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Abstract 

 The periodic Anderson model is applied to 4 electrons on 4 sites with 

periodic boundary conditions.  We applied magnetic field to the localized f-

orbitals, Eσf. The number of electrons is taken to be one per site and the 

interactions between different sites is restricted to nearest neighbors.  The 

many body eigenvalues are calculated exactly using exact diagonalization 

technique.  We find that the specific heat is suppressed by the variation of the 

band energy of the localized f-orbitals as mediated by the application of the 

magnetic field, H, under various hybridization energy. A continuous 

suppression of the specific heat reduces the heavy fermion behavior in the 

system. 
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Introduction 

 Many rare–earth and actinide compounds have been known over the 

decade to exhibit mixed valence phenomena [Batista et al, 2003]. The valence 

fluctuation in such systems are highly correlated, they are also found to exhibit 

Fermi-liquid phenomena with a heavy mass at low temperature.  There is also 

increasing interest in these heavy fermion materials. The common feature of 

these heavy fermion systems is that at low temperatures they exhibit large 

values of specific heat coefficient [Batista et al, 2003]. 

 There has been extensive theoretical work on mixed valence (MV) and 

Kondo systems [Batista et al, 2003, Chabe et al, 2008]. However, the Kondo 

problem and the MV regime are well understood. The Anderson Model has 

been used to extensively study the thermodynamic, transport and excitation 

properties of these systems using some powerful techniques [Herin et al, 

2007]. 
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 However, the lattice problem in these regimes is neither well 

understood nor solved. There is need to also explain the wide range of physical 

properties. 

 A Fermi liquid theory which discards quasi particle interactions has 

been developed [Jarrell, 1995]. It is found that the large effective mass of HF 

systems does not arise primarily due to band renormalization and hence 

contradict many theories [Chabe et al, 2008].  From the foregoing remarks, it 

is obvious that there remain a need for greater understanding of the MV and 

by extension the HF systems. 

 Though, sometimes small clusters may not represent bulk materials. 

However, the large number of states obtained even in small clusters 

statistically may give results which fairly represent a large system over a 

reasonable temperature range [Sordi et al, 2007].  In the present work, the 

periodic Anderson Model is applied to a chain of four electrons on four sites 

with period boundary conditions.  There would be a systematic study of the 

effect of varying energy of the localized f-orbital mediated by the application 

of magnetic field to the localized orbital only.  One extended orbital would be 

considered per site per spin with an inter-atomic transfer integral t. There is 

also one localized f-orbital per site per spin having energy Ef with coulombic 

repulsion u between two electrons in the f orbitals on the same site. An 

hybridization term v, between the localized and extended orbitals is also 

present in the model. One electron per site would be allowed, and it is 

restricted to nearest neighbours. An exact diagonalization technique would be 

applied to generate the matrix. The matrix would be diagonalized using the 

mathematical 9 wolfram program. 

 The ground state is a singlet (S = 0) while the other states are excited 

(S > 0) and are nearly degenerated with the ground state. The specific heat 

increases sharply at low temperatures which is comparable to the heavy 

fermion behaviour.  The systematic variation of the energy of the f-orbital and 

its corresponding effect on the specific heat of the heavy fermion system 

would be carried out. 

  

Methodology 

 We use the Anderson Lattice model (AL) [Yu et al, 2008a] which is a 

translationally invariant generalization of the Anderson impurity model which 

has been successfully used to explain the Kondo effect. 

 The Anderson Lattice (AL) Hamiltonian in second quantization is 

given by: 

𝐻 = ∑ 𝑡𝑖𝑗𝑖𝑗𝜎 𝑐𝑖𝜎
+ 𝑐𝑗𝜎 + ∑ 𝐸𝜎𝑓𝑖𝜎 𝑓𝑖𝜎

+𝑓𝑖𝜎 +𝑣
√𝑁⁄   ∑ (𝑖𝜎 𝑓𝑖𝜎

+𝑐𝑖𝜎 + H.C) + 𝑢 ∑ .𝑖 𝑛𝑖↑
𝑓

𝑛𝑖↓
𝑓

     

                              (1)                                        

 Where t is the energy of the conduction band. v is the hybridization 
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interaction between the conducting band electrons and the localized f-

electrons.  The onsite coulomb repulsion is U and Eσf is the eigenvalue for a 

single f-electron. The local spin does not flip in the Anderson Model.  Because 

of the hybridization term, a local spin that is down can become a conduction 

state with spin down, and then wander away [Sordi et al, 2007]. Later, a 

different conduction electron with spin up can come and reside in the local 

orbital.[ Hywel ,2008]  This process gives the appearance of the local spin 

having flipped from up to down. 

 Furthermore, Eσf = Ef – σh,  h  = μBH and H denotes the magnetic field. 

 The ground state energy is obtained using the exact diagonalization 

method and the model (i.e. eqn. 1) is studied under cyclic boundary conditions. 

This case has the advantage of eliminating edge effect. We use the Wolfram 

Mathematica 9 Software [Wolfram Research, Inc (2007] which is effective in 

diagonalizing large matrix sizes. With these tools, we were able to study 

systems of 4 electrons on 4 sites for which the Hamiltonian matrix size is 70 

x 70.  Computing the ground state energy, using 

E=
⟨𝜓|𝐻|𝜓⟩

⟨𝜓|𝜓⟩
                 (2) 

Where we have E =
1

 2
[u+√16𝑡2 + 𝑢2   + 2ϴ ]                                (3) 

and ϴ=2𝐸𝜎𝑓+2v/√𝑁                                                                           (4) 

 

 Calculating the properties of the system of particular interest is the 

partition function Z of the electrons. When a grand-canonical ensemble is 

considered we can deduce a number of static thermodynamic properties. The 

partition function is the trace of an operator Z [Zhu. and Zhu 2001]. 

Z=Tr 〈𝑖|exp (−𝛽𝐻)|𝑗〉                                                                         (5) 

Where  𝛽 = 1/𝑘𝑇 

and H is Hamiltonian matrix. 

Hence, the partition function of the system under consideration is given by 

equation (6) 

Z=2exp(-ϐ∝)+4exp(-ϐϴ)                                                                     (6) 

Where ∝=ϴ+u 

We define the expectation value < H > = E as the operator for H. That is 

E=〈𝐻〉 =
1

𝑍
〈𝑖|𝐻exp (−𝛽𝐻)|𝑗〉                                                             (7) 

Equation (7) describes the thermal average of the quantity H.  This can be used 

to characterize the electron correlation [Galpin et al, 2008]]. 

Therefore E=〈𝐻〉=
(𝜃+𝑢) exp(−𝛽(𝜃+𝑢))+2𝜃exp (−𝛽𝜃)

exp(−𝛽(𝜃+𝑢))+2exp (−𝛽𝜃)
                               (8) 

 

 The temperature dependence of the thermodynamic, quantity (specific 
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heat) is calculated from the many body eigenvalue (the ground state energy) 

by using the standard statistical mechanics procedure for a canonical 

ensemble. The expression for specific heat is given by equation 10.  Our result 

is expressed in units of J/mol-k, where it is understood that ‘mole’ means N 

electrons. 

 

𝐶𝑣=
𝜕𝐸

𝜕𝑇
                                                                                                       (9) 

 

𝐶𝑣=
ϒ−Ʃ

𝛺
                                                                                                     (10) 

Where 

ϒ=[∝exp(-∝ϐ)+2ϴexp(-ϴϐ)][
∝

𝐾
exp(-∝ϐ) + 

2𝛳

𝐾
exp(-ϴϐ)]                       (11) 

Ʃ=[exp(-∝ϐ) + 2exp(-ϴϐ)][(∝2/K)exp(-∝ϐ) + (2𝛳2/𝐾)exp(-ϴϐ)]                    

                                               (12) 

𝛺 =exp(-2∝ϐ) + 4exp(-2ϴϐ) + 4exp(-∝+ϴ)ϐ                                         (13) 

 

Result and discussion 

 We discuss the temperature dependence of the specific heat for a 

solution of values of Eσf and v/t/ chosen from a large set of available results to 

represent interesting cases.  We found that the specific heat curves are 

qualitatively similarly for different values of Eσf. . Figures 1 and 2 are plotted 

on a common linear scale of temperature T/t/, hybridization v, respectively.  If  

t is set to 1ev, then the scale is in Kelvin. 

 Firstly, we consider the symmetric case, Ef = -u/2.  We fix t = 1, u = 

1.0, H = 0.01 and v vary from 0.1 to 1.0 (all energies are in units of  t). When 

the hybridization is relatively large (v = 0.1 to 1.0) no peak structure is 

obtained in the temperature range of interest to us. This indicate the absence 

of the Schottky type behavior as there is no peak observed for Eσf = -5.0 and v 

increases from 0.1 to 1.0.  This indicates the absence of degeneracy [8].  

 
Fig 1: Cv vs v for various εσf for t=1, H=0.01, u=1 
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 From the ranges of values obtained from Eσf  ranging from -0.5 to -0.4 

shows that the Specific Heat (SH) resembles that of a Kondo system. Under 

very low temperature (T = 1k) the SH shows a near linear increase as the 

hybridization increases which is indicated by Cv (T1) in Fig. 1.  It is also 

observed that this trend changes slightly as temperature is gradually increased 

until a broad peak is reached at T = 5k as indicated by Cv(T5) .  This behavior 

can be explained in the following way: when the hybridization v, gradually 

increases for Eσf = -0.5, the ‘f’ level are well defined and essentially full (nf ~ 

1) at low temperatures. Excitations occur giving rise to a low temperature 

linear behavior of SH. 

 Secondly, our results indicate that the SH increases very rapidly at low 

temperatures.  The unusual rise mimics the onset of the HF behavior. In order 

to study this in more details, we present a typical example of a tetrahedron for 

t = 1, u = 1, H = 1.0, v = 0.1 and plot in Fig. 2, Cv/T against T for Eσf ranging 

from -0.5 to -0.4. 

 
Fig. 2: Cv/T vs T for various εσf  for t=1, H=1, v=0.1, u=1 

 

 We notice that the rate of increase of Cv/T (at very low temperatures) 

is maximum for Eσf = -0.4.   Again, for each Eσf, the ground state increases. 

The ground state is a singlet.  The next higher energy states are well separated 

from this ground state. The low–temperature rise in SH is determined by the 

separation of these levels. As Eσf increases, the separation between the ground 

state and other excited states increases, and the rise in C/T correspondingly 

increases. Thus, we notice that the HF behaviour is obtained when the many 

body ground state is a singlet. The electrical resistance of a pure metal drops 

as temperature is lowered. However, the resistance saturates as the temperature 

is lowered below about 10k. This behaviour changes dramatically when 

magnetic atoms such as Cobalt, are added. Rather than saturating, the 

electrical resistance increases as the temperature is lowered further. The so-
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called Kondo temperature-roughly speaking the temperature at which the 

resistance starts to increase again –completely determines the low temperature 

electronic properties of the material [Kubo, 2015]. This HF behaviour, 

however is affected by the application of magnetic field (H).  The resistivity 

of the PAM with magnetic field applied to the localized orbitals is obtained 

from eqn. 14 below. 

𝑙𝑛𝑍 =  −1/𝑘𝑇[2 (𝜀𝐹 −
𝜇𝐻

𝜌
) +

2𝑣

√𝑁
+ 𝑢] -2/kT [2 (𝜀𝐹 −

𝜇𝐻

𝜌
) +

2𝑣

√𝑁
]               (14) 

Hence, 

  𝜌 = 6𝜇𝐻√𝑁/(6𝜀𝑓√𝑁 + 6𝑣 + 𝑢√𝑁 + 𝑘𝑇𝑙𝑛𝑍√𝑁                        (15) 

 The graph of ρ plotted for various 𝜀𝜎𝑓 for H=1.0, u=1.0, v=1.0 is given 

in fig. 3 below. 

 From fig. 3 and with H only acting on the localized orbital results  in a 

downturn of the resistivity, ρ at temperatures below 5k. This downturn 

indicates a suppressed HF behaviour. 

 
Fig. 3: The graph of ρ plotted for various 𝜀𝜎𝑓 for H=1.0, u=1.0, v=1.0 

 

Summary and conclusion 

 We have calculated the thermodynamic property (specific heat) for a 

range of parameters U, V and Eσf and the resistivity for various values of 

localized band energies by using the Periodic Anderson Model. Our most 

important conclusion is that calculation are capable of reproducing the types 

of SH behavior observed in Heavy Fermions and Kondo systems.  An 

important parameter in determining the SH property it was found that as Eof  

is increased, there was  a broad peak observed at low temperature T = 1k.  A 

striking feature of our results is the occurrence of HF behavior.  We find that 

when Eσf   is large and negative for very low values of v, the many body ground 

state is a singlet.  The other excited states have much higher energy. The 

specific heat rises sharply at low temperatures and the system exhibits HF 

features.    
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 We conclude that at low temperatures, the SH deeps as v reduces. With 

the application of magnetic field of H =1.0, the energy of the localized band 

Eσf  is varied.  This affects the SH and the resistivity as they are suppressed by 

the activities of the ‘f’ electrons. It is therefore concluded, that as Eσf increases 

further, the system would leave the HF regime. 
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