Valorisation des coques de noyaux de *Balanites aegyptiaca (L.) Del. et Hyphaene thébaica (L.) Mart.* pour l'élaboration et caractérisation de Charbons Actifs; application pour l'élimination du chrome

Sanda Mamane Ousmaila (Doctorant) Siragi Dounounou Boukari Maâzou (Doctorant)

Ecole Doctorale des Sciences Exactes et Techniques (EDSET) Université Abdou Moumouni (UAM), Niger

Malam Alma Maman Mousbahou (Maître de Conférences) Natatou Ibrahim (Professeur Titulaire)

Département de Chimie de la Faculté des Sciences et Techniques Université Abdou Moumouni (UAM), Niger

Doi: 10.19044/esj.2018.v14n21p195 URL:http://dx.doi.org/10.19044/esj.2018.v14n21p195

Abstract

This paper focuses on the development and characterization of activated carbons to agro-food waste by activation with ortho phosphoric acid, and its application in the elimination of chromium in solution. The functions were determined by Bohem's method. The thermal analysis was carried out on the hulls of waste. The specific surface area and the pore volume are determined according to the method of Brunauer, Emmet and Teller and the method of Barret, Joyner and Halenda respectively. The Lagergren and Ho and McKay models were used for the kinetic study of chromium removal. Those of Langmuir and Freundlich have to do with the study of isotherms and the law of Van't Hoff and Gibbs in relation to the determination of thermodynamic parameters. The results obtained show that the surface functions are acidic in nature. Activated carbon from balanites aegyptiaca has developed a specific surface (1560.7401 m²g⁻¹) that exceeds that of Hyphaene thebaica (722.1510 m² g⁻¹). The pseudo-order 2 kinetics (Ho and McKay) better describe the adsorption with correlation coefficients close to unity. Adsorption capacities and rate constants prove rapid adsorption at the early stages. For the isotherms, the calculated parameter values are much more consistent with those of the Langmuir isotherm. $\Delta G^0_{ads} < 0$; the adsorption process is spontaneous. Moreover, the values are in the range of a physisorption.

Keywords: Activated carbon, *Balanites aegyptiaca (L.) Del.*, Chromium, *Hyphaene thebaica (L.) Mart*, surface area

Résumé

Ce travail porte sur l'élaboration et caractérisation des charbons actifs des déchets agro-alimentaires par activation à l'acide ortho avec phosphorique, et leur application dans l'élimination du chrome en solution. Les fonctions ont été déterminées par la méthode de Bohem. L'analyse thermique a été effectuée sur les coques de déchets. La surface spécifique et le volume poreux sont déterminés selon la méthode de Brunauer, Emmet et Teller et la méthode de Barret, Joyner et Halenda respectivement. Les modèles de Lagergren et de Ho et McKay ont servi à l'étude cinétique de l'élimination du chrome, ceux de Langmuir et de Freundlich à l'étude des isothermes et la loi de Van't Hoff et la relation de Gibbs à la détermination des paramètres thermodynamiques. Les résultats obtenus montrent que les fonctions de surface sont de nature acide. Le charbon actif issu de balanites aegyptiaca aurait développé un surface spécifique (1560,7401 m² g⁻¹) qui dépasse celui de Hyphaene thébaica (722,1510 m² g⁻¹). Le cinétique pseudoordre 2 (Ho et McKay) décrit mieux l'adsorption avec des coefficients de corrélation proche de l'unité. Les capacités d'adsorption et les constantes de vitesses prouvent une adsorption rapide aux premières étapes. Pour ce qui est des isothermes, les valeurs des paramètres calculées concordent beaucoup plus à celles de l'isotherme de Langmuir. $\Delta G^0_{ads} < 0$; le processus d'adsorption est spontané. Par ailleurs, les valeurs sont dans la gamme d'une physisorption.

Mots-clés : *Balanites aegyptiaca (L.) Del.*, Charbon actif, Chrome, *Hyphaene thebaica (L.) Mart.*, Surface spécifique

