). 
2. Find the parameters μ and σ best representing the real data. 
3. Determine by a Student’s t-test if a new event lies within 2σ or not 
and if it is consistent with the null-hypothesis ”parameters unaltered” or is an 
extreme event. Fig. 1, has a 5.4σ for outlier of 2004. If the event is extreme, 
the distribution (climate) must have changed. 
 The reasoning goes wrong with the basic assumption, namely of the 
distribution being Gaussian. Upon arrival of a new datapoint that is falling 
outside the expected range of the normal distribution, it is then concluded 
that the parameter μ has changed (climate change), but instead the 
conclusion should be that the data are not distributed normally. If a datapoint 
does not fit well with distribution function F and parameters P, it might mean 
that the parameters P are different or changed – as we are wont to believe – 
but it might as well be that the choice of function F is wrong. In fact, it might 
not even be a probability-like function at all. Especially so, since we have 
just seen that many systems are not at all about probabilities. 
 The problem lies in the fact that it is as an axiom assumed that the 
weather follows a probability distribution, such as Eq. 1, that integrates to 
unity, while, as reasoned above, the system does not have probabilities. What 
remains is only a frequency-of-occurrence tallying statistics, so called 
’binning’. These can have strange properties indeed, as we shall explain in 
more detail. 
 There are basically two types of functions f(x) to describe the tail 
behavior (x far away from median) of statistics in nature, namely exponential 
n−y(x) (as the tails of the Gaussian bell curve, with n = e and y = x2), and 
power-law x−n , also called Pareto functions, Zipf law, etc. Members of the 
first family of functions – also called ’non-scalable’ – are very ’docile’ and 
will not cause the scientist much problems, and thus the primary reason for 
their use, ”fooled by the reductionist need for simple functions” (Taleb, 
2011). There are also systems that follow the second family of functions, 
also called ’scalable’, defined as the fractal property that any multiplication 
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of x to ax introduces a constant factor in the function value, independent of x 
(Taleb, 2011), 

f (ax)

f (x)
=

f (ax ' )
f (x ' ) .                                         (3) 

 For instance, an earthquake of Richter (logarithmic) magnitude x has 
a times more occurrence than an earthquake of magnitude x + 1, independent 
of x. It is easy to show that the Gaussian is not scalable. Which functions 
are? The above equation can be solved to find the set of functions that are 
scalable. In the first step, noting that the fraction is constant, we take the 
logarithm on the left side, divide it by ln(a) and letting this factor go to zero, 

lim
ln(a )→0

ln [ f (ax)]− ln [ f ( x)]

ln (a)
= C .

                              (4) 
 The left side here is the definition of a derivative of the function on a 
log-log scale (ln(ax)−ln(x) = ln(a)). Therefore, the function in a log-log plot 
is a line, with constant derivative, dln[!(�)]dln(�) = ", 

 dln [!(�)] d⁄ �dln (�) d⁄ � = ", 
 dln[!(�)]d(!(�)) ⋅ d(!(�))d�1 �⁄ = ", 
 1!(�) ⋅ d(!(�))d�1 �⁄ = ", 
 &('(�))&� = " '(�)� .                                               (5) 

 This is a differential equation which indeed has as unique solutions 
the power-law functions mentioned before, 

