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Abstract 

Multilevel models can be used to account for clustering in data from 

multi-stage surveys. In some cases, the intra-cluster correlation may be close 

to zero, so that it may seem reasonable to ignore clustering and fit a single 

level model. This article proposes several adaptive strategies for allowing for 

clustering in regression analysis of multi-stage survey data. The approach is 

based on testing whether the cluster-level variance component is zero. If this 

hypothesis is retained, then variance estimates are calculated ignoring 

clustering; otherwise, clustering is reflected in variance estimation. A simple 

simulation study is used to evaluate the various procedures.  

 
Keywords: Adaptive estimation, variance components, cluster sampling, 
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1  Introduction 

1.1  Cluster and Multistage Sampling 

The basic idea of sampling is to make inference about the population 

of interest. The use of probability methods to minimize decision in the 

choice of survey units will provide good designs in sampling methods 

(Cochran, 1977). We have many sampling methods; one of them is the two-

stage sampling. It is used in many surveys of social, health, economics and 

demographic topics (Kish, 1965). In this type of sampling the population is 

divided into groups called primary sampling units (PSUs), and then a simple 

random sample from each PSU is selected. If we select all elements within 

each considered PSU then two-stage sampling is called cluster sampling 

(Cochran, 1977). One of the main advantages of cluster sampling is that it 
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reduces the cost; actually it is the most economical form of sampling 

designs, (Bennet et al., 1991). It, almost always reduces the listing and travel 

cost. However, the sampling variance calculated using cluster sampling is 

greater than the sampling variance calculated using simple random sampling. 

For example, PSUs might be schools and units might be students in schools, 

or PSUs might be households and units might be people, or PSUs might be 

geographic areas and units might be households (see for example Snijders 

and Bosker, 1999; Cochran, 1977; Kish, 1965). 

Two-stage sampling is typically used because 

 There is no sampling frame of final units, but a frame of PSUs is 

available. 

 Cost efficiency; for example it is much cheaper to draw a two-stage 

sample of 100 persons from 10 households than draw a simple 

random sample of 100 persons, as those persons might be dispersed 

over 100 households (Snijders and Bosker, 1999). 

 Within-group correlations may be of interest in their own right. For 

example, the correlation between values for students in the same 

school might be of interest. 

The intraclass correlation (ICC), 𝜌, measures the similarity within PSUs for a 

particular variable (Killip and Pearce, 2004). Therefore, it is given by 𝜌 =
𝜎𝑏

2

𝜎𝑏
2+𝜎𝑒

2 (Kish, 1965; Commenges and Jacqmin, 1994). 

In practice the ICC is often quite small. It is zero if units within PSUs 

are no more homogenous than units over all PSUs. It is 1, as well if units 

from the same PSU have equal values. It is close to zero for many variables 

(e.g. age and sex), and small for others (for example, 𝜌 = 0.03 to 0.05) 

(Nations, 2005). It may take a negative value, but in practice it is generally 

positive. If each PSU in the population contains 𝑀 units, the smallest 

possible value of 𝜌 is −1/(𝑀 − 1). This occurs when the population is finite 

with high heterogeneity within PSUs, and zero variance between PSU means 

(Hansen et al., 1953, p.260, show this for repeated probability sampling from 

a fixed finite population). 

The ICC can be high for some variables (for example, for clinical studies if 

PSUs are villages (PSUs) and elements are persons in these villages who 

have or not have access to clinics in these villages). 𝜌 is usually less than 0.1 

when PSUs are geographic areas and final units are households in these areas 

(Verma et al., 1980). When PSUs are households and final units are people 

in households it is usually between 0 and 0.2 (Clark and Steel, 2002). 

Multilevel models are generalization of linear regression models. 

Assume a dependent variable of interest, 𝑦𝑖𝑗, and a vector of covariates for 



European Scientific Journal August 2017 edition Vol.13, No.24 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 

450 

unit 𝑗 in primary sampling unit (PSU) 𝑖, 𝑥𝑖𝑗. Goldstein (2003) defined the 

two-level linear mixed model (LMM) by  

𝑦𝑖𝑗 = 𝜷′𝑥𝑖𝑗 + 𝑏𝑖 + 𝑒𝑖𝑗,    𝑖 = 1,2, … , 𝑐,    𝑗 = 1,2, … , 𝑚𝑖                   (1) 

where 𝑐 denotes the number of PSUs in the sample, 𝑚𝑖 denotes the number 

of observations selected in PSU 𝑖, 𝜷 is the vector of unknown regression 

coefficients, 𝑏𝑖 is a PSU specific random effect with variance 𝜎𝑏
2, we assume 

that 𝑏𝑖 has a skew-t distribution with parameter 𝜈 and 𝜆, 𝑏𝑖~𝑠𝑘𝑡(𝜈, 𝜆). 