Introduction

Malgré qu'elle soit indispensable à la vie, l'eau est une ressource très inégalement répartie dans le monde. En outre, elle devient de plus en plus polluée. A ce sujet, les techniques de traitement des cuirs et peaux mises en œuvre dans la tannerie industrielle ou semi-industrielle au Niger utilisant des formulations à base de chrome, tout comme dans plusieurs tanneries industrielles dansle monde (Krishnamoorthy et *al.*, 2012 ; Combéré et *al.*, 2017) ont considérablement contribué à la pollution de l'eau. Le rejet des eaux usées de tannerie génère le plus souvent des effluents ne respectant pas les normes nationales de rejet de chrom9i-ipi, fixées à 1 mg L⁻¹ pour le déversement dans les égouts. Il est donc primordial de limiter le plus possible cette pollution en mettant en place une technique d'élimination du chrome adaptée à notre localité (Niger). Au cours de ces dernières années, l'adsorption demeure l'une des techniques d'élimination de polluants la plus utilisée en

raison de son efficacité, la facilité de sa mise en œuvre et son coût d'investissement accessible. Cette méthode nécessite le choix d'un adsorbant présentant de bonnes caractéristiques. L'utilisation du charbon actif (CA) présentant de bonnes caracteristiques. L'utilisation du charbon acui (CA) comme adsorbant, représente un intérêt dans le traitement des eaux de rejets industriels (Ousmaila et *al.*, 2016). Ceci est justifié par l'importance de la surface spécifique et la porosité développées par ce matériau (Drissa et *al*, 2009). Ce dernier occupe une place importante dans l'industrie, avec des utilisations diverses (l'extraction de l'or, la filtration de l'air et des polluants organiques, etc.) (SAGEP, 2006), grâce à sa propriété d'adsorber des fluides amenés à son contact. Il est aussi constitué essentiellement de matière organiques, etc.) (SAGEP, 2006), grâce à sa propriété d'adsorber des fluides amenés à son contact. Il est aussi constitué essentiellement de matière carbonée à structure poreuse. Dit autrement, le charbon actif s'agit d'une structure amorphe généralement obtenue après une étape de carbonisation à haute température de biomasses lignocellulosiques et présentant une très grande surface spécifique qui lui confère un fort pouvoir adsorbant (Ousmaila et *al.*, 2016 ; Soleimani & Kaghazchi, 2008). Il se caractérise également par sa thermostabilité (Chen et *al.*, 2011). Ainsi, de nombreux procédés de fabrication furent mis au point pour permettre une plus grande production de charbon actif à partir de nombreuses matières végétales riches en carbone tels que les graines de palme (Lua et *al.*, 2006)), le bois de tamarin (Sahu et *al.*, 2010), les coques (Yang et *al.*, 2010), les noix de coco (Gueye *et al.*, 2014), les bagasses de canne à sucre (Cronje et *al.*, 2011), etc., afin de minimiser les coûts de production et de résoudre le problème environnemental lié à leur stockage dans la nature. Le Niger, à l'instar de nombreux autres pays subsahariens, importe du charbon actif utilisé dans divers domaines (traitement de l'Or et le traitement des eaux). Or le pays dispose d'importantes réserves de déchets en matière organique. Pour cette raison, nous avons engagé ce travail qui consiste à élaborer et caractériser du Charbon actif à partir de coques des biomasses lignocellulosiques locales par activation chimique à l'acide ortho-phosphorique (H₃PO4) afin d'éliminer le chrome en solution. Les biomasses sélectionnées sont les noyaux de *Balanites aegyptiaca (L.) Del.* et *Hyphaene thebaica (L.) Mart*. En effet, ces biomasses proviennent des arbres sauvages très répandus au Niger et qui produisent des fruits saisonniers consommés par la population. Les noyaux de ces fruits se retrouvent dans la décharge municipale comme déchets urbains. Ils constituent alors des déchets agro-alimentaires abondants qui sont plus ou moins agro-alimentaires abondants qui sont plus ou moins difficilement biodégradables. L'utilisation de ces derniers dans ce travail présente un double avantage : élaborer des charbons actifs à faible coût d'une part, et valoriser les déchets afin de leur donner une valeur ajoutée d'autre part.

Matériel et méthodes Matériel végétal

Il s'agit de coques des noyaux de Balanites aegyptiaca (L.) Del. (figure 1) et de Hyphaene thebaica (L.) Mart. (figure 2).

Figure 1. Noyau de Balanites aegyptiaca

Figure 2. Noyau d' Hyphaene thebaica

Collecte et prétraitement des coques

Les coques de noyaux des fruits de Balanites aegyptiaca (BA) et de Hyphaene Thebaica (HT) proviennent d'un marché de fruits et légumes de la ville de Niamey (Niger), appelé KATAKO. Les fruits ont été d'abord épluchés et ensuite les noyaux ont été récupérés puis concassés par chute pour séparer les coques du noyau. Ces dernières sont ensuite broyées dans un broyeur à boulets. Après tamisage, les fractions de diamètre compris entre 0.8 et 2 mm ont été retenues pour l'élaboration des charbons actifs et séchées à l'étuve à 105°C pendant 24 h.

