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Abstract  
 Schwarzschild’s Metric (Schwarzschild 1916) under specific 

conditions provides a Taylor series first order discrete length when 

transforming coordinates between observers. Exploring the consequences of 

the discrete length produces an a priori result of quantized space-time. 

Deriving base units from the quantization of space-time and applying 

elementary charge, exact formulations for the observed Schwarzschild’s 

discrete units are obtained. These units are equivalent to Planck’s mass, length, 

time, momentum, force, energy and Planck’s constant (NIST CODATA 2014). 
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Introduction 

 The Schwarzschild’s Metric, the first exact solution to Einstein’s field 

equations of General Relativity is (Schwarzschild 1916) 

𝑐2𝑑𝜏2 = (1 −
2𝐺𝑀

𝑟𝑐2
) 𝑐2𝑑𝜏2 − (1 −

2𝐺𝑀

𝑟𝑐2
)
−1

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2)  (1) 

where c is the speed of light, τ is proper time, G is Newton’s universal 

gravitational constant, r is the radial distance from the mass generating the 

field and t is the time coordinate located an infinite distance from the mass. 

Consider only a radial change in position of an observer. The transformation 

of coordinate r, with coordinates t,θ,φ unchanged, given by the metric is 

𝑐2𝑑𝜏2 = −(1 −
2𝐺𝑀

𝑟𝑐2
)
−1

𝑑𝑟2  (2) 

 In equation 2 set 𝑥 =
𝑀

𝑟
 and perform a Taylor series expansion about 

zero for the RHS.  Substitute 
𝑀

𝑟
 back in for x and arrive at the series: 

 

1 +
𝐺𝑀

𝑟𝑐2
+
3𝐺2𝑀2

2𝑟2𝑐4
+ 𝒪 ((

𝑀

𝑟
)
3

)  (3) 
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 A first order approximation of length L by an observer an infinite 

distance from the mass, transformed to an observer radial distance r from the 

mass is: 

𝐿′ = (1 +
𝐺 𝑀

𝑟𝑐2
) 𝐿 (4) 

 Where L’ is the observed length at radial distance r.  When r=L, 

equation 4 reduces to 

𝐿′ = 𝐿 +
𝐺 𝑀

𝑐2
  (5) 

 From equation 4, L’ is observed as equivalent to L with an additional 

length.  The value of the additional length is only dependent on M and 

independent of radial distance.  Equation 4 allows equation 5 to be written as 

(when r = L = 
𝐺 𝑀

𝑐2
 ): 

𝐿′ = 2𝐿 =
2𝐺 𝑀

𝑐2
  (6) 

 In other words, a distance of 
𝐺 𝑀

𝑐2
 an infinite distance from the mass is 

observed as 
2𝐺 𝑀

𝑐2
 locally at the distance 

𝐺 𝑀

𝑐2
 from the mass. Reversing the 

transformation, where L’= r = 
𝐺 𝑀

𝑐2
, the transformation takes the form: 

𝐿 =
𝐿′

2
=
𝐺 𝑀

2𝑐2
  (7) 

 In equation 7, L’ is the length 
𝐺 𝑀

𝑐2
 as observed at the radial distance L 

from the mass transformed to an observer infinitely far away. The transformed 

length is observed as half the length. Recall, this is a first term Taylor series 

approximation. Note the cancellation of r in equation 4 of the first term 

approximation only cancels in the first term. If the approximation is obtained 

to higher terms, the additional approximations are radial dependent. However, 

in the higher term approximations the first term approximation will always be 

independent of radial distance when the condition of r = L is applied. 

 This paper’s focus is on the length 
𝐺 𝑀

𝑐2
.   From this length, base units 

are derived.  These units are compared to Planck’s units and Planck’s reduced 

constant ℏ. 

 

Deriving Base Units 

 In the Schwarzschild solution, the mass is invariant (a static solution).  

Thus, the derived unit length is 

𝑙𝑔 = 
𝐺𝑀

𝑐2
  (8) 

 The invariance of c, G and M imply the length is invariant.  The unit 

time is constructed as the time it takes light to transverse one unit length. 
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�̂�𝑔 = 
𝐺𝑀

𝑐3
  (9) 

 Newtonian gravitational force at one unit length between two masses 

is (Marion 1995) 

𝐹𝑔⃗⃗  ⃗ =  
𝐺𝑀2

𝑙𝑔
2 =

𝐺𝑀2

(
𝐺𝑀

𝑐2
)
2 =

𝑐4

𝐺
  (10) 

 This value is invariant and not dependent on the mass when unit values 

are constructed as previously set forth.  Energy, a scalar value, is calculated 

from a force applied over a distance.  Thus a unit of gravitational energy may 

be obtained by 

�̂�𝑔 = 𝐹𝑔⃗⃗  ⃗ ∙ 𝑙 =  
𝐺𝑀2

𝑙𝑔
2 (𝑙) =

𝑐4

𝐺
(
𝐺𝑀

𝑐2
) = 𝑀𝑐2  (11) 

 A unit of gravitational energy delivered for one unit of time is 

�̂�𝑔�̂� =
𝐺𝑀2

𝑐
 (12) 

 The following base units have been derived for a system containing a 

single non charged stationary point mass. 
Unit Value 

Mass �̂� 

Length 
𝑙𝑔 = 

𝐺𝑀

𝑐2
 

Time 
�̂�𝑔 = 

𝐺𝑀

𝑐3
 

Gravitational Force 
𝐹𝑔⃗⃗  ⃗ =  

𝑐4

𝐺
 

Gravitational Energy �̂�𝑔 = 𝑀𝑐
2 

A Unit Gravitational Energy for a Unit Time 
�̂�𝑔�̂� =

𝐺𝑀2

𝑐
 

Table 1 

 

Elementary Charge at a Quanta of Length 

 Consider two elementary charges, each a point charge, separated by 

one unit length 𝑙 from equation (8).  The Coulomb force between the two 

charges is (Halliday 1997) 

�̂�𝑒 =
𝑒2

4𝜋 𝜖0𝑙𝑔
2  (13) 

 Where e is the elementary charge, 𝜖0 is the vacuum permittivity and 𝑙 
is the previously derived unit length.  The force applied over the distance of 

one unit length is the Coulomb unit energy. 

�̂�𝑒 = 𝐹𝑒⃗⃗  ⃗ ∙ 𝑙𝑔 = 
𝑒2

4𝜋 𝜖0𝑙𝑔
2 (𝑙𝑔) =

𝑒2

4𝜋 𝜖0𝑙𝑔
  (14) 

 One Coulomb unit of energy for one unit of time is 

�̂�𝑒 �̂� = (
𝑒2

4𝜋 𝜖0(
𝐺𝑀

𝑐2
)
)(

𝐺𝑀

𝑐3
) =

𝑒2

4𝜋 𝜖0𝑐
  (15) 
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 Where unit length and unit time have values substituted from equations 

8 and 9.  The value is invariant with no dependence on unit mass or unit length.  

Consider the ratio of energies from equation (11) and (14). 

1 = 𝑘
�⃗� 𝑒

�⃗� 𝑔
= 𝑘

(
𝑒2

4𝜋 𝜖0�̂�𝑔
)

𝑀 𝑐2
= 𝑘

𝑒2

4𝜋𝜖𝑙𝑔𝑀 𝑐2
  (16) 

here the constant of proportionality k is introduced.  It is an unknown value 

representing the ratio of the energies.  Both energies are central force based 

and dependent upon the unit distance 𝑙𝑔. In equation 16, length is the varying 

factor for changing the magnitude of �⃗� 𝑒.  As such k is applied to the length to 

allow the proportionality to vary with the energy.  The following unit length 

for Coulomb is by definition. 

𝑙𝑒 ≡ 𝑘 𝑙𝑔  (17) 

Where 𝑙𝑒 is a function of 𝑙𝑔.  Equation 16 is now written as: 

1 = 𝑘
𝐸𝑒

𝐸𝑔
=
(

𝑒2

4𝜋 𝜖0𝑘 �̂�𝑔
)

𝑀 𝑐2
=

𝑒2

4𝜋𝜖𝑘𝑙𝑔𝑀 𝑐2
  (18) 

Substituting equation (17) into equation (13) and setting the forces equal:   

𝐹 𝑔 = 𝐹 𝑒 =
𝑒2

4𝜋 𝜖0𝑘2𝑙𝑔
2  (19) 

 Using equation 19 and substituting 𝐹 𝑔with gravitational force and 

rearranging 
𝑒2

4𝜋 𝜖0𝑘2𝑙𝑔
2 =

𝐺𝑀2

𝑙𝑔
2   (20) 

 

Solving 20 for M 

𝑀 = √
𝑒2

4𝜋 𝜖0𝑘2𝐺
  (21) 

From equation 8, one may derive a value for mass M based on 𝑙𝑔. 

𝑀 =
𝑙𝑔𝑐

2

𝐺
= √

𝑒2

4𝜋 𝜖0𝑘2𝐺

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑘𝑀 = √

𝑒2

4𝜋 𝜖0𝐺
  (22) 

From equation 19 and equation 10: 

𝐹 𝑔 =
𝑐4

𝐺

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑘𝑙𝑔 = √

𝐺𝑒2

4𝜋𝜖 𝑐4
  (23) 

From equation 17, 𝑙𝑒 is 𝑘𝑙𝑔.  The ratio of forces (Coulomb force to Newtonian 

gravitational force) is  

𝑘2 =
𝐹 𝑒

𝐹 𝑔
  (24) 

 With the derived Coulomb units (denoted by a subscript e),  Table 1 is 

updated to show both sets of units.  One based on a mass with no charge, and 
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the other with a massless particle with mass derived from the energy 

equivalence of an elementary charge. 
Unit Gravitation Value Coulomb Value 

Mass �̂� 𝑀𝑒 = 𝑘�̂� 

Length 
𝑙𝑔 = 

𝐺𝑀

𝑐2
 𝑙𝑒 = 𝑘𝑙𝑔 = 

𝐺𝑀𝑒
𝑐2

 

Time 
�̂�𝑔 = 

𝐺𝑀

𝑐3
 �̂�𝑒 = 𝑘�̂�𝑔 = 

𝐺𝑀𝑒
𝑐3

 

Unit Force 
𝐹𝑔⃗⃗  ⃗ =  

𝑐4

𝐺
 𝐹𝑒⃗⃗  ⃗ = 𝑘

−2𝐹𝑔⃗⃗  ⃗ =
𝑒2

4𝜋 𝜖0𝑙𝑒
2 

Unit Energy �̂�𝑔 = 𝑀𝑐
2 �̂�𝑒 = 𝑘�̂�𝑔 = 𝑀𝑒𝑐

2 

A Unit Energy for a Unit 

Time �̂�𝑔�̂�𝑔 =
𝐺𝑀2

𝑐
 �̂�𝑒 �̂�𝑒 = 𝑘

2�̂�𝑔�̂�𝑔 =
𝑒2

4𝜋 𝜖0𝑙𝑒
 

Table 2 

 

 Working with derived units, angular momentum of a single particle in 

motion about a central force for gravitational and Coulomb force is 

(Worthington 1906) 

𝐿𝑔 = 𝑟 𝑚 𝑣 =  𝑙𝑔�̂�𝑐  (25) 

𝐿𝑒 = 𝑟 𝑚 𝑣 =  𝑙𝑒𝑀𝑒𝑐  (26) 

Thus 

𝐿𝑒 = 𝑘
2𝐿𝑔  (27) 

 Angular momentum L in base units for a single particle in motion about 

a central force is equivalent to Et, a base unit of energy delivered for a base 

unit of time.   

 

Quanta of Energy  

 Using the derived units, the smallest “quanta“ of energy measurable is 

the unit energy delivered for a unit time.  Thus, one may infer L (angular 

momentum) as a quanta of energy when derived from base units.  Considering 

equation 27, the Coulomb quanta of energy is massless, where the gravitational 

quanta of energy is based on mass.  As such, any mass added to the Coulomb 

angular momentum will reduce its velocity from c.  Here a hypothesis is 

presented, because the mass will reduce the velocity to less than c and the unit 

gravitational angular momentum has mass of velocity c, this paper will 

hypothesis k is less than one. 

 The quanta of energy is represented by ℰ.  Equation 27 now takes the 

form 

ℰ𝑒 = 𝑘
2ℰ𝑔  (28) 

 The quanta of energy in Coulomb units is less than the quanta of energy 

of of gravitational units (based on the hypothesis k is less than one).  Thus  

𝑘2 =
ℰ𝑒

ℰ𝑔
  (29) 
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 The squared value of k is the ratio of quanta of energy for Coulomb 

derived units to quanta of energy for gravitational derived units.  This ratio is 

not radial dependent as seen by 

𝑘2 =
(
𝑒2

4𝜋𝜖
)

𝐺𝑀2
  (30) 

 Consider the equation below from Table 2 

�̂�𝑒 �̂�𝑒 = 𝑘
2�̂�𝑔�̂�𝑔 =

𝑒2

4𝜋 𝜖0𝑙𝑒
  (31) 

 By applying the definition for 𝑙𝑒 from Table 2 and substituting the 

value for 𝑀𝑒 from equation 21; �̂�𝑒 �̂�𝑒has a constant value of 

�̂�𝑒 �̂�𝑒 = 𝑘
2�̂�𝑔�̂�𝑔 =

𝑒2

4𝜋 𝜖0𝑐
= 7.696 ∙ 10−37  (32) 

 

The Hydrogen Atom 

 Bohr assumed the angular momentum of the electron must be a whole 

number n of ℏ, Planck’s reduced constant (Bohr 1913). 

𝐿𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 = 𝑛 ℏ (33) 

due to the quantization of light.  The same calculation of Bohr’s radius may be 

derived with the assumption there is a quantization of gravitational energy (as 

previously derived) and a continuation of light.   Of interest is the consideration 

that Bohr’s radius is determined by the Coulomb force acting on the electron.  

The Coulomb unit of angular momentum compared to gravitational angular 

momentum is (from equation 26 with assumed constants applied) 

𝑘 𝑟𝑒 𝑘 𝑚𝑒 𝑐 = 𝑟𝑔 𝑚𝑔 𝑐  (34) 

Solving for  𝑟𝑒 

 𝑟𝑒   =
𝑟𝑔 𝑚𝑔 𝑐

𝑘2𝑚𝑒 𝑐
  (35) 

From equations 25 and 31  

�̂�𝑔�̂�𝑔 = 𝑟𝑔 𝑚𝑔𝑐  (36) 

Where �̂�𝑔�̂�𝑔 is the quanta of energy.   Substitute equation 36 into equation 35 

 𝑟𝑒   =
�̂�𝑔�̂�𝑔

𝑘2𝑚𝑒 𝑐
  (37) 

 By substituting the mass (of the angular momentum caused by the 

Coulomb force) with the mass of an electron, 𝑟𝑒 in equation 35 is the classical 

orbital radius of an electron about the Hydrogen atom.  Considering the 

equation 37, rearranged: 

�̂�𝑔�̂�𝑔 = 𝑘
2 𝑟𝑒 𝑚𝑒𝑐  (38) 

 With 𝑟𝑒 and 𝑚𝑒 known (from equation 25 or equation 26), velocity is 

𝑣𝑒 = 𝑘
2𝑐  (39) 

 Here the first orbital of the Hydrogen atom in a semi-classical manner 

is derived.   
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Measurement 

 Observation and measurements consequences of equations 6 and 7 

model a level of uncertainty.  If an observer of an event has no measurable 

effects due to gravitational potential (a great distance from the massive object), 

and the event observed does have a mesurable effect of gravitational potential 

(near the massive object), the best certainty of measurement is equation 7.  

Equation 7 limits the certainty to  

𝑙 =  (
𝑙′

2
)  (40) 

 This uncertainty occurs as the observed length goes to the gravitational 

unit length of equation 8.    A minimum change in distance (unit length) 

multiplied by a minimum change in momentum is a constant. 
𝐺𝑀

𝑐2
∙ 𝑀𝑐 =

𝐺𝑀2

𝑐
  (41) 

 The same constant value is found when a minimum energy change 

(unit energy) is made over a minimum time change (unit time). 
𝐺𝑀

𝑐3
∙ 𝑀𝑐2 =

𝐺𝑀2

𝑐
  (42) 

 Equations 41 and 42 represent a minimum level of uncertainty in 

measurement between observers.  This is when each observer is at a limit (r = 
𝐺𝑀

𝑐2
 or r = infinity) 

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = ∆𝑥∆𝑝 = ∆𝐸∆𝑡 = (
𝐺𝑀2

𝑐
)  (43) 

 

Empirical data 

 Empirically there are constants which currently must be measured to 

obtain a value.  G, the Newtonian gravitational constant is one example (NIST 

CODATA 2014).  Considering equation 32, value 𝑘2 (�̂�𝑔�̂�𝑔) is the product of 

two unknown constants 𝑘2 𝑎𝑛𝑑 (�̂�𝑔�̂�𝑔) yielding a constant.  Secondly, 

considering the derivation of the Hydrogen atom and the classically derived 

radius (Bohr 1913), equations 37, 38, and 39 .  Lastly, consider the uncertainty 

of measurement, equation 43.  Two strong candidates for the constants 

𝑘2 (�̂�𝑔�̂�𝑔)  are the fine structure constant α and Planck’s reduced constant ℏ 

meeting the criteria for all constriants.  Consider 

𝛼ℏ = 
𝑒2

4𝜋 𝜖0𝑐
  (42) 

 These constants maintain units for equation 32.  𝛼 is a unit-less value, 

𝑘2 is a unit-less value.  ℏ has energy and time units, �̂�𝑔�̂�𝑔 has energy and time 

units.  ℏ is a quanta when measuring angular frequency, same as 𝐿𝑔 = �̂�𝑔�̂�𝑔.   

 The consequences of substituting these two constants into equation 33 

is. 

𝑘2 = 𝛼  (43) 
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�̂�𝑔�̂�𝑔 = ℏ  (44) 

�̂� = 𝑀𝑝  (45) 

𝑙𝑔 = 𝑙𝑝  (46) 

�̂�𝑔 = 𝑡𝑝  (47) 

�̂�𝑔 = 𝐹𝑝  (48) 

�̂�𝑔 = 𝐸𝑝  (49) 

 

 Where the subscript p represents Planck’s units, including Planck 

derived units. 

 

Equation 38 now reads  

ℏ = 𝛼 𝑟𝑒 𝑚𝑒𝑐  (50) 

 This is the same as Bohr’s classical Hydrogen electron orbital radius: 

𝑟𝑒 =
ℏ

𝛼 𝑚𝑒𝑐
= 5.29 ∙ 10−11 𝑚𝑒𝑡𝑒𝑟𝑠  (52) 

 With 𝑟𝑒 and 𝑚𝑒 known, the orbital velocity in equation 39 is predicted 

correctly as (Bohr 1913) 

𝑣𝑒 = 𝛼 𝑐  (52) 

 Lastly, substituting into equation 43, the uncertainty of measurement 

takes the form of  

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =
ℏ

2
  (53) 

 Which equals Heisenberg’s uncertainty (Heisenberg 1927).  

 

Summary 

 It has been shown under certain conditions the Schwarzschild’s metric 

has a quanta of length between observers.  A constant length, independant of 

radial distance (
𝐺 𝑀2

𝑐
) is part of any transformation.  From this constant, units 

of length, time, mass, momentum, force, energy and angular momentum were 

derived.  Elementary charge was introduced and a ratio of gravitational units 

to Coulomb derived units calculated.  From this calculation a quanta of energy 

was considered.  Secondly, from the calculation an equation for an electron’s 

orbit semi-classically derived values were obtained for the Hydrogen atom.  

Lastly, an uncertainty in measurement was derived as a result of the derived 

units and the transformation. 

 These equations contained two unknown variables.  By applying 

empirical data, a hypothesis was set forth, that their values are Planck’s 

constant and the fine structure constant.  Upon substitution of the values, all 

equations matched known data and derived Planck’s units.  These can be 

derived from two previous papers (Austin 2017, Austin2, 2017), but it does 

not use Schawarzschild’s solution, thus, they were not used. 
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 This walk through shows a plausable method by which to derive a 

quanta of energy, Planck’s units, Heisenberg’s uncertainty and Bohr’s semi-

classical orbital radius of an electron about a proton in an Hydrogen atom from 

Schwarzschild’s solution to Einstein’s field equations.  Further investigation 

is recommended. 
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