In Al-Zou'bi et al. (2010), the methods were based on fitting a linear 

mixed model. Data were assumed to be normally distributed. These methods 

were applied in Abushrida et al. (2014) and Al-Zoubi (2015) on data 

generated from skewed normal and exponential distributions, respectively. In 

this article, the plan is to see if these methods still working for balanced two-

stage skew-t data rather than normal data. 

The skewed distributions have been grown widely in applications and 

research in the last three decades, from the idea of skewed normal 

distribution introduced by Azzalini (1985). The popularity of skewed 

distributions is due to many reasons:   

          • Flexibility of modelling skewed data  

          • Easily extended of their symmetric counterparts;  

          • have a number of properties of standard symmetric distributions; and  

          • have well-mannered multivariate versions.  

 

 Azzalini and Capitanio (2003) introduced another family of skewed 

distributions, called the skew-t for which the symmetric base distribution is a 

heavy-tailed Student's t distribution. This distribution is a flexible model, 

which is able to deal with skewness and kurtosis in the data. It affords an 

alternative to the implementation of robust procedures, when normality 

assumption is not reached. In fact the skew-t likelihood function can be used 

as robust likelihood in an adaptive estimation procedure. Jones (2003) 

proposed a family of distributions which includes the the symmetric t-

distribution as special cases. This family includes extensions of the 𝑡-

distribution as well as a non-zero skewness. If 𝑎 > 0 and 𝑏 > 0 be the 

parameters then the 𝑝𝑑𝑓 of the random variable 𝑋 which follows this new 

distribution is given by: 

𝑓(𝑥) = 𝑓(𝑥; 𝑎, 𝑏) = 𝐶𝑎,𝑏
−1 [1 +

𝑥

(𝑎+𝑏+𝑥2)
1
2

]

𝑎+
1

2

1 − [
𝑥

(𝑎+𝑏+𝑥2)
1
2

]

𝑏+
1

2

    (2)   

where 𝐶𝑎,𝑏 = 2𝑎+𝑏−1𝐵(𝑎, 𝑏)(𝑎 + 𝑏)
1

2, 𝐵(. , . ) denotes the beta function. 𝑓 

reduces to the 𝑡-distribution with 2𝑎 degrees of freedom when 𝑎 = 𝑏. When 

𝑎 < 𝑏, 𝑓 is negatively skewed and it is positively skewed when 𝑎 > 𝑏. Also, 
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𝑓(𝑥; 𝑎, 𝑏) = 𝑓(−𝑥; 𝑎, 𝑏). Charalambides et al. (2001) derived the mean and 

the variance of the skew t random variable 𝑋; respectively as:  

 𝐸(𝑋) = 𝜇 =
(𝑎+𝑏)

1
2(𝑎−𝑏)Γ(𝑎−

1

2
)Γ(𝑎b−

1

2
)

Γ(𝑎)Γ(𝑏)
; 

 𝑉𝑎𝑟(𝑋) =
𝑎+𝑏

4
[

(𝑎−𝑏)2+𝑎+𝑏−2

(𝑎−1)(𝑏−1)
− {

(𝑎−𝑏)Γ(𝑎−
1

2
)Γ(𝑎b−

1

2
)

Γ(𝑎)Γ(𝑏)
}

1

2

].     (3) 

where 𝑎 + 𝑏 = 𝜈, 𝜈 is the degrees of freedom and 𝑎 − 𝑏 = 𝜆, 𝜆 > 0 is the 

shape parameter. The skew-t distribution reduces to the standard Student’s 𝑡 

distribution when 𝑎 = 𝑏 (Zhang et al., 2013). As well as the standard 

Student’s 𝑡 distribution, the skew t includes the skew normal distribution 

when 𝜈 → ∞ and the normal distribution when 𝑎 = 𝑏 and 𝜈 → ∞. 