La décomposition thermique de coques de BA et HT

L'analyse thermogravimétrique (ATG) et analyse thermique différentielle (ATD) ont été effectuées sur les coques des noyaux de Balanites aegyptiaca (L.) Del. et de Hyphaene thebaica (L.) Mart. pour voir la décomposition en masse de ces matériaux. Elles sont déterminées à l'aide d'un thermogramme de marque (Lab : METTLER STAR^e SW 8.10).

Préparation des charbons actifs

- Elle s'effectue en trois étapes (Gueye et *al.*, 2014) : ✓ imprégnation de la biomasse dans des solutions de l'agent activant ;
 - ✓ carbonisation de la biomasse imprégnée ;
 - ✓ purification du produit obtenu.

Imprégnation

Dans des béchers de 250 mL, 16 g de coque broyée et 100 mL de solution d'acide ortho-phosphorique 25 % ont été introduits. Le mélange obtenu est agité pendant 15 h à la température ambiante. Après filtration sur papier filtre sans cendre, les coques imprégnées sont séchées à l'étuve pendant 24 heures puis refroidies dans un dessiccateur pendant 15 min.

Pyrolyse

L'échantillon sec obtenu après imprégnation a été placé dans un four à moufle, programmable à haute température (marque TACHETE). La température du four évolue de façon croissante jusqu'à atteindre la température de pyrolyse (450 °C) avec des vitesses de chauffe pour la pyrolyse (2,5 °C min⁻¹) et un palier isotherme de 1h30 min à la fin du chauffage qui représente le temps de séjour dans le four. Le Charbon actif obtenu est refroidi, lavé abondement à l'eau distillée jusqu'à pH = 7 puis séché à l'étuve à 105 °C.

Caractérisation

Fonction de surface

La fonction de surface est une caractéristique faisant ressortir les groupements fonctionnels (acides et basiques) du Charbon actif. La méthode de Boehm (Tchakala et *al.*, 2012) a été utilisée pour déterminer les groupements fonctionnels des charbons actifs élaborés (CAEs). Les groupements fonctionnels des charbons actifs élaborés (CAEs). Les groupements basiques sont dosés dans leur globalité alors que les groupements acides sont dosés séparément. Le protocole expérimental est le suivant : 0,2 g de charbon actif a été mis en contact avec 20 mL des solutions aqueuses de NaOH, Na₂CO₃, NaHCO₃, C₂H₅ONa et HCl à 0,1 M. Chaque solution est agitée pendant 24 h. Puis le mélange est filtré. Après filtration, 10 mL de solution sont dosés. Les solutions basiques sont dosées par l'acide chlorhydrique à 0,1 M et la solution acide est dosée par la soude à 0,1 M. Le nombre de moles de la fonction cherchée est donné par la formule (1).

$$n_{\acute{e}qR} = N_i V_i - N_f V_f \tag{1}$$

néqR étant le nombre d'équivalent gramme ayant réagi, $N_i V_i$ le nombre d'équivalant gramme avant la réaction et $N_f V_f$ le nombre d'équivalant gramme après la réaction.

Surface spécifique et volume poreux La surface spécifique est déterminée sur un appareil (MICROMERITICS Gemini VII *Surface Area & Porosity*) par adsorption de l'azote liquide à 77 K selon la méthode classique de Brunauer, Emmet et Teller ou BET [2]. Le volume poreux (Vp) est déterminé par le modèle de Barret, Joyner et Halenda ou BJH (à l'adsorption et à la désorption).

Application dans le traitement de solution du chrome

L'élimination du chrome (VI) sur le CA a été effectuée comme suit : dans un bécher de 100 mL, une masse m de 50 mg du Charbon actif pesée à l'aide d'une balance de précision (à 1/10000 près de marque **Precisa**) a été introduite dans 50 mL de la solution du chrome de concentration connue. Le mélange est agité pendant un temps bien défini puis filtré à travers un papier filtre et la concentration résiduelle en chrome est mesurée à l'aide d'un spectrophotomètre à flamme (MP-AES). La capacité d'adsorption du chrome est déterminée par la relation (2) :

$$q_{eq} = \frac{\left(C_i - C_{eq}\right)V}{m_{CA}} \tag{2}$$

 q_{eq} étant la capacité d'adsorption du chrome exprimée en mg g⁻¹, C_i la concentration initiale de la solution de chrome en mg L⁻¹, C_{eq} la concentration finale de la solution de chrome en mg L⁻¹, V le volume de la solution de chrome en mL, et m_{CA} la masse du charbon actif en g.