f (x) = f 1 x−α ,                                               (6) 
with f1 a constant being the function value at x = 1 and α a constant (α = −C) 
denoting the power (for instance, earthquakes follow power α = 3.04 
(Newman, 2005)) – the lower the number, the more the system is pestered by 
outliers (Taleb, 2011). (See Figure 2 for an example with α = 0.5). 
’Scalable’, ’fractal’ and ’power-law’ are all one and the same thing. See the 
work of Newman for an excellent summary of these power-law functions 
(Newman, 2005). Power-law functions can behave like Gaussian functions, 
especially for small numbers of samples, but they lack the parameter σ and 
drawing conclusions on basis of this parameter can thus not be done. 
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Actually, these functions are horrendously difficult to work with. It is as 
good as impossible to draw conclusions with these functions, as anybody 
working with them knows. And even if it is not a power-law, that does not 
mean that the distribution is as simple as normal Gaussian (or whatever other 
function we assumed). Some distributions are (stretched) exponential 
exp[−(x/x0)β], equally difficult to work with and therefore equally avoided by 
scientists trying to model the world and predict the future. In the worst case, 
we can have non-parametric statistics that are not described by any well-
known function with parameters. Even if we cannot come up with something 
better, and that most of the times it may look correct, our choice of Gaussian 
is not necessarily correct. Any outliers instantly prove us wrong, the moment 
they appear. 
 The function of probabilities, for instance for the lottery, is by 
definition integrable (and integrated to unity; a limited-range number has to 
come up and somebody has to win). Not so for the frequency-of-occurrence 
functions of many natural phenomena. A power-law function (Eq. 6) cannot 
be integrated over all possible values of x (zero to infinity), since it results in 
infinity, for any value of α, either on the zero-side or on the tail side of x. 
(Often, arbitrary lower or higher limits are set to x, for instance the strongest 
earthquake ever measured, until now, to force it to be usable, integrable, 
because that is so much needed). It can thus also not be scaled to result in 
unity when integrated. ’Probabilities’ are not defined; only real-events 
statistics remain. As, such, the average expected magnitude of a future event, 
 ⟨�⟩ = �+, �-(�)&��+, -(�)&� ,                                                     (7) 

 
cannot be calculated on basis of empirically-found parameters (f1 and α). In 
other words, the average magnitude is not defined for such phenomena (ex. 
earthquakes; One cannot make a statement about the predicted average of the 
next earthquake). There are some once-in-a-while-occurring high-magnitude 
outliers – Black Swans – that mess-up the analysis. Since, on basis of its 
fractality, the weather is also expected to be a scalable (power-law) system, 
one cannot make an estimation for the average temperature in, say, 
Amsterdam. One can only make a statement about the past average 
temperature there. The past has an average, the future not (yet). Outliers are 
natural and they mess up the calculations. 
 Thus, the bell-curve is not the best choice of function. As an 
example, flow of matter (air and water), a fundamental process for the 
weather and the climate, shows turbulent behavior and thus results in 
fractality and scalability, i.e., power-law. Likewise, many financial markets 
are composed of an intricate network of coupled communicating nodes, 
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causing chaotic behavior. These are fractal-like systems, where zooming-in 
reveals basically the same or similar patterns. They are therefore probably 
not well described by (docile) probability functions like the Gaussian, but 
should rather be modeled with Mandelbrotian functions (Taleb, 2011) like 
power-laws, even if that makes our work difficult, if not impossible. Yet, if 
we, scientist, model the system with bell-curves, and find that data are not 
consistent, we prefer to throw away the data – call them ’outliers’ – rather 
than throwing away the model, or use them at our convenience to make 
statements about the changeability of the system. That while in most cases, 
we have only the data and no underlying physical knowledge of the system 
to work with. 
 Scientists, in an attempt to describe nature, use stochastic models 
which necessitate the use of probability-like docile functions, i.e., Gaussian 
bell curves. If, in this way, we manage to successfully describe 99% of the 
real situations we are happy. The remaining 1% is just ’outliers’ and does not 
discourage us; The 99% success rate validates the stochastic model 
approach. 
 
Extrapolation 
 The next step conventionally done is a time-series analysis. After a 
statistical analysis of finding μ and σ, one can do a linear regression on the 
data and try to find a tendency, trying to find out how the data depend on 
time t, i.e., finding a and b in the equation μ(t) = at + b, rather than only 

 
Fig. 2: Two types of functions (half shown, only positive x), non-scalable (like Gaussian, or 

the similar 2− x2

shown with solid line), and scalable, power-law (like the shown 1/√x, 
dashed line). The former is docile and integratable, the latter not (the shown example 

because of the long tail, not going fast enough to zero; for other exponents, problems can 
occur at x = 0) 
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analyzing their statistical distribution. It is then very tempting to try to do an 
extrapolation and make a prediction for the future. See for example Figure 3. 
In this figure, a clear tendency of temperature dropping is visible (it was 
actually introduced in the simulation, 0.2 degrees per decade). So, it is very 
straightforward to draw a conclusion that next year it will probably be even 
colder. However, general wisdom is that extrapolation is not allowed on 
basis of data alone. No linear extrapolation, unless we understand the physics 
behind the system and have explained that it should be linear. Never on basis 
of data alone. In the figure, what conclusion can we draw? Will it be cooler 
next year? No, the only conclusion we can draw that it has cooled down in 
the previous years. This seems counterintuitive, but is the only reasonable 
conclusion. 
 In his book ”Thinking, fast and slow”, Kahneman explains the 
extrapolation fallacy in detail (Kahneman, 2013). More specifically in the 
chapter called ”Regression to the average”: Imagine a golf tournament. A 
player’s score is determined in part by his skills, but also to great extent by 
his luck. Thus, if after one day a certain player is on the first place of the 
leaderboard, it is because he is skilled and he had exceptional luck. While his 
skills will not have dwindled much overnight, his luck is expected to be 
average next day, and thus we expect him to drop on the leaderboard. This is 
counterintuitive and most people will expect a person leading a tournament 
to continue to play well and continue leading, in fact extend his lead. That is 
because people use an empirical analysis, extrapolating past performance for 
a prediction of the future. However, theory tells us and reality shows us that 
if tomorrow’s performance is less than 100% correlated to today’s 
performance (not uniquely determined by skill), regression to the average is 
to be expected. The less the correlation, the more the system will regress to 
the average. Note that a sports event where luck is banned is as exciting as 
watching a dry tumbler in action. Generally speaking, we watch sports 
exactly because it is not fully predictable. 
 This same type of reasoning may also be applied to the climate. In 
1998 we had an exceptionally warm year. This was due to climate change 
(equivalent to ’skills’ of golf player), but also due to random variations 
(’luck’ of golf player). The conclusion of the people using an empirical 
approach only was that it would warm up even more.Yet, regression to the 
average told us that after an exceptional warm year it was bound to cool 
down. As indeed happened. Gosselin compares the real data of 2014 with the 
predictions for 2014 published by Smith in Science in 2007 (Smith et al., 
2007), apparently ”a staggering failure” (Gosselin, 2014); we are well 
outside any error margins of their empirical models, we have regressed to the 
mean of linear warming up that started in the 17th century. 
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 To show where simple data analysis and extrapolation may go wrong, 
consider the case of a melting of an ice sheet, say, for instance, the 
Greenland ice cap. The same Figure 3 shows an imaginary scenario with a 
saw-tooth function of the sheet thickness. This is not so far-fetched, as 
Greenland is one of the biggest deserts on our planet (”In fact there is less 
rainfall in Northeast Greenland than in the Sahara, and thus the expression 
’the Arctic desert’ has arisen” as stated by the Greenland tourism agency 
(greenland.com, 2015)). Precipitation there is also very irregular; It may not 
snow for 50 years, and then suddenly snow a lot (Johannessen et al. reported 
indeed an unexpected growth of the ice-sheet in Greenland in 2005 
(Johannessen et al., 2005)). Climate scientists, monitoring the ice sheet 
thickness, will always measure a declining ice sheet, yet, over time, nothing 
changes, as can easily be verified in the figure. The thing is, if we do not 
understand the physics behind the system, but only look at the pure data, we 
are doomed to make erroneous extrapolations. 

Correlations 
 A third powerful tool of empirical statistics is correlations, often used 
to prove theories. Examples are plenty. Famous examples can be found in 
medicine, economy and once again the climate. 
 In medicine, it was shown beyond reasonable doubt that a correlation  
 

 
Fig. 3: Extrapolation of data. Top: A set of data of random (homogeneous, 1 degree spread) 
on a declining temperature (2 degrees per decade). Are we allowed to extrapolate? Bottom: 
A simulation of ice sheet ’melting’. At any point the ice disappears, however, on the long 

scale nothing changes 
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exists between high cholesterol levels and cardiovascular problems. 
Pharmaceutical industry used this correlation to sell its idea that their 
cholesterol-lowering medicine (statins) would be beneficial for the public. 
No positive effects ever materialized. Thus, an alternative explanation might 
exist, namely that high cholesterol levels are caused by a risk of 
cardiovascular disease, the body fighting the risk by increasing cholesterol 
levels. An hypothesis that was never studied, since obviously no money can 
be made on it. 
 In climate research, a high correlation was found between 
atmospheric carbon-dioxide concentration and global temperature (Gore, 
2006). However, this correlation was only seen in the past, while recent huge 
amounts of CO2 injected into the atmosphere apparently were accompanied 
by a lowering of global temperature (since 1998). In the economy a 
correlation was shown to exist between government debt and stagnation of 
the economy (Reinhart and Rogoff, 2010). The banking sector – for fear of 
losing its investments – used this to convince governments to implement 
austerity measures, and five years later, no positive effects of these measures 
materialized. Quite to the contrary. Economy slumped everywhere. 
 Pro-oil research established a correlation between oil prices and 
misery (and the more common idea of wealth and energy consumption per 
capita) (Skov, 1999). 
 The main problem with correlations without a sound scientific 
explanation is that the empirical data do not show the arrow of cause and 
effect. Correlation is not causation. Which one is causing which? They can 
be even completely coincidental, or have a common underlying reason. 
Assuming causation is a logical fallacy called cum ergo propter hoc (Latin 
for ”with this, therefore because of this”). 
 There are basically six types of resulting correlations between A and 
B, see Figure 4: 
1. Coincidental: A and B independent of each other, but by chance seem 
to be correlated 
2. Common base: X causing A and B. X is normally called a 
’confounder’ 
3. Transitive (very common): A causing X causing B, A not causing B 
4. Combinative: A plus X causing B, A or X independently not causing 
B. (ex: Water plus cold gives ice) 
5. Unidirectional: A causing B or B causing A 
6. Bidirectional (feedback): A causing B and B causing A 
 The last one is the most complex and has the most chaotic behavior. 
Note that the causalities in the two directions in that case do not necessarily 
have to be of equal strength (if A and B have the same unit). 
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 As an example, upon scrutiny, it was shown that CO2 is lagging 
behind temperature variations by some thousands of years. Indermühle and 
coworkers (Indermühle et al., 2000) made a statistical analysis and found a 
value of 900 years for the delay and note that ”This value is roughly in 
agreement with findings by Fischer et al., who reported a time lag of CO2 to 
the Vostok temperature of (600 ± 400) yr during early deglacial changes in 
the last 3 transitions glacial-interglacial” (Fischer et al., 1999). That makes 
the correlation of type 5 possible, but only if CO2: coincidental is the result 
of temperature and not the other way around. In view of this, CO2 capping is 
fruitless, but can devastate human civilization by reducing the benefits (!) of 
CO2, high level of industry and wealth (Earlywarn.blogspot, 2011), high 
level of agriculture by CO2 fertilization (Hartwell Allen Jr., Baker, and 
Boote, 1996), etc. 
 Likewise, in the economy, it was argued by Krugman that actually 
the high government debt was the result of a stagnating economy (Krugman, 
2013a, Krugman, 2013b) and not the other way around, as earlier suggested 
by Reinhart and Rogoff (Reinhart and Rogoff, 2010). With this idea, 
austerity can wreck the economy even further, down-spiraling into economic 
disaster, as we now see taking place in front of our eyes in many countries 
around Europe. In our country, Portugal, the Austerity measures made the 
government debt rise from 94% of GDP in 2011 to a staggering 129% of 
GDP in 2014, even though the European Union started including prostitution 
and illegal drug sales in the GDP, everything to get the GDP up (and the 
debt-to-GDP ratio down). It seems obvious, while there is a correlation, in 
fact stagnation causes a public debt (ratio) and not the other way around. 
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 For cholesterol, it might be so that both high cholesterol and 
cardiovascular diseases find a common basis in the DNA of the person. Or it 
might be so that high cholesterol is the only way the body can lower the high 
risk of heart attacks. In the former scenario, cholesterol-lowering statins will 
have no effect whatsoever, as seems to be the case. In the latter it will even 
be counterproductive, since we disarm the body in its fight against illnesses. 
Cholesterol might actually be good for you! (Schatz et al., 2001); (Kendrick, 
2008) And, actually, obesity might not even be a problem for a population, 
as statistical data indicate (Gibbs, 2005). The same way in the 1950’s doctors 
balanced the fight of the body with infections in favor of the bacteria – based 
on irrefutable correlations between low-iron levels and infections – by giving 
iron supplements to sick patients, thereby factually killing them. Note that 
bacteria need iron much more than the body does (Schaible and Kaufmann, 
2004); our body secretes iron in order to kill the bacteria. The myth of the 
benefits of iron was further amplified by the comical character Popeye eating 
spinach, thus combining two myths in one, since apart from iron having no 
benefit to an infected person, also spinach does not contain so much iron as  
previously claimed. (To add to the confusion, this myth might be a myth. 
Popeye was based on vitamin A in spinach (Sutton, 2010)). 