 

2   Fitting the linear mixed model 

2.1  The model 

  Model (1) can be written in a general form as:  

                 𝑌 = 𝑋𝜷 + 𝐛 + 𝑒,                                                  (4)  

where 𝑋 is the design matrix with dimension 𝑛 × 𝑝 and it is assumed to be of 

rank 𝑝 and 𝑌 = (𝑦′1, … , 𝑦′𝑐)′ be the complete set of 𝑛 = ∑𝑐
𝑖=1 𝑚𝑖 

observations in the 𝑐 PSUs, where 𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑚𝑖
)′ is the observed vector 

for the 𝑖𝑡ℎ PSU, 𝑏 is a vector 𝑛 × 1 vector of random coefficients. The 

variance of 𝑌 is defined to be 𝑉, where 𝑉 is a block diagonal matrix, 𝑉 =
𝑑𝑖𝑎𝑔(𝑉𝑖, 𝑖 = 1, … , 𝑐), and  

               𝑉𝑖 = 𝜎𝑏
2𝐽𝑚𝑖

+ 𝜎𝑒
2𝐼𝑚𝑖

,                                         (5)  

where 𝐽𝑚𝑖
 is an 𝑚𝑖 × 𝑚𝑖 matrix with all entries are ones, and 𝐼𝑚𝑖

 is the 𝑚𝑖 ×

𝑚𝑖 identity matrix. 𝜷 describes patterns of change in the mean response over 

time in the population of interest. 

If we set 𝑥𝑖𝑗 to 1 ∀(𝑖, 𝑗) then model (1) will reduce to the intercept-

only model. This model includes just a grand mean parameter, it is defined 

as  

      𝑦𝑖𝑗 = 𝛽 + 𝑏𝑖 + 𝑒𝑖𝑗,    𝑖 = 1,2, … , 𝑐,    𝑗 = 1,2, … , 𝑚𝑖,      (6)  

where 𝑐 denotes number of the sample PSUs, 𝑚𝑖 denotes the number of units 

selected in PSU 𝑖, 𝑏𝑖 ~
𝑖𝑖𝑑

𝑠𝑘𝑡(𝜈, 𝜆) represents the 𝑖𝑡ℎ individual’s deviation 

from the population mean intercept after the effect of covariates have been 

accounted for with variance 𝜎𝑏
2, and 𝑒𝑖𝑗 is assumed to be 𝑠𝑘𝑡(∞, 0) with 

variance 𝜎𝑒
2. The parameters 𝜎𝑏

2 and 𝜎𝑒
2 are the between- and within-PSUs 

variance components. Observations for different units from the same PSU 

are correlated. It is assumed that 𝑏𝑖 is uncorrelated with 𝑒𝑖𝑗, and that 𝑏𝑖 and 

𝑏𝑖′ for 𝑖 ≠ 𝑖′ are uncorrelated also (Rao, 1997). 
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2.2  Likelihood Theory Estimation of 𝐯𝐚𝐫(�̂�) 

The variances of the estimated regression coefficients and their 

estimators will be discussed in this section. The estimated variance of the 

REML estimate of the regression coefficients, �̂�𝑅, is given by  

 
𝑣𝑎�̂�(�̂�𝑅) = (𝑋′𝑉−1𝑋)−1

= (∑𝑐
𝑖=1 𝑥′𝑖𝑉𝑖

−1𝑥𝑖)
−1

}                                    (7) 

This will simplify in the balanced data case,  𝑚𝑖 = 𝑚, to  

            𝑣𝑎�̂�(�̂�𝑅) =
1

𝑐
[�̂�𝑏

2 +
�̂�𝑒

2

𝑚
]                                              (8) 

 

Hence the (1 − 𝛼)100% confidence interval for 𝛽 could be obtained 

as  

         (1 − 𝛼)100%𝐶𝐼 = �̂�𝑅 ± 𝑡
(𝑑𝑓,1−

𝛼

2
)
√𝑣𝑎�̂�(�̂�𝑅).                        (9)  

 

There is no clear form for the degrees of freedom in (9) for mixed 

models. This paper will use Faes et al. (2009) approach which relies on the 

effective sample size (𝑛𝑒) as degrees of freedom for mixed models, with 

𝑛�̂� =
𝑛

𝑑𝑒𝑓�̂�(�̂�)
. Other approaches were suggested by Satterthwaite (1941) and 

Kenward and Roger (1997) for defining the degrees of freedom. Faes et al. 

(2009) approach is preferred over other approaches as it extends naturally to 

non-normal models. 

2.3  Huber-White Estimator of 𝒗𝒂𝒓(�̂�) 

The generalized estimating equation (GEE) (Liang and Zeger, 1986) 

is a general approach for modeling correlated data (Burton et al., 1998). It is 

an alternative to the ML and REML approaches for modeling longitudinal 

(Diggle et al., 1994). GEE is used to estimate the parameters of a generalized 

linear model with a possible unknown correlation between outcomes (Liang 

and Zeger, 1986; Hardin and Hilbe, 2003). This approach can use either 

ordinary least squares (OLS) or generalized least squares (GLS) to linear 

modeling of clustered data. GEEs have consistent and asymptotically normal 

solutions even with misspecification of the correlation structure (Hedeker 

and Gibbons, 2006). 

The OLS estimator for 𝜷 is defined by  

                       �̂�𝑜𝑙𝑠 = (𝑋′𝑋)−1𝑋′𝑌.                                                 (10)  
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The OLS estimator of 𝜷 is unbiased (Scott and Holt, 1982) when the 

same PSU observations are correlated with common intraclass correlation 𝜌 

but the observations from different PSUs are uncorrelated. Therefore  

        𝑣𝑎𝑟(�̂�𝑜𝑙𝑠) = (𝑋′𝑋)−1𝑋′𝑉𝑋(𝑋′𝑋)−1.                          (11)  

 As 𝑉 is not known, in general, and it can be estimated by 𝑉, therefore 

Equation (11) becomes: 

         𝑣𝑎�̂�(�̂�𝑜𝑙𝑠) = (𝑋′𝑋)−1𝑋′�̂�𝑋(𝑋′𝑋)−1.                          (12)  

 

In Equation (7), 𝑣𝑎�̂�(�̂�) was estimated by substituting REML 

estimates of 𝜎𝑏
2 and 𝜎𝑒

2 into 𝑉𝑖. An alternative estimator of 𝑉𝑖 is 𝑉𝑖
𝐻𝑢𝑏 =

𝑒𝑖𝑒𝑖′, where 𝑒𝑖 = 𝑦𝑖 − 𝑥′𝑖�̂�. 𝑉𝑖
𝐻𝑢𝑏 is approximately unbiased for 𝑉𝑖 even if 

(3) does not apply. Note that  

𝑣𝑎𝑟(�̂�) = 𝑣𝑎𝑟((∑𝑐
𝑖=1 𝑥′𝑖𝑉𝑖

−1𝑥𝑖)
−1(∑𝑐

𝑖=1 𝑥′𝑖𝑉𝑖
−1𝑦𝑖))

≈ (∑𝑐
𝑖=1 𝑥′𝑖𝑉𝑖

−1𝑥𝑖)
−1(∑𝑐

𝑖=1 𝑥′𝑖𝑉𝑖
−1𝑉𝑖𝑉𝑖

−1𝑥𝑖)    

(∑𝑐
𝑖=1 𝑥′𝑖𝑉𝑖

−1𝑥𝑖)
−1.

          (13) 

 

Huber-White variance estimators are valid even if the variance-

covariance model is substantially incorrect since they give unbiased 

estimators of these parameters as long as there are no covariances between 

observations from units in different groups. 

The estimator 𝑣𝑎�̂�(�̂�) in (7) is approximately unbiased provided that 

the variance model (3) is correct. Otherwise, 𝑣𝑎�̂�(�̂�) will be biased and 

inference will be incorrect. The robust variance estimate approach described 

by Liang and Zeger (1986) is an alternative to ML or REML estimates of 

𝑣𝑎𝑟(�̂�) in the context of modeling longitudinal data using GEEs. This 

approach can be applied to the analysis of data collected using PSUs, where 

observations within PSUs might be correlated and the observations in 

different PSUs are independent.  

This approach can be referred to as robust or Huber-White variance 

estimation (Huber, 1967; White, 1982). It will be used as an alternative 

approach to estimating 𝑣𝑎𝑟(�̂�). The method yields asymptotically consistent 

covariance matrix estimates even if the variances and covariances assumed 

in model (1) are incorrect. It is still necessary to assume that observations 

from different PSUs are independent. A robust estimator of 𝑣𝑎𝑟(�̂�) can be 

constructed by substituting the robust estimator 𝑉𝑖
𝐻𝑢𝑏 in (13) (Liang and 

Zeger, 1986). 

In the balanced data case and the intercept only model (𝑥𝑖𝑗=1), this 

variance becomes  

           𝑣𝑎�̂�(�̂�) =
1

𝑐(𝑐−1)
∑𝑐

𝑖=1 (�̅�𝑖. − �̅�..)
2                            (14) 
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Exact confidence intervals can then be calculated with degrees of 

freedom equal to 𝑐-1 (MacKinnon and White, 1985). 

 

2.4  Restricted Likelihood Ratio Test (RLRT) 

A better option is to use REML estimators to derive the likelihood ratio 

test (LRT) statistic for testing 𝐻0: 𝜎𝑏
2 = 0. 

The problem of testing 𝐻0: 𝜎𝑏
2 = 0 using the likelihood ratio test is 

discussed by (MacKinnon and White, 1985). using ML estimators for the 

variance components. Self and Liang (1987) allowed the true parameter 

values to be on the boundary of the parameter space, and showed that the 

large sample distribution of the likelihood ratio test is a mixture of 𝜒2 

distributions under nonstandard conditions assuming that response variables 

are 𝑖𝑖𝑑. This assumption does not generally hold in linear mixed models, at 

least under the alternative hypothesis. 

The restricted log-likelihood function is given by West et al. (2007, 

p.28) as  

ℓ𝑅 = −
1

2
[(𝑛 − 1)𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔|𝑉| + 𝑙𝑜𝑔|𝑋′𝑉−1𝑋|    

+𝑌′𝑉−1{𝐼 − 𝑋(𝑋′𝑉−1𝑋)−1𝑋′}𝑉−1𝑌],
          (15)   

where 𝑉 = 𝑑𝑖𝑎𝑔(𝑉𝑖) and 𝑉𝑖 are given by (3). Maximizing (15) with respect 

to 𝜎𝑏
2 and 𝜎𝑒

2 gives the REML estimates of these parameters. 

From (15), the restricted likelihood ratio test is given by  

Λ = −2  𝑙𝑜𝑔(𝑅𝐿𝑅𝑇)                 (16) 

= 2 𝐻𝐴

𝑀𝐴𝑋

  ℓ𝑅(𝜷, 𝜎𝑏
2, 𝜎𝑒

2) − 2 𝐻0

𝑀𝐴𝑋

  ℓ𝑅(𝜷, 𝜎𝑏
2, 𝜎𝑒

2).                                 (16) 
 

In the intercept-only model case Visscher (2006) defined the REML-

based likelihood ratio test (RLRT) as  

                 Δ = −2 log(𝐿𝑅𝑇) 

                           =

{
(𝑛 − 1) 𝑙𝑜𝑔 (

𝑛−𝑐

𝑛−1
+

𝑐−1

𝑛−1
 𝐹) − (𝑐 − 1) 𝑙𝑜𝑔(𝐹) 𝑖𝑓 𝐹 > 1

0 𝑖𝑓 𝐹 ≤ 1.
                   (17)  

where 𝐹 =
𝑀𝑆𝐵

𝑀𝑆𝐸
, 𝑀𝑆𝐵 is the mean square between PSUs and 𝑀𝑆𝐸 is the 

within PSUs mean square error.  

The large sample distribution of the likelihood ratio Λ is a 50:50 

mixture of 𝜒2 distribution with 0 and 1 degrees of freedom as the parameter 

values fall on the boundary of the parameter space (Self and Liang, 1987). 
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3  Adaptive strategies 

Two adaptive strategies are employed in this paper both of them 

relying on testing 𝐻0: 𝜎𝑏
2 = 0. The first uses 𝑣𝑎𝑟(�̂�) defined in Equation (7) 

if 𝐻0 is rejected and the standard LM with independent errors if 𝐻0 is not 

rejected. This strategy is explained in Figure 1, where 𝑣𝑎�̂�LM(�̂�) is the 

estimator of var LM(�̂�) using the LM strategy, 𝑣𝑎�̂�LMM(�̂�) is the estimator of 

var LMM(�̂�) using the LMM strategy and 𝑣𝑎�̂�ADM(�̂�) is the adaptive 

estimator. 
Figure  1: Flowchart explaining the adaptive procedure using the estimated variance 

extracted from the LMM 

 
Figure  2: Flowchart explaining the adaptive procedure using Huber-White estimator 

 
Figure 2 explains the second adaptive strategy which is similar to the 

first, except that it uses the Huber-White variance estimator (𝑣𝑎�̂�Hub(�̂�) if 

𝐻0 is rejected. 

The advantage of the adaptive strategy is that we use the simple linear 

model to derive variance estimators, unless there is strong evidence that 

𝐻0: 𝜎𝑏
2 > 0. This has benefit of simplifying the model and may also give 

tighter confidence intervals. However, it is not clear whether the adaptive 

approaches will give valid confidence intervals for 𝛽, because the confidence 

intervals assume non-adaptive procedures. 

A simulation study was performed to compare the adaptive and non-

adaptive methods for estimating 𝑣𝑎𝑟(�̂�) using PSUs with equal sample 

sizes. Data were generated from model (6), with equal PSU sizes, 𝑚𝑖 = 𝑚, 

assuming 𝑏𝑖 has a skew-t distribution. A range of values of 𝜌 was used: 0, 
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0.025 and 0.1. The number of PSUs, 𝑐, and the number of observations in 

each PSU, 𝑚, were varied over a range of values of 2, 5, 10 and 25. In each 

case 1000 samples were generated. The hypothesis 𝐻0: 𝜎𝑏
2 = 0 was tested as 

described in Subsection 2.4 using the RLRT defined by Equation (17) 

Tables 1 - 3 show the balanced data case results for values of 𝜌 = 0, 

0.025 and 0.1 using the ADM, ADH, LMM and Huber strategies of 

estimation. The ratio of the mean estimated variance to the estimated 

variance of �̂�, 𝐸(𝑣𝑎�̂�(�̂�))/𝑣𝑎𝑟(�̂�) was shown in these tables. A significance 

level of 𝛼 = 0.1 is used for testing 𝜎𝑏
2 = 0. It is assumed that 𝛽 = 0 in all 

tables. The non-coverage rates of 90% confidence intervals for 𝛽 are shown 

also in the tables. They show the average lengths of these confidence 

intervals as well as the proportion of samples where 𝐻0: 𝜎𝑏
2 = 0 was rejected. 

The ADM and ADH variance estimators were approximately biased 

for 𝜌 = 0, when there were 5 sample PSUs or less for all values of 𝑚 as well 

as when 𝑐 = 10 with 𝑚 = 5 and 10. On the other hand for 𝜌 = 0.025, the 

variance estimators were unbiased for all values of 𝑐 and 𝑚 except for 𝑐 = 2 

with 𝑚 ≤ 5. For 𝜌 = 0.1, the variance estimators almost always were 

unbiased. 

The LMM variance estimators were approximately biased for all all 

values of 𝑐 and 𝑚, whe 𝜌 = 0. For 𝜌 = 0.025, these estimators were biased 

for 𝑐 ≤ 5 with all values of 𝑚 and for 𝑐 = 10 with 𝑚 ≤ 5. The variance 

estimators were also biased when 𝜌 = 0.1 for 𝑐 = 2 with 𝑚 ≤ 5 and for 𝑐 =
5 with 𝑚 = 2. Otherwise, they were biased. 

The LMM variance estimators were almost biased for 𝜌 = 0 when 

there were 10 or less sample PSUs, and when there were 25 sample PSUs 

with 5 or 10 observations each. For 𝜌 = 0.025, these estimators were biased 

for 𝑐 ≤ 5 for all values of 𝑚 and when 𝑐 = 10 with 𝑚 ≤ 5. For 𝜌 = 0.1, the 

LMM variance estimators were almost unbiased except for 𝑐 = 2 with 𝑚 ≤
5 and for 𝑐 = 5 with 𝑚 = 2. 

The Huber-White variance estimators were, in general, unbiased 

regardless the values of 𝜌, 𝑐 and 𝑚. 

Non-coverage rates for 𝛽 were pretty close to the nominal rate (10%) 

when 𝜌 = 0 for all methods. These rates were far from the nominal rate for 

𝜌 = 0.025 with about 7-61% using TADM, TADH and TLMM methods. 

When 𝜌 = 0.1, these rates were 7-56% higher than nominal rate for 𝑐 ≥ 5 

and for 𝑐 = 2 with 𝑚 ≤ 5 and much higher when 𝑐 = 2 with 𝑚 > 5. Huber 

non-coverage rates were pretty close to the nominal rate in all cases. 

The adaptive confidence intervals were shorter than their 

corresponding non-adaptive confidence interval when 𝜌 = 0 for 𝑐 ≤ 5. 

Otherwise, they were approximately equal. For 𝜌 ≠ 0 the adaptive 

confidence intervals were shorter. 
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5  Conclusion 

i. The performance of adaptive confidence intervals is poor in extreme 

designs with 2 sample PSUs with 2 and 5 observations each and with 

5 sample PSUs with 2 observations each. In designs with 5 PSUs or 

less none-coverage rates are higher than desirable non-coverage  

(10%) for all values of 𝜌 ≠ 0. Therefore, clustering must be allowed 

for in variance estimates, even if it is not statistically significant.  

   

ii. In comparing the Linear Mixed Model with the adaptive version 

(ADM), we find that:   

        - ADM approach has close to nominal non-coverage when 𝜌 = 0.  

        - The ADM confidence intervals are narrower (5-25%) than the 

LMM for 𝑐 ≤ 10.  

  

iii. In comparing the robust Huber-White approach with the adaptive 

version (ADH), we find that:   

 The Huber approach has close to nominal non-coverage in all 

cases. So does the ADH approach, except for the designs 

mentioned in i.  

 The Huber method gives wide confidence intervals when 𝑐 ≤ 10 

with order of 10-75%. The reason for that is the degrees of 

freedom for Huber method is equal to (𝑐-1), while the ADH 

method degrees of freedom are equal to (𝑛-1) if the PSU-level 

variance component is not significant and (𝑐-1) if it is 

significant.  
 

Table  1: Variance ratios, average length and non-coverage of the 90% confidence intervals 

for 𝛽, and power of testing 𝐻0: 𝜎𝑏
2 = 0 using RLRT in the balanced data case with 𝜌=0. 

PSUs  Obs  𝐸(𝑣𝑎�̂�(�̂�))/𝑣𝑎𝑟(�̂�)  Non-Coverage of CI for 𝛽 (%)  Pr(Rej 𝐻0) (%)   Confidence Interval Length 

C m VADM VADH VLMM VHub TADM TADH TLMM THub RLRT CADM CADH CLMM CHub  

2 2 1.251 1.251 1.49 1.068 8.9 8.9 11.8 10.5 9.9 4.915 2.908 5.491 5.047 

 5 1.169 1.169 1.373 0.944 10.1 10 10.3 8.4 5.4 1.272 1.538 1.349 3.172 

 10 1.185 1.185 1.432 0.975 9.4 9.4 9.4 9.6 4.7 0.852 1.011 0.937 2.26 

 25 1.208 1.208 1.454 1.008 10.3 10.3 11.5 8 4.3 0.537 0.638 0.59 1.443  

5 2 0.934 0.934 1.029 0.846 10.2 10.3 10.1 10.5 8.6 1.159 1.164 1.176 1.228 

 5 1.126 1.126 1.268 1.068 9 8.9 9.5 9.1 8.6 0.723 0.73 0.75 0.828 

 10 1.118 1.118 1.241 1.012 9.2 9.2 10.1 10.5 7.8 0.505 0.51 0.52 0.573  

 25 1.109 1.11 1.237 0.979 9.2 9.2 9.3 10.1 6.5 0.316 0.318 0.326 0.355  

10 2 1.126 1.126 1.206 1.07 8.5 8.2 8.5 8.9 11.1 0.786 0.787 0.794 0.797 

 5 1.024 1.024 1.08 0.958 9.2 9.1 9.6 9.5 9.3 0.494 0.495 0.494 0.509 

 10 1.141 1.141 1.213 1.043 7.3 7.3 9 10.2 7.4 0.345 0.345 0.345 0.353 
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Table  2: Variance ratios, average length and non-coverage of the 90% confidence 

intervals for 𝛽, and power of testing 𝐻0: 𝜎𝑏
2 = 0 using RLRT in the balanced data case with 

𝜌=0.025. 

 

Table  3: Variance ratios, average length and non-coverage of the 90% confidence intervals 

for β, and power of testing 𝐻0: 𝜎𝑏
2 = 0 using RLRT in the balanced data case with ρ=0.1. 

 25 1.008 1.008 1.065 0.922 10.3 10.4 11.1 11.8 7.5 0.217 0.218 0.217 0.224  

25 2 1.063 1.063 1.111 1.032 9.3 9.3 9.8 10.6 10 0.48 0.48 0.481 0.48 

 5 1.06 1.06 1.068 1.013 9.5 9.5 9.7 9.6 9.6 0.305 0.304 0.3 0.304 

 10 1.012 1.012 1.022 0.968 10 10 10.9 10.6 8.5 0.214 0.214 0.212 0.214  

 25 1.096 1.096 1.111 1.043 8.6 8.6 8.9 8.5 8.4 0.135 0.135 0.133 0.135  

PSU

s 

Obs 𝐸(𝑣𝑎�̂�(�̂�))/𝑣𝑎𝑟(�̂�) Non-Coverage of CI for 𝛽 (%) Pr(Rej 𝐻0) 