Cinétiques d'adsorption du Cr (VI) sur le charbon actif

Les modèles de pseudo-ordre 1 (Coulibaly, 2014) et de pseudo-ordre 2 [Ho et *al.*, 1998) 18] sont testés et présentés ici. Ces modèles sont décrits par les équations (3) et (4) respectivement.

$$\frac{dq_t}{dt} = k_1 \cdot \left(q_{eq} - q_t\right) \tag{3}$$
$$\frac{dq_t}{dt} = k_2 \cdot \left(q_{eq} - q_t\right)^2 \tag{4}$$

 q_t étant la quantité de Cr (VI) adsorbée au temps t exprimée en mg g⁻¹, q_{eq} la quantité de Cr (VI) adsorbée à l'équilibre en mg g⁻¹, k_1 la constante de vitesse pseudo-ordre 1 en min⁻¹, k_2 la constante de vitesse pseudo-ordre 2 en g mg⁻¹ min⁻¹, et t le temps en min.

Les isothermes d'adsorption

Le modèle de Langmuir et le modèle de Freundlich (Coulibaly, 2014) sont testés et présentés ici. Ces modèles sont décrits par les équations (5) et (6) respectivement :

$$q_{eq} = \frac{q_{max} k_L C_{eq}}{1 + k_L C_{eq}}$$
(5)
$$q_{eq} = k_f C_{eq}^{1/nf}$$
(6)

 q_{eq} étant la capacité d'adsorption à l'équilibre exprimée en mg g⁻¹, q_{max} la capacité maximale d'adsorption à l'équilibre mg g⁻¹, C_{eq} la concentration de l'adsorbat à l'équilibre en mg L⁻¹, k_L la constante de

Langmuir en Lmg⁻¹, k_f la constante de Freundlich en L g⁻¹ et n_f le coefficient de l'équation de Freundlich.

Aspect thermodynamique de l'adsorption

Ce phénomène est caractérisé par les équations (7) et (8) (Coulibaly, 2014).

$$\Delta G_{ads}^{0} = \Delta H_{ads}^{0} - T\Delta S_{ads}^{0}$$
(7)
$$lnk_{d} = \left(-\frac{\Delta H_{ads}^{0}}{R}\right) \times \frac{1}{T} + \left(\frac{\Delta S_{ads}^{0}}{R}\right)$$
(8)

 ΔG_{ads}^{0} étant l'énergie libre standard d'adsorption exprimée en kJ mol⁻¹, ΔH_{ads}^{0} l'enthalpie standard d'adsorption en kJ mol⁻¹, T la température en K⁻¹ et ΔS_{ads}^{0} l'entropie standard d'adsorption en kJ mol⁻¹ K⁻¹.

En traçant $\ln(k_d) = f(\frac{1}{T})$, on obtient une droite de la forme y = ax + bavec $a = -\frac{\Delta H_{ads}^0}{R}$ le coefficient directeur de la droite et $b = \frac{\Delta S_{ads}^0}{R}$ l'ordonné à l'origine. De ces deux relations, on détermine les paramètres thermodynamiques telles que l'enthalpie standard ($\Delta H_{ads}^0 = -a \times R$) et l'entropie standard ($\Delta S_{ads}^0 = b \times R$) en valeur absolue. Les enthalpies libres standards sont déterminées en utilisant l'équation (7).

Résultats et discussion

La décomposition thermique de coques des biomasses utilisées

La Figure 3 présente les résultats de l'analyse thermique des coques de noyaux de *Balanites aegyptiaca* (BA) *et Hyphaene thebaica* (HT) respectivement en rouge et en vert.

Figure 3. Analyse thermogravimétrique de la coque du noyau de BA et HT

Pour la partie a. de la figure, on constate que les deux biomasses présentent des thermogrammes qui ont la même allure générale. La perte en masse à faibles températures (entre 50 et 100 °C) est due à la déshydratation des biomasses. Elle est légèrement plus importante pour BA que pour HT mais elles sont globalement du même ordre. La seconde perte (de 170 à 600 °C), la plus grande perte en masse, est attribuable à l'élimination des matières volatiles et du goudron (Reffas, 2010). La perte (pourcentage) est plus grande pour l'échantillon BA. Ainsi, l'*Hyphaene thebaica* pourrait avoir un rendement de pyrolyse d'élaboration du charbon actif beaucoup plus important que la *Balanites aegyptiaca*.

Pour ce qui est des pics observés à la partie b de la Figure 3 obtenus par dérivation de la courbe obtenue dans la partie a, ils sont caractéristiques des différents phénomènes qui se produisent. Le premier (entre 200 et 210 °C) qui correspond à la décomposition des hémicelluloses est très marqué chez HT et quasiment absent pour BA. Le deuxième pic (entre 270 et 290 °C) est celui de la lignine ; il est plus marqué pour BA que pour HT alors que le troisième, entre 310 et 350 °C, est celui relatif à la cellulose, le constituant majeur des biomasses (Raveendran et *al.*, 1998 ; Yang et *al.*, 2007).

Caractéristiques de Charbons actifs élaborés Fonctions de surface

Les groupements fonctionnels des charbons actifs sont obtenus grâce à un dosage en retour sélectif (bases de différentes forces et de pka approprié). Ainsi, le NaHCO₃ (pKa = 6,3) neutralise seulement les fonctions carboxyliques. Le Na₂CO₃ (pKa = 10,2) neutralise les fonctions carboxyliques et les fonctions lactones. Le NaOH (pKa = 15,7) neutralise les fonctions carboxyliques, lactones et phénoliques. Et le C₂H₅ONa (pKa = 20,5) neutralise les fonctions carbonyles. Au contraire, les fonctions basiques sont neutralisées dans leur globalité par l'acide chlorhydrique (HCl). Le Tableau I indique les résultats des fonctions de surface des charbons actifs élaborés.

Charbons	Acides			Basiques		
Actifs	Carboxylique	Lactone	Phénol	Carbonyle	Totaux	Globalité
CA-BA	1,78	1,16	0,26	0,24	3,44	-
CA-HT	1,88	0,94	0,54	0,2	3,56	-

Tableau I. Fonctions de surface en m_{eq} g⁻¹

L'analyse de ce tableau montre :

✓ L'absence totale de fonction basique. Ceci s'expliquerait par le fait que les charbons actifs élaborés n'ont pas été mis en contact avec de l'oxygène en dessous de 200 °C ou au-dessus de 700 °C. Les échantillons n'ont pas suivi un traitement avec hydrogène et ils n'ont pas été dégazés à la température ambiante. ✓ Les fonctions de surface de charbons actifs sont de nature acide. Ces résultats laissent supposer que les échantillons auraient un haut degré d'adsorption. Ces résultats sont similaires aux travaux de Maâzou (Maâzou *et al.*, 2017).

Les isothermes d'adsorption de N2 sur les charbons actifs élaborés

Les résultats des isothermes d'adsorption de l'azote (N_2) sont représentés à la figure 4.

Figure 4. Isothermes d'adsorption de N2

Ces résultats montrent une forte capacité d'adsorption de N₂ aux très faibles pressions relatives ($\frac{P}{p_0} \cong 0,100$) puis un palier traduisant la saturation des charbons actifs, malgré l'augmentation de la pression relative. Les courbes d'adsorption-désorption obtenues ne présentent pas une hystérèse. Les branches de désorption rejoignent les branches d'adsorption pour une pression relative supérieure à 0,32 (figure 4). Ces caractéristiques sont essentiellement des indicatrices de la distribution majoritaire des micropores pour nos échantillons. Les isothermes d'adsorption obtenues seraient essentiellement attribuables à l'isotherme du type I selon la classification BDDT (adopté par l'IUPAC).

Surface spécifique et porosité

L'équation BET pour l'adsorption de l'azote N₂ sur le charbon actif permet de déterminer la surface spécifique de l'échantillon analysé. L'équation BET utilisée en pratique sous sa forme linéaire sur une Gamme de $\frac{P}{P^0}$ allant de 0,03 à 0,10 est :

$$\frac{P}{q(P^0 - P)} = \frac{1}{V_m \times C} + \left(\frac{C - 1}{V_m \times C}\right) \times \frac{P}{P^0}$$
(9)

Le volume de monocouche (V_m) et la constante C sont déterminés à partir de la pente et l'ordonnée à l'origine de droite $\frac{P}{q(P^0-P)}$ en fonction de $\frac{P}{P^0}$. Connaissant V_m, la surface spécifique S_{BET} est déterminée à l'aide de l'équation (10).

$$S_{BET} = \sigma. \frac{V_m \times N}{V_M} \tag{10}$$

La Figure 5 présente les isothermes d'adsorption de N_2 sur les charbons actifs élaborés selon la méthode BET.

Figure 5. Linéarisation des isothermes BET

Le tableau II indique les surfaces spécifiques et la porosité des charbons actifs élaborés.

Tableau II. Surfaces spécifiques et porosités						
Surfaces spécifiques						
$(m^2 g^{-1} STP)$						
	\mathbf{S}_{BET}	Smicropores		S _{Externes}		
CA-BA	1560,7401	1167,4469	3	93,2932	0,9999535	
CA-HT	722,1510	591,7939	1	30,3571	0,9999057	
		Volumes	s poreux			
	$(\text{cm}^3 \text{g}^{-1} \text{STP})$					
	V _{Poreux}	V _{Micropores}	V _{Externes}	$\frac{V_{\mu}}{(\%)}$	$\frac{V_{Ext}}{(\%)}$	
				V_T	V_T (70)	
CA-BA	0,677426	0,458454	0,218972	67,675879	32,324121	
CA-HT	0,306531	0,231967	0,074564	75,674891	24,325109	
		Diamètre mo	yen de pores			
	(Å)					
CA-BA			17			
	CA-HT			17		
CA-BA CA-HT			17 17			

Ces résultats montrent que les coefficients de corrélation R² obtenus sont très significatifs et très proches de l'unité. Ils sont de l'ordre de 0,9999535 et 0,9999057 pour le CA-BA et le CA-HT respectivement. Les surfaces spécifiques (S_{BET}) calculées sont de l'ordre de 1560,7401 et 722,1510 $m^2 g^{-1}$ pour le CA-BA et le CA-HT respectivement. Ceci montre que le charbon actif issu de Balanites aegyptiaca aurait développé une surface spécifique qui dépasse celle de charbon actif d'Hyphaene thébaica. Les volumes externes (mésopores et macropores) sont de l'ordre de 0,218972 et 0,074564 cm³ g⁻¹ pour le CA-BA et le CA-HT respectivement. Les volumes poreux totaux de N₂-CAs (V_{poreux}) sont de 0,306531 et de 0,677426 cm³ g⁻¹ pour CA-HT et CA-HT respectivement. Ainsi, les volumes poreux (V_T) sont proportionnels aux surfaces spécifiques. Les volumes externes (meso et macropores) sont déterminés en faisant la différence entre les V_{poreux} et les volumes micropores (V_{μ}) . Les rapports $\frac{V_{\mu}}{V_{T}}$ dépassent $\frac{V_{Ext}}{V_{T}}$ obtenus pour ces échantillons. Ceci indiquerait l'existence de la distribution majoritaire de micropores par rapport à celle des mésopores et macropores, ce qui confirmerait l'attribution essentielle des isothermes d'adsorption au type I (figure 4). La taille d'un pore peut être décrite par son diamètre moyen. Les valeurs des diamètres moyens des pores déterminés par la méthode BET sont inférieures à 20 Å (2 nm). Celles-ci seraient attribuables à la distribution de taille des micropores. En outre, ces valeurs dépassent 7 Å. Ceci indiquerait qu'ils seraient des supermicropores. Ces échantillons seraient capables d'adsorber des molécules des tailles de micropores, ce qui laisse présager qu'ils seraient des bons adsorbants pour les applications industrielles.

Application de charbons actifs sur l'élimination du chrome Cinétiques d'adsorption

Les résultats des paramètres caractéristiques des cinétiques d'adsorption de chrome sur les charbons actifs élaborés sont regroupés dans le tableau III.

Tableau III. Parametres des cinetiques d'adsorption					
	Cinétic	ue de Pseudo-ordre	1		
Paramètres	$q_{eq, exp}$	$\mathbf{q}_{\mathrm{eq, cal}}$	\mathbf{k}_1	\mathbb{R}^2	
	$(mg g^{-1})$	$(mg g^{-1})$	(\min^{-1})		
CA-BA	37,54000	41,13959	0,07058	0,97971	
CA-HT	49,13000	97,82277	0,12189	0,96075	
	Cinétic	jue de Pseudo-ordre	2		
Paramètres	q _{eq, exp}	q _{eq, cal}	k ₂	\mathbb{R}^2	
	(mg g ⁻¹)	$(mg g^{-1})$	$(g mg^{-1} min^{-1})$		
CA-BA	37,54000	37,86444	0,01613	0,99987	
CA-HT	49,13000	49,77600	0,01508	0,99997	

Les résultats de ces modélisations montrent que : \checkmark les coefficients de corrélation R^2 obtenus sont de l'ordre de 0,97971 et 0,96075 pour CA-BA et CA-HT (cinétique pseudo-ordre 1) respectivement. Ceci indiquerait que le CA-BA s'adapte mieux à ce modèle que le CA-HT. La capacité d'adsorption de chrome calculée avec le CA-BA (41,13959 mg g⁻¹) est plus faible que celle obtenue avec CA-HT (97,82277 mg g⁻¹). Il en est de même pour les valeurs des constantes de vitesses des CAEs calculées, qui sont de l'ordre de 0,07058 et 0,12189 min⁻¹ pour le CA-BA et CA-HT respectivement.

 ✓ pour la cinétique pseudo-ordre 2, les coefficients de corrélation
 R² obtenus sont très significatifs et très proches de l'unité (1). Ils sont de
 l'ordre de 0,99987 et 0,99997 pour le CA-BA et CA-HT respectivement. Ceci indiquerait que le CA-HT s'adapte mieux à ce modèle que le CA-BA. La capacité d'adsorption de chrome calculée avec le CA-BA ($37,86444 \text{ mg g}^{-1}$) est plus faible que celle obtenue avec le CA-HT ($49,77600 \text{ mg g}^{-1}$). Les valeurs des constantes des vitesses des CAEs calculées sont de l'ordre de 0,016613 et 0,01508 g mg⁻¹ min⁻¹ pour CA-BA et CA-HT respectivement.

l'application de deux modèles de réaction de surface montre ✓ que le modèle pseudo second ordre décrit mieux la totalité des résultats expérimentaux obtenus (coefficients très proches de l'unité et aussi une bonne corrélation entre les valeurs de $q_{eq,exp}$ et $q_{eq,cal}$). La conformité au modèle pseudo second ordre semble indiquer l'existence d'une chimisorption qui implique des échanges d'électrons à l'interface des Charbons actifs élaborés et le Cr. Cela pourrait révéler une hétérogénéité des charbons actifs élaborés. Des paramètres cinétiques similaires ont été rapportés par Gueye en 2014, pour l'adsorption des Cr sur les charbons actifs à base de coques d'arachide et le bois de jatropha.

Isothermes d'adsorption du chrome en solution

Les résultats des paramètres caractéristiques des isothermes d'adsorption de chrome sur les charbons actifs élaborés sont regroupés dans le tableau IV.

	Tableau IV. Paramètres des isothermes d'adsorption				
	Isothe	rme de Langmuir			
Paramètres	q_{max}	k _L	R _L	\mathbb{R}^2	
	$(mg g^{-1})$	(L mg ⁻¹)			
CA-BA	87,64241	0,10334	0,16215	0,90977	
CA-HT	80,90614	0,85065	0,02297	0,98651	
	Isother	rme de Freundlich			
Paramètres	n _f	$1/n_{\rm f}$	k _f		
			(\min^{-1})	\mathbb{R}^2	
CA-BA	0,74977	1,33373	9,37606	0,94235	
CA-HT	2,71076	0,36890	37,02154	0,80416	

L'analyse des résultats de l'isotherme de Langmuir montre que les coefficients de corrélation R^2 obtenus sont de l'ordre de 0,90977 et 0,98651 pour le CA-BA et le CA-HT respectivement. Ceci indiquerait que le CA-HT s'adapte mieux à ce modèle que le CA-BA. La capacité maximale d'adsorption de chrome calculée avec le CA-HT (80,90614 mg g⁻¹) est plus faible que celle obtenue avec le CA-BA (87,64241 mg g⁻¹). Les valeurs des constantes de Langmuir des CAEs calculées ne suivent pas la même tendance et sont de l'ordre de 0,10334 et 0,85065 L mg⁻¹. Les valeurs de relation de Langmuir (R_L) sont de l'ordre de 0,16215 et 0,02297 pour le CA-BA et le CA-HT respectivement. Ces valeurs sont comprises entre 0 et 1 ; ce qui laisse supposer que le processus d'adsorption de chrome sur les CAEs serait favorable. Pour le modèle de Freundlich, les résultats montrent que les coefficients de corrélation R² obtenus sont de l'ordre de 0,94235 et 0,80416 pour le CA-BA et le CA-HT respectivement. La valeur de la constante de Freundlich calculée avec le CA-BA (9,37606) est plus faible que celle obtenue avec le CA-HT (37,02154). Le facteur d'hétérogénéité (1/n_f) du CA-HT est inférieur à 1, ce qui semble indiquer que le couple Cr/CA-HT serait favorable à l'adsorption.

Tableau V : Parametres thermodynamiques					
Paramètres	Température (°C)	ΔH^0_{ads} (kJ mol ⁻¹)	ΔS^0_{ads} (kJ mol ⁻¹ K ⁻¹)	ΔG^0_{ads} (kJ mol ⁻¹)	\mathbb{R}^2
CA-BA	40 60 80 100 120	27,14889	0,10505	-5,73176 -7,83276 -9,93376 -12,03476 -14,13576	0,98412
CA-HT	40 60 80 100 120	12,85839	0,06118	-6,29095 -7,51455 -8,73815 -9,96175 -11,18535	0,97712

Aspect thermodynamique d'élimination du chrome

Le tableau V indique les paramètres thermodynamiques d'élimination du chrome.

Les résultats de cette modélisation montrent que les coefficients de corrélation R² obtenus sont de l'ordre de 0,98412 et 0,97712 pour le CA-BA et le CA-HT respectivement. Les valeurs de l'enthalpie libre standard (ΔG_{ads}^0) diminuent lorsque la température augmente et elles sont négatives tandis que les constantes de distribution augmentent avec la température. L'enthalpie et l'entropie standard (ΔH_{ads}^0 et ΔS_{ads}^0) sont de l'ordre de 27,14889 kJ mol⁻¹ et de 0,10505 kJ mol⁻¹ K⁻¹ pour le CA-BA, et elles sont de l'ordre de 12,85839 kJ

mol⁻¹ et 0,06118 kJ mol⁻¹ K⁻¹ pour le CA-HT. Ceci indiquerait que l'adsorption de chrome sur les CAEs serait spontanée. Par ailleurs, les valeurs de l'enthalpie d'adsorption obtenues sont comprises entre 5 et 40 kJ mol⁻¹ et celles de l'enthalpie libre ΔG_{ads}^0 sont comprises entre -20 et 0 kJ mol⁻¹. Celles-ci peuvent supposer que les mécanismes de sorption entre le Cr et les charbons actifs élaborés seraient dominés par un processus de nature physique (Coulibaly, 2014 ; HUGUET, 2009).

Conclusion

Les charbons actifs ont été élaborés à partir des coques de noyaux de Balanites aegyptiaca (BA) et Hyphaene thebaica (HT) par activation chimique à l'acide H₃PO₄. Ces charbons ont été caractérisés et utilisés pour l'adsorption de Chrome. Il ressort de cette étude que : ✓ les trois pics observés sur les thermogrammes de coques de BA et HT sont caractéristiques des hémicelluloses, de la lignine et de la

- cellulose;
- \checkmark les fonctions de surface des charbons actifs sont de nature acide ;
- ✓ les isothermes d'adsorption obtenues seraient essentiellement attribuables à l'isotherme du type I ;
 ✓ les valeurs des diamètres moyens des pores déterminés sont inférieures
- à 20 Å (2 nm);
- les modèles pseudo-ordre 2 et de Langmuir décrivent une meilleure adsorption du chrome sur le charbon actif ;
 il y aurait présence d'une chimisorption au sein de l'adsorption ;
 des échanges d'électrons à l'interface de charbons actifs/Cr et une hétérogénéité des charbons actifs sont constatés ;
 l'adsorption de chrome sur les charbons actifs serait de nature

- physique.

Les charbons actifs élaborés seraient capables d'adsorber des molécules des tailles de micropores.

References:

- 1. Chenn, Y et al. (2011). Application studies of carbon derived from rice husks produced by chemical- thermal process. A review Adv. Colloïd interface Sci 163, 39-52.
- 2. Combéré, W., Arsène, H. Y., Abdoulaye, D., & Kaboré, L. (2017). Elimination du chrome trivalent des eaux par des zéolithes échangées au fer et des argiles naturelles du burkina faso : J. Soc. Ouest-Afr. Chim. 043, 26- 30.
- 3. Coulibaly, S. L. (2014). Abattement des phosphates des eaux usées par adsorption sur des géomatériaux constitués de Latérite , grès et

schistes. Thèse de doctorat en Co-Tutelle à l'Université de Lorraine (LL), Nancy-France NF et de L'Université Nangui Abrogoua (UNA), Abidjan/ Cote d'Ivoire ACI, 213.

- Cronje, K.J., Chetty, K., Carsky, M., Sahu, J.N., & Meikap, B.C. (2011). Optimization of chromium (VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Journal Desalination 275, 276-284.
- Drissa, B., Bini, D., Albert, T., Guessan, E. Z., Grah, P. A., Didier, R., & Jean, V. W. (2009). Etudes comparées des méthodes de préparation du charbon actif, suivie d'un test de dépollution d'une eau contaminée au Diuron : J. Soc. Ouest-Afr. Chim. 028, 41-52.
- 6. Gueye, M., Richardson, Y., Kafack, F.T., & Blin, J. (2014). High efficiency activated carbons from african biomass residues for the removal of chromium (VI) from wastewater : Journal of environmental chemical engineering 2 (1), 273-281. DOI: http://doi.org/101007/s10450-017-9929-7.
- <u>http://doi.org/101007/s10450-017-9929-7</u>.
 Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chem. Eng. J., 70 (2), 115 124.
 Huguet, S. (2009). Etude du devenir du cadmium dans un sediment de
- Huguet, S. (2009). Etude du devenir du cadmium dans un sediment de curage fortement contaminé et des mécanismes d'accumulation du cadmium chez *arabidopsis halleri*. Thèse de doctorat à l'Université des Sciences et technologies de Lille 1, Lille-France LF, 235.
 Krishnamoorthy, G., Sadulla, S., & