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Abstract 

Because of their simplicity, robustness and successful practical application, PID- 

controllers are the most popular and widely-used controllers in industry. Many PID design 

methods have been proposed, each has its advantages and limitations, However, finding 

appropriate parameters for the PID controller is still not easy task.  This paper proposes a new 

simple and efficient model-based PID design method for achieving an important design 

compromise; acceptable stability, and medium fastness of response, the method is based on 

plant's parameters; the proposed PID design methodology was test, verified and compared 

using MATLAB/SIMULINK software. 
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Introduction  

The PID- controllers are the most popular and widely-used controllers in industry, 

because of their simplicity, robustness and successful practical application that can provide 

excellent control performance despite the varied dynamic characteristics of plant. The PID 

algorithm consists of three basic control modes; Proportional, Integral and the Derivative 

modes. Before commencing tuning PID controller,  it is important to know the configuration 

of the PID algorithm, there are three different types of PID algorithm; (1) Ideal (2) Series 

(also called "interacting" or "analog" or "classical") (3)  Parallel (also called "non-

interacting", "independent" and "gain independent), The difference between these 

algorithms is how the P, I and D gains affect each other.  

The term control system design refers to the process of selecting feedback gains 

(poles and zeros) that meet design specifications in a closed-loop control system. Most design 

methods are iterative, combining parameter selection with analysis, simulation, and insight 
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into the dynamics of the plant (Ahmad A. Mahfouz, et al 2013). An important compromise 

for control system design is to result in acceptable stability, and medium fastness of response, 

one definition of acceptable stability is when the undershoot that follows the first overshoot 

of the response is small, or barely observable. Beside world wide known and applied PID 

design method including Ziegler–Nichols, Chiein-Hrones-Reswick (CHR),  Wang–Juang–

Chan,  Cohen-Coon, many PID design methods have been proposed in different papers and 

texts including (Astrom K,J et al 1994)( Ashish Tewari, 2002  )( Katsuhiko Ogata, 

2010)( Norman S. Nise, 2011)( Gene F. Franklin, et al 2002)( Dale E. Seborg, et al, 

2004)( Dingyu Xue et al, 2007)( Chen C.L et al, 1989)( R. Matousek, 2012)( K. J. Astrom et 

al, 2001)( Susmita Das et al, 2012) (L. Ntogramatzidis, 2010)( M.Saranya et al, 2012 ), each 

method has its advantages, and limitations. (R. Matousek, 2012 ) present multi-criterion 

optimization of PID controller by means of soft computing optimization method HC12. (K. J. 

Astrom et al, 2001) introduce an improved PID tuning approach using traditional Ziegler-

Nichols tuning method with the help of simulation aspects and new built in function. (L. 

Ntogramatzidis et al, 2010) A unified approach has been presented that enable the parameters 

of PID, PI and PD controllers (with corresponding approximations of the derivative action 

when needed) to be computed in finite terms given appropriate specifications expressed in 

terms of steady-state performance, phase/gain margins and gain crossover frequency. 

(M.Saranya et al, 2012) proposed an Internal Model Control (IMC) tuned PID controller 

method for the DC motor for robust operation. (Fernando G. Martons, 2005  ) proposed a 

procedure for tuning PID controllers with simulink and MATLAB. (Saeed Tavakoli, 2003) 

presented Using dimensional analysis and numerical optimization techniques, an optimal 

method for tuning PID controllers for first order plus time delay systems. 

This paper proposes a new simple and efficient model-based PID design method for 

achieving acceptable stability and medium fastness of response, the methodology is based on 

relating the plant's parameters to PID controller gains.  

Modeling PID controller  
The output of PID controller u(t), is equal to the sum of three signals: The signal 

obtained by multiplying the error signal by a constant proportional gain KP, plus the signal 

obtained by differentiating and multiplying the error signal by constant derivative gain KD 

and the signal obtained by integrating and multiplying the error signal by constant internal 

gain KI, . The output of PID controller is given by Eq.(1), taking Laplace transform, and 

solving for transfer function , gives  ideal PID transfer function given by Eq.(2) 
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( ) 1( ) ( ) ( )         ( ) ( ) ( ) ( )P D I P D I
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= + + ⇔ = + +∫                                (1) 

    ( ) ( ) I
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s
 = + +  

                                                                                           (2) 

Equation (2)  can be manipulated to result in the following form 

2
2

( )