 
Fig. 4: Six different ways of correlations 1: coincidental, 2: common base, 3: transitive, 4: 

combinative, 5: unidirectional, 6: bidirectional (feedback) 
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 These examples show where failed measures are based on failed 
research, neglecting the scientific method – for instance the requirement to 
show that the model is the only one that can explain data (Stallinga and 
Khmelinskii, 2013). To further show you how this works, imagine politicians 
listening to scientists that analyze health of people. We know that men 
smoke more than women and that smoking is bad for our health. The obvious 
conclusions of scientists will be that being a man is bad for a person’s health 
and politicians implement mass-penectomy measures on basis of these 
scientific facts. All because they do not understand correlations of type 3 
above (A causing X causing B, A = ’man’, X = ’smoking’, B = ’cancer’, 
where each step actually can, in turn, be transitive itself) and only look 
empirically at correlations that tell us nothing if the scientific method was 
not applied and alternative explanations were not included. The literature is 
littered with examples of these non-scientific statistical correlations, more so 
since they are the easiest to publish (since models that are consistent with 
data are indeed difficult to reject by the referees). The conclusion is that if 
we use an empirical approach, analyzing the data without a good theory to 
explain them, correlations can and will fool the scientist. This non-scientific 
empirical approach will inevitably have deleterious social and political 
consequences if used in decision making. The correlation between CO2 and 
global temperature used by politicians to justify flagellation of the world by 
misplaced measures maybe the best example of how the entire society can be 
suffering from non-scientific research.  
 
Conclusion 
 In conclusion, we argued that if we use a purely empirical data-only 
analysis, we can do this only of the past data and any predictions for the 
future are meaningless. To make predictions for the future on basis of past 
data, we have to know what the probability function is – if the system is 
governed by a probability function at all. That is, we have to at least know 
something, whereas deriving the distribution function and its parameters on 
basis of the data alone is not useful and even misleading. In case the 
distribution function is not probabilistic, like the power-law observed for 
many phenomena, no prediction of the future average – no expectation value 
– can be calculated. 
 Likewise, if we want to make extrapolations based on trends, we are 
only allowed to do this if we have a good basis for our extrapolation 
function. In other words, whatever we do, purely empirical forecasting is 
meaningless. An example given was the climate. After an extreme event 
(’outlier’) it is often said, ”This event was extremely improbable and is 
(thus) a sign of climate change”. The word ’thus’ is imagined by the public 
or inserted by journalists somewhere in the process, as no self-respecting 
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scientist will utter it. Weather and climate do not follow probability 
distributions, but only reality frequency-of-occurrence distributions and thus 
any probabilistic statistical analysis is meaningless. The second part – 
’climate change’ – is an empty statement, since anything that is not equal to 
the past average is a sign of climate change by the sheer definition of the 
climate (as the 30-year weather average). What remains is, ”The event had 
small or zero occurrence before (but occurred now, it is an outlier)”. On top 
of that, the outlier used in the argumentation often remains an outlier in the 
Bayesian-adjusted model and the new model should be rejected as fast as the 
old one. 
 These ideas presented here are easily applicable to any empirical-
forecasting system, such as any financial markets, or sports events, or disease 
epidemics. Finally, it was argued that blind analysis of correlations does not 
make sense. All in all, we must conclude that the empirical approach is a 
simpleton’s tool, and a scientist’s nightmare. Any analysis without an 
understanding of the underlying processes is full of pitfalls. The approach of 
the scientist represents the level of understanding of the system, ranging 
from completely ignorant (fully empirical; everything based on past data) to 
completely sapient (prediction is just working out the equations of the 
physical laws). In the former case, we will unavoidably get into trouble 
sooner or later with our predictions, as history has shown us over and over 
again. 
 Yet, as a positive note to end, we should not be too discouraged and 
abandon the empirical approach altogether. Inductivism is part of science 
and the community is benefited by a wide range of creative and imaginative 
ideas and theories. The fancier the better. The only thing is that we should 
not be too surprised if our ideas fully miss the mark. An empirical approach 
is bound to make us look like fools most of the times. Eventual winning 
theories will have passed heavy falsification. The others we will forget 
altogether. 
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