(%) 

Confidence Interval Length 

c m VADM VADH VLMM VHub TADM TADH TLMM THub RLRT CADM CADH CLMM CHub 

2 2 1.118 1.118 1.325 0.965 10.4 10.4 13.1 11.2 8.9 4.673 2.874 5.27 5.089 

  5 1.12 1.12 1.334 0.958 11.6 11 13.6 9.8 7.8 1.301 1.697 1.402 3.362 

  10 1.054 1.054 1.324 0.993 13.8 13.8 12.6 9.9 6.6 0.89 1.145 1.024 2.526 

  25 1.063 1.063 1.302 1.082 16.1 16.1 15.3 9.4 13 0.679 0.992 0.785 1.908 

5 2 1.087 1.087 1.206 1.011 9.2 9 10 10.1 10.3 1.21 1.218 1.234 1.296 

  5 1.072 1.072 1.185 1.024 10.7 10.7 10.2 8.9 11.6 0.751 0.76 0.775 0.856 

  10 1.018 1.018 1.143 1.004 11.8 11.6 11.2 9.6 13.3 0.539 0.546 0.565 0.632 

  15 1.074 1.074 1.207 1.086 12.4 12.2 12 8.4 18.9 0.466 0.473 0.491 0.548 

10 2 1.022 1.022 1.101 0.988 8.6 8.5 8.9 9.7 10.3 0.797 0.8 0.807 0.818 

  5 1.042 1.042 1.117 1.029 10.4 10.3 9.8 10.3 13.5 0.509 0.511 0.519 0.538 

  10 0.93 0.93 1.005 0.961 12.3 12.2 11.6 10.4 20.1 0.374 0.374 0.383 0.405 

  25 0.959 0.959 1.025 1.016 13.4 13.3 12.3 9.2 41.5 0.272 0.273 0.282 0.295 

25 2 0.997 0.997 1.044 0.977 10.3 10.5 10.9 10.8 11.7 0.486 0.487 0.485 0.489 

  5 1.021 1.021 1.039 1.032 9.9 9.9 9.9 9.3 16.9 0.315 0.314 0.314 0.322 

  10 0.922 0.922 0.946 0.965 10.6 10.2 10.2 9.1 29.9 0.233 0.231 0.234 0.242 

  25 0.939 0.939 0.953 0.972 12.8 12.6 12.8 10.1 65.8 0.17 0.17 0.172 0.175 

PSUs Obs 𝐸(𝑣𝑎�̂�(�̂�))/𝑣𝑎𝑟(�̂�) Non-Coverage of CI for 𝛽 (%) Pr(Rej 𝐻0) (%) Confidence Interval Length 

c m VADM VADH VLMM VHub TADM TADH TLMM THub RLRT CADM CADH CLMM CHub 

2 2 1.008 1.008 1.204 0.925 11.1 11.1 13.7 10.8 11.3 5.562 3.132 6.336 5.464 

 5 1.023 1.023 1.224 0.987 15.4 14.8 15.1 11.1 12.1 1.523 2.138 1.668 3.982 

 10 0.923 0.923 1.07 0.929 21.9 21.7 18.5 10.9 17.8 1.183 1.964 1.324 3.302 

 25 0.851 0.851 0.941 0.887 29.1 29 22.2 8.4 32 1.158 2.024 1.276 2.867 

5 2 1.012 1.012 1.128 1.002 11.2 11.1 11.2 10 17.1 1.291 1.305 1.344 1.422 

 5 0.936 0.936 1.048 0.975 13.4 13.2 12.6 10.4 22.4 0.858 0.875 0.907 1.01 

 10 0.976 0.977 1.065 1.034 17.2 16.8 13.9 10.2 40.2 0.721 0.738 0.762 0.837 

 25 0.989 0.989 1.02 1.012 15.6 14.8 13.5 10 68.3 0.666 0.675 0.684 0.714 

10 2 0.992 0.992 1.072 1 11 10.7 10.7 10.3 20 0.858 0.86 0.879 0.896 

 5 0.838 0.838 0.899 0.882 14.7 14.9 13.7 12.5 33.6 0.588 0.587 0.605 0.631 

 10 0.876 0.876 0.917 0.915 15 14.8 14 11.4 57.5 0.489 0.49 0.503 0.518 

 25 0.971 0.971 0.98 0.981 10.9 10.3 9.8 8.7 89.6 0.446 0.443 0.45 0.45 
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