P I
D

D DI D P I
PID P D

K KK s s
K KK K s K s KG s K K s

s s s

 
+ + + +  = + + = =                                                        (3)   

Equation (3) is second order system, with two zeros and one pole at origin, and can be 

expressed to have the following form: 

( )( ) ( ) ( )
( ) ( )D PI PD PD

PID D PI PD PI

K s Z s Z s Z
G K s Z G s G s

s s
+ + +

= = + =                                   (4) 

Which indicates that PID transfer function is the product of transfer functions PI and 

PD , Implementing these two controllers jointly and independently will take care of both 

controller design requirements. The transfer function given by Eq.(34),can also be expressed 

to have the form: 

( )( ) ( )2 ( )D PI PD D PI PD D PI PD D
PID

K s Z s Z K s Z Z K s Z Z K
G

s s
+ + + + +

= =  

Rearranging, we have:  

( ) ( )
2 ( ) ( )PI PD DD PI PD D PI PD D

PID PI PD D D

Z Z K sK s Z Z K Z Z K
G Z Z K K s

s s s s
+

= + + = + + +  

Substituting the following, ( )1 2 3,   ( ),    PI PD D PI PD D DK Z Z K K Z Z K K K= + = = , gives: 

2
1 3PID

K
G K K s

s
= + +                                                                                                            (5)  

Since PID transfer function is a second order system, it can be expressed in terms of 

damping ratio and undamped natural frequency to have the following form: 

2
2 22
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K K
K s s K s sK K

G s
s s
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+ +   + +   = =                                                                    (6)  

Where:  2 I
n

D

K
K

ω = and      2 P
n

D

K
K

ξω =  

PID transfer function given by Eq.(3) can, also,  be expressed in terms of derivative 

time and integral time to have the following form:  
2 111 I D I

PID P D P
I I

T T s T sG K T s K
T s T s

  + +
= + + = 

 
                                                                           (7) 

Where: IThe integral time, T /P IK K= ,  The derivative time, /D D PT K K=  
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/I P IK K T=    ,    
D P DK K T=  

Filtering PID controller  
Two main approaches including are used to filter PID action ; (1) PID introduce a 

zero into the closed loop transfer function, the presence of zero  may cause overshoot in the 

transient response for the closed loop system, to filter PID controller and eliminate the 

overshoot,  a prefilter is used, (2) Since it not be desirable to implement the controller as 

given above , where the numerator has a higher degree than the denominator, the transfer 

function is not causal and can not be realized,  also in practice, all signals will contain high 

frequency noise, and differentiating noise (by D-controller) will once again create signals 

with large magnitudes. To avoid this, the derivative term KDs is usually implemented in 

conjunction with a low-pass filter of the form: (1 /τs+1), (the addition of a lag to the 

derivative term) with  small time constant e.g. shorter than 1/5 of derivative time TD , for 

some small τ,  this has the effect of attenuating the high frequency noise entering the D-

controller, and produces the following controller proper transfer function: 

( ) 1
1

D
PID P

I D

TIG s K
T s sτ

 
= + + + 

 

The transfer function of a PID controller with a filtered derivative is given by: 

D
11 ,     T /N - time constant of the added lag

1

D
PID P

DI

T s
G K

T sT s
N

 
 

= + + 
 + 
 

                                   (8)  

N: determines the gain KHF of the PID controller in the high frequency range, the gain 

KHF must be limited because measurement noise signal often contains high frequency 

components and its amplification should be limited. Usually, the divisor N is chosen in the 

range 2 to 20. If no D-controller, then we have PI controller, given by Eq. (9), it is clear that, 

PI and PD controllers are special cases of the PID controller. 

111 I
PI P P

I I

T sG K K
T s T s

   +
= + =   

   
                                                                                            (9)   

The addition of the proportional and derivative components effectively predicts the 

error value at TD seconds (or samples) in the future, assuming that the loop control remains 

unchanged. The integral component adjusts the error value to compensate for the sum of all 

past errors, with the intention of completely eliminating them in TI seconds (or samples). The 

resulting compensated single error value is scaled by the single gain KP 
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Dominant features of control systems  
Most complex systems have dominant features that typically can be approximated by 

either a first or second order system response. Control system's response is largely dictated by 

those poles that are the closest to the imaginary axis, i.e. the poles that have the smallest real 

part magnitudes, such poles are called the dominant poles, many times, it is possible to 

identify a single pole, or a pair of poles, as the dominant poles. In such cases, a fair idea of 

the control system's performance can be obtained from the damping ratio and undamped 

natural frequency of the dominant poles (Farhan A. Salem, 2013) . 

The approximation conditions ;(1) for dominant one first order pole: the pole closest 

to the imaginary axis is the one that tend to dominate the response. (2) For higher-order than 

second system, if the real pole is five time-constants, 5T, farther to the left than the dominant 

poles, we assume that the system is represented by its dominant second-order pair of poles. 

Second order system e.g.  given by Eq.(10), can be approximated as one order system, the 

condition for dominant one first order pole, is given by: the pole closest to the imaginary axis 

is the one that tend to dominate the response, e.g. the magnitude of β is very large , (typically 

if β/α  > 5), this means α closest to  the imaginary axis, and this second order system can be 

approximated as first order system with the following transfer function given by Eq.(11) 
*( )

( )( )
G s K

s s
α β
α β

=
+ +                                                                                                       (10)  

( )
( )

G s K
s
α
α

=
+                                                                                                                 (11)  

Considering a third order system with one real root, and a pair of complex 

conjugate roots given by Eq.(12).  

( )( )2 2
( )

2 n n

KG s
s s sα ξω ω

=
+ + +

                                                                                             (12)  

This system  can be considered as consisting of  two  systems; first and second order 

systems; that it has three poles  one real pole ,at pole = α, and two complex  poles, the 

condition for dominant one first order pole , or two second order poles, is given below: 

( )
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Proposed PID design methodology 
Proposed PID design methodology for second order systems 

Based on Eqs.(6)(8),  dominant features of control systems and internal characteristics 

of plants, a simple and easy to use PID design method is to be introduced, the proposed 

methodology is applied to all systems , including first and second order systems and system 

that can be approximated as first or second order system,  

The general standard form of second order system, in terms of damping ratio ζ and 

undamped natural frequency ωn is given by Eq.(13), Since PID transfer function is a second 

order system, it can be expressed in terms of damping ratio and undamped natural frequency 

as given by Eq.(6), the PID gains ; KP, KI, KD, can be found in terms of plant's damping ratio 

and undamped natural frequency, as given by Eqs.(14)(15). Assigning proportional gain, the 

value of unity, KP=1, and equating Eqs Eqs.(14)(15), to find KI, result in Eqs.(16) that is used 

to find numerical values of  PID gains based on plant parameters. 

Testing these expressions, show that applying PID gaind calculated by Eqs.(16) may 

result in overshoot, and slow response, knowing that that performance of second order 

systems depends on damping ratio ζ and undamped natural frequency ωn , where damping 

ratio determines how much the system oscillates as the response decays toward steady state 

and  undamped natural frequency ωn, determines how fast the system oscillates during any 

transient response (Farhan A. Salem, 2013), ωn has a direct effect on the rise time, delay time, 

and settling time, therefore to speed up response and reduce ( remove) overshot the main 

parameter that can be tuned is the Integral gain KI, and seldom derivative gain KD both given 

by Eqs.(17) , by multiplying each by softening factor a named ε and α. 

Testing proposed PID design method, shows that the tuning range for multiplication 

factor ε, to result in smooth response without overshoot, is limited to ε = [0.1 : 2], it is noted 

that increasing the value of ε , will speed up response but will result in some oscillatory 

transient response without overshoot. Tuning  KD terms by multiplying it by factor α has 

minim effect on response curve. The proposed formulas for PID gains calculations and tuning 

range are given in Table 1 
2 22

2 2

2
( )         ( )

2
D n nn

PID
n n

K s s
G s G s

ss s

ξω ωω
ξω ω

 + + = ⇔ =
+ +

                                          (13)     
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11     ,            ,       
2 2

n
P D I

n

K K K
ω

ξω ξ
= = =                                                                                  (17)   

Based on Eqs.(7)(8), the derived formulae for calculating PID controller gains in 

terms of derivate time TD and integral time TI , to be as given by Eq.(18), the divisor N is 

chosen in the range 2 to 20. 

I
2 2T

/ 2    

1 / 2 1
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P P P

I n n n
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P P n
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K
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Table 1 Proposed formula for PID gains calculation, and softening ranges 
Plant PID parameters 

 KP KI KD TD TI N 

ζ ωn 1 
2

nω
ξ

 1
2 nξω

 1
2 nξω

 2
 n

ξ
ω

 2  20÷  

Tuning 
limits 

1 ,   0.1 2
2

nωε ε
ξ

= ÷  1  ,   0.58 1.5
2 n

α α
ξω

= ÷   
2 n

α
ξω

 2
 n

ξ
εω

  

 
Proposed PID design methodology for first order systems  

First order systems and systems that can be approximated as first order systems, are 

characterized, mainly, by time constant T. Time constant is a characteristic time that is used 

as a measure of speed of response to a step input and governs the approach to a steady-state 

value after a long time. The general form of first order system's transfer function in terms of 

time constant T, is given by Eq.(18).  

Testing PID gains design based on plants time constant for different first order 

systems, show that, if the three PID gains  (KP, KI, KD) are set equal to plant's time constant, 

a smooth response curve without or with minimum overshoot is resulted, but for some 
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systems, will result in response with ,relatively, big settling time, to speed up response and 

reduce (remove) overshoot only both derivative gain KD ,and integral gain KI are softly tuned, 

by multiplying KD by factor α, where α =[0.1:3], and by multiplying KI by factor ε, where ε 

=[0.1:2]. 

Based on plant's time constant the expressions listed in Table 2, are proposed to 

calculate PID gains in terms of time constant for first order system and tuning limits for KD 

and KI.  

Based on Eqs.(7)(8), the derived formulae for calculating PID controller gains in 

terms of derivate time TD and integral time TI , to be as given by Eq.(19) equal to unity and 

tuned values as given in  Table 2 the divisor N is chosen in the range 2 to 20. 

( ) 1G s    
1Ts

=
+

                                                                                                                (18)    

I I

I

TT ,         T 1    ,     

T  ,        T 1

P

I

D
D

P

K
K T

K
T

K T

= = =

= = =

                                                                                                 (19)       

 
Table 2 Proposed formulae for PID gains calculation for first order system, and softening ranges 

Plant PID parameters 

 KP KI KD TD TI N 

T T *Tα  *Tε  1 1 2  20÷  

Tuning 
limits 

T   * ,    
0.1 3
Tα

α = ÷
  * ,

0.1 2
Tε

ε = ÷
  ,

0.1 2
ε
ε = ÷

  1 /     
0.1 3
α

α = ÷
  

 
Proposed PID design method for first order plus delay time ( FOPDT) process 

A large number of industrial plants can approximately be modeled by a first order 

plus time delay (FOPTD) (Katsuhiko Ogata, 2010)(Saeed Tavakoli et al, 2003) FOPDT 

models are the combination of a first-order process model with dead-time ,it transfer function 

is given by Eq.(20) and it response curve is shown in Figure 1,  this s-shape curve with no 

overshoot is called reaction curve, it is characterized by  two constants ; the delay time L, 

and time constant T, these two constants can be determined  by drawing a tangent line at the 

inflection point of the s-shaped curve, and finding the intersection of the tangent line  with 

time axis and steady state level  K, (see Figure 1), then the transfer function of these-shaped 

curve can be approximated by first order system with transport lag and given by Eq.(20): 
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( )
( ) 1

LsC s Ke
R s Ts

−

=
+

                                                                                                             (20)         

 
  

Figure 1  s-shaped curve with terminology (Farhan A. Salem, 2013) 

To  create a first order plus dead time model and plot corresponding step response,  

the InputDelay or OutputDelay properties of MATLAB built-in function tf ,can be used as 

follows; for system transfer function give by Eq.(21), the MATLAB Function and result is 

written below, result step response is shown in figure 2:   

0.3
0.32 2( )         0.3,    1

1 1 1

Ls s
sKe eG s e L T

Ts s s

− −
−= = = ⇒ = =

+ + +
                                      (21)   

>> G = tf(2,[1 1],'InputDelay',0.3), step(G) 

 

Figure 2 Step response of first order plus delay time ( FOPDT) process 
 

Based on plant's delay time L, time constant T, and steady state level  K, ( see Eq. 

(1)). The formulae listed in Table 3, are proposed to calculate PID gain in terms L, T,  K for ( 

FOPDT) process and tuning limits for KD and KI. Based on Eqs.(7)(8), the derived formulae 

for calculating PID controller gains in terms of derivate time TD and integral time TI , to be as 

given by in Table 3, the divisor N is chosen in the range 2 to 20. 
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Table 3 Proposed formulae for PID gains calculation for first ( FOPDT) system, and softening ranges 
Plant PID parameters 

 KP KI KD TI TD N 

T,K,L T *L T  L
T

 1 / L  
2

L
T

 2  20÷  

Tuning 
limits 

T * * ,
0.1 3

L Tε
ε = ÷

 

0.1 3

L
T

α

α = ÷

 1
*Lε

 2

L
T

α   

 

Testing proposed PID design method 
The proposed PID design method is to be tested and verified for different systems 

including first, second, third and fourth order systems and first-order process with dead-time, 

the numerical results and response curves are plotted and some are compared with other PID 

design methods including Ziegler-Nicols and CHR.  Testing results show, for all systems, 

applying proposed PID design method, is resulted in smooth without overshoot response, but 

for some systems with, relatively, big settling time constant, to speed up the response and 

reduce (remove) the overshoot tuning factor  for both KD and KI are introduced.  

Testing proposed PID design method for both first order systems and first-order 

process with dead-time. To verify proposed PID design method, simulink model shown in 

Figure 3, with four different systems is built, three systems are of first order system and the 

fourth system is first-order process with dead-time, the calculated PID gains values applying 

proposed formulae are listed in Table 4, and the tuning values of derivative gain KD, KI, to 

speed up response and reduce overshoot, as well as, both resulted responses for each system 

(calculated PID gains and after tuning KD  or KI or both) are be plotted, and shown in Figure 

4, Figure 5, and Figure 6  

 

Figure 3 Simulink model of first order systems for verifying proposed PID design 
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Table 4 
System Plant's parameters PID parameters 

 Time constant T KP KI KD TD TI N 

Sys(1) 1 1 1 1 1 1 2 

Sys(1), tuned  only KD value 1 0.5 1 2 1  

Sys(2) 0.5 0.5 0.5 0.5 0.5 0.5 2 

Sys(2), tuned  KD  and KD  value 0.5 1 1 2 0.5 2 

Sys(4) FOPDT Parameters  L, T, K 1 0.3 0.3 3.3333 0.3000  

 L=0.3,T=1,K=1 1 0.60 0.6 6.6666 0.6 2 

 

 

(a) Applying calculated PID gains           (b) after tuning only Kd 
Figure 4 System (1) response applying proposed PID design 

 

(a) Applying calculated PID gains           (a) after tuning KD  and KI 
Figure 5 System (2 ) response applying proposed PID design 

 

 

(a) Applying calculated PID gains           (a) after tuning KD  and KI 
Figure 6 System (4 ) FOPDT response applying proposed PID design 

 
Since large number of industrial plants can approximately be modeled by a first order 

plus time delay (FOPTD), the proposed PID method is tested to control other three processes 
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given by Eq.(22), the PID gins calculated are listed in Table 5, the resulted responses are 

shown in Figure 7(a)(b)(c) , these response curves show , a smooth responses without or with 

minimum overshoots are obtained. 
0.3 1.8

1 2 3
2 5 0.4( ) ,         ( ) ,        ( )

1 1.5 1 0.9 1

s s se e eG s G s G s
s s s

− − −

= = =
+ + +

                                         (22)     

Table 5 
FOPDT 
System 

 

Plant's parameters PID gains 

T, K, L KP KD KI 

G1(s) T=1, K=2, L=0.3 1 0.3 0.3 

Tuned   KD  and KD  value 1 0.9 0.45 

G2(s) T=5, K=5, L=1.5 1.5 0.6667 1.5 

Sys(2), tuned  KD  and KD  value 1.5 0.3333 0.75 

G3(s) T=0.9. K=0.4, L=1.8  0.9 2 1.62 

Tuned   KD  and KD  value 0.9 6 4.86 

 

 

Figure 7 (a) Closed loop step response resulted from applying proposed PID parameters to G1 (s), original 
calculated PID gains (left)  and softly tuned (right) 

 

 

Figure 7 (b) Closed loop step response resulted from applying proposed PID parameters to G2 (s), original 
calculated PID gains (left)  and softly tuned (right) 
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Figure 7 (c)  Closed loop step response resulted from applying proposed PID parameters to G3 (s), original 
calculated PID gains (left)  and softly tuned (right) 

Figure 7(a)(b)(b). 
 

Testing proposed PID design method for second order systems, to test the 

proposed methodology, simulink model shown in Figure 8, with three different second order 

systems with no zeros is built, the calculated PID gains values applying proposed formulae 

are listed in table 6, as well as resulted response are be plotted, and shown in Figure 9, Figure 

10, Figure 11, also the soft tuning factor to speed up response and reduce overshoot  

 

Figure 8 (b) Simulink model of second order systems for verifying proposed PID design 
 

Table 6 testing results of second order systems 
System Plant parameter PID parameters 

parameter ζ ωn KP KI KD 

Sys(1) 0.5 1 1 1 1 

Sys(1), tuned  only KI value 1 0.6300 1 

Sys(2) 1.3416 2.2361 1 0.8333 0.1667 

Sys(2), tuned  only KI value 1 1.6667 0.1667 
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Sys(2), tuned  only KI value 1 8 1 

 

(a) Applying calculated PID gains           (a) after tuning only KI 
Figure 9 System (1) responses applying proposed PID design 

 

(a) Applying calculated PID gains             (a) after tuning only KI 
Figure 10 System (2) response applying proposed PID design. 

 

 

(a) Applying calculated PID gains             (a) after tuning only KI 
Figure 11 System (3) response applying proposed PID design 

 
Testing proposed PID design method for fourth order plant given by Eq.(23), this 

system can be approximated as second order system with two dominant poles given by P1,2= 

-1,-2, and given by Eq.(24), the step response of open loop original fourth order and 

approximated second order systems are shown in figure 12  
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Figure 12 Dominant poles approximation 
 

Calculating damping ratio and undamped natural frequency of approximated second 

order system, (ζ=1.0607, ωn=1.4142), and applying both proposed and Ziegler-Nicols method 

for PID design, results in PID gains shown in Table 7, response curves of both methods when 

subjected to step input of 10, are shown in figure 13, the curves show, applying proposed PID 

design resulted in smooth response without overshoot. 
Table 7 

Design Method KP KI KD 

Ziegler-Nichols 7.4274 4.8864 2.8224 

Proposed method 1 0.6667 0.3333 

 

 

Figure 13 
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Testing proposed PID design method for fourth order plant transfer function 

given by Eq.(25), applying three different PID controller design methods, particularly, 

Ziegler Nichols frequency response, Ziegler-Nichols step response, and Chein-Hrones-

Reswick design methods, will result in PID gains shown in Table 8 (Robert A. Paz, 2001),  , 

as shown in this table different values of PID gain are obtained and correspondingly different 

system's responses (see figure 14(a)), when subjected to step input of 10.  Comparing shown 

response curves, show that the Chein-Hrones-Reswick design is, with less overshoot and 

oscillation (than Ziegler-Nicols), all  three method allmostly, result in  the same settling time, 

Applying the proposed method, based on plant's dominant poles approximation,  result in 

smooth response curve without overshoot, and zero steady state error, shown in figure 14. 

4 3 2 s

10000( )
s  + 126s  + 2725s  + 12600  + 10000

G s =                                                                         (25)  

Table 8 
Design Method KP KI KD 

Ziegler Nichols Frequency Response  14.496 45.300 1.1597 

Ziegler-Nichols Step Response  11.1524 34.3786 0.9045 

Chein-Hrones-Reswick  5.5762 5.0794 0.4522 

 

Proposed method  

1 0.8632 0.1231 

ζ=3.0677 ωn= 2.6481  

 

 

Figure 14 System step responses obtained applying different design methodologies 
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Testing proposed PID design method for third order plant given by Eq.( 26). 

Approximating system to second order system with two dominant poles, calculating damping 

ratio and undamped natural frequency ,and applying both proposed and Ziegler-Nicols 

method for PID design, results PID gains shown in Table 9, response curves of both methods 

when subjected to step input of 10, are shown in figure 15, the curves show, applying 

proposed PID design resulted in smooth response without overshoot 

1( )
( 1)( 3)( 5)

G s
s s s

=
+ + +

                                                                              (26)     

Table 9 
Design Method KP KI KD 

Ziegler-Nichols 115.2 177.2 18.3 

Proposed method 1 3.75 0.125 

 

Figure 15 PID design for third order system , applying Ziegler-Nicols method and proposed method 
 

 
 
Conclusion  

A new simple and efficient model-based PID design method, based on Plant's 

parameters, is proposed, the proposed method was test for different systems including first, 

second, third and fourth order systems and first-order process with dead-time, the numerical 

results and response curves are plotted and some are compared with other PID design 

methods.  
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Analysis of testing and simulation results show that an important design compromise 

in the form of acceptable stability and medium fastness smooth and without overshoot 

response, is achieved, to speed up the response and reduce (remove) the overshoot, a gains 

tuning factor is introduced. 
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