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Abstract 

In this work, the fractional calculus methods are used to solve essential problems in 

conservative and non-conservative oscillatory systems.  Regarding the non-conservative 

systems, the key factor is to modify the standard fractional Lagrange equations by including 

the fractional Rayleigh’s dissipation function with a time fractional derivative of the 

displacement. The results are tested by applying them to well known Oscillatory systems 

under conservative and non-conservative forces. The calculations reveal that, the equations of 

motion are controlled by the fractional order derivative (alpha), as (alpha) goes to unity the 

equations of motion become as those for ordinary oscillatory systems. 
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Introduction 

The idea of fractional calculus has been known since the development of the regular 

calculus, with the first reference probably being associated with Leibniz and L’Hospital in 

1695. Fractional calculus is employed in several fields: Mathematics, physics, engineering, 

biology, and other scientific fields [1-5]. 

Fractional calculus is a generalization of integration and differentiation to non-

integer order, being the fundamental operator is 
α
ta D  where α and t are the limits of the 

operation [6-9]. Fractional calculus was employed to describe several physical phenomena 

such as heat flow, electricity, magnetism, and fluid dynamics. As an example of that, the 

electromagnetic theory adopted the fractional calculus to describe the charge distribution of a 

dipole. 

In last decade, many studies have brought fractional calculus into attention revealing 

that many physical phenomena are modeled by fractional differential equations [4-5]. The 



European Scientific Journal    May 2013 edition vol.9, No.15    ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 
  

266 
 

importance of fractional order mathematical models is that it can be used to make a more 

accurate prediction and to give a deeper insight into physical processes. 

Riewe [10,11] constructed a complete mechanical description of nonconservative 

systems including Lagrangian and Hamiltonian mechanics, canonical transformations, 

Hamilton-Jacobi theory, and quantum wave mechanics by using fractional derivatives. He 

showed that the formalism can be applied to a classical fractional force proportional to the 

velocity. 

On the other hand, Rabei et al [12] found a method to obtain potentials for 

nonconservative forcecs in order to introduce dissipative effects to the Lagrangian and 

Hamiltonian mechanics. 

Recently, the fractional constrained Lagrangian and Hamiltonian were analyzed [13-

14]. The notion of the fractional Hessian was introduced and the Euler-Lagrange equations 

were obtained for a Lagrangian linear in velocities.  

Fractional-order circuits and systems have witnessed an increasing interest lately 

[15]. Capacitors are one of the crucial elements in integrated circuits and are used extensively 

in many of them, such as sample and holds, radio-frequency oscillators, mixers [16,17]. 

The paper is organized as follows: In section 2, fractional calculus of conservative 

forces is reviewed briefly. In section 3, the fractional calculus of nonconservative forces is 

introduced. Applications on conservative and nonconservative systems are introduced in 

sections 4 and 5 respectively. The paper closes with some concluding remarks in section 6. 

Fractional Calculus of Conservative Forces 
In Agrawal’s work [18-20], the problem is formulated in terms of the 

left and right Riemann-Louville fractional derivatives, which are defined as: 

  The left Riemann-Louville fractional derivative reads as  

    τττ
αΓ

α
α dfx

dx
d

n
xfD
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a

n

xa )()(
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which is denoted as the LRLFD and the right Riemann-Louville 

fractional derivative reads as 
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which is denoted as the RRLFD. Here α  is the order of the derivative 

such that nn <≤− α1  and is not equal to zero. If α  is an integer, these 

derivatives are defined in the usual sense, i .e.,   

)()( xf
dx
dxfDxa

α
α 






= ; )()( xf

dx
dxfDbx

α
α 






 −= ; ,...2,1=α .  (3) 

The Euler-Lagrange equations for the fractional calculus of variations 

problem is obtained as 

0=
∂
∂

+
∂
∂

+
∂
∂

qD
LD

qD
LD

q
L

bt
ta

ta
bt β

β
α

α
.    (4)  

 Here L is a function of the form 

),,,( tqDqDqLL btta
βα= .       (5) 

  For 1== βα , we have dt
dDta =α

 and dt
dDbt −=α

,  and Eq.(4) reduces to 

the standard Euler-Lagrange equation. 

Fractional Calculus of Nonconservative Forces 
Another point regarding Lagrange’s equations must be noted. Only if some of the 

forces acting on the system are derivable from the potential, can Lagrange’s equations assume 

the form 

0=+
∂
∂

+
∂
∂

+
∂
∂

j
bt

ta
ta

bt Q
qD

LD
qD

LD
q
L

β
β

α
α

,   (6) 

 where the Lagrangian L contains only those forces that are conservative while Qj 

includes the forces that are not derivable from potential. An illustration of this letter type of 

force is the frictional force that is proportional to fractional time derivative of position which 

may be written as  

itai xDkF α−= ,        (7) 

 where k is a constant. 

 Forces of this type are derivable from fractional Rayleigh’s dissipative function, f, 

defined by  

( )2
2
1f ita xDk α= .       (8) 

It is obvious that the frictional force can be written as  
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ita
i xD

fF α∂
∂

−= .       (9) 

Component of Qj of the generalised force arising as a result of fractional force is given by 

jtajta
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i itajta
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ij qD
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qD
xD

xD
f

qD
xDFQ αα
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Substituting this value of Qj into Eq.(6), we can write Lagrange’s equation of motion as 

0=
∂
∂

−
∂
∂

+
∂
∂

+
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∂

qD
f

qD
LD

qD
LD

q
L

tabt
ta

ta
bt αβ

β
α

α
.  (11) 

 Thus, if fractional forces of friction are acting on the system, we must specify two 

scalar functions – the fractional Lagrangian and fractional Rayleigh’s dissipative function to 

derive the fractional equations of motion. 

Applications on Conservative Systems  
Harmonic Oscillator 

As a first example of conservative systems consider a harmonic oscillator of 

stiffness k attached to a block of mass m. If the block is displaced a distance x from 

equilibrium, the fractional Lagrangian of this oscillatory system is 

( ) 22

2
1

2
1 kxxDmL ta −= α

.      (12)  

Making use of Eq.(4), the fractional Lagrange’s equation of motion can be obtained as 

 

( ) 0=+− xDDmkx tabt
αα

.      (13)  

In the limit 1→α , equation (13) reduces to the equation of motion of the 

undamped harmonic oscillator: 

0=+ kxxm  .  

U-tube 
Consider now a shaped U-tube of length l filled with a liquid of density ρ, if the 

liquid in one level is initially displaced vertically a distance 2x from the other level, the 

fractional Lagrangian has the form  

( ) 22

2
1 AgxxDAlL ta ρρ α −= .     (14) 

 Following Eq.(4), the Lagrange’s equation of motion reads 
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( ) 02 =+− xDDAlAgx tabt
ααρρ .     (15) 

Or 

( ) 02 =+− xDDlgx tabt
αα

.      (16)  

If α  goes to one, then we must require that 

02 =+ gxxl  . 

Applications on Non-conservative Systems 
Damped Harmonic Oscillator  

As a first example of nonconservative systems consider the damped harmonic 

oscillator. The fractional Lagrangian and the fractional Rayleigh’s dissipation function 

describing this motion are 

( ) 22

2
1

2
1 kxxDmL ta −= α

; ( )2
2
1 xDcf ta

α=    (17)  

 Substituting Eq.(17) into Eq.(11), we get 

( ) 0=−+− xDcxDDmkx tatabt
ααα

.    (18) 

 In the limit 1→α , we obtain the equation of motion of the damped harmonic oscillator 

    0=++ kxxcxm  . 

RL Circuit 
Consider now an electric circuit consisting of a resistor, inductor, and battery. The 

fractional Lagrangian for this circuit is 

( ) qqDlL ta εβ −=
2

2
1

,      (19)  

 and the Rayleigh’s fractional dissipation function is 

( )2
2
1 qDRf ta

α= .        (20) 

  The Lagrange’s equation of motion reads 

( ) 0=−+− qDRqDDl tatabt
αααε .     (21)

  

For 1→α , we get the equation of the electrical driven forced oscillator in the form 

0=++ εqRql  . 
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 RLC Circuit         
We now turn our attention to more realistic circuit consisting of an indicator, 

capacitor, and a resistor connecting in series. The fractional Lagrangian and the fractional 

Rayleigh’s dissipation function for this circuit are 

( )
c

qqDlL ta 22
1 2

2
−= α

; ( )2
2
1 qDRf ta

α= .    (22) 

 The Lagrange’s equation of motion can be obtained as 

( ) 0=−+− qDRqDDl
c
q

tatabt
ααα

.     (23)

 As 1→α , we arrive at the equation of the electrical damped harmonic oscillator 

0=++
c
qqRql  . 

Conclusion 
 As a result of this work, fractional calculus is a powerful method to solve mechanical 

energy issues related to oscillatory systems. For conservative oscillatory systems with 

ordinary potential energy and fractional kinetic energy, the Lagrangian’s equations are 

obtained. Similarly, modified Lagrangian’s equations are obtained for non-conservative 

oscillatory systems with quadratic time dependant fractional Rayleigh’s dissipation function. 

For both conservative and non-conservative cases, the equations of motion result by this 

method return to the ordinary differential equations as the fractional order derivative (alpha) 

goes to unity.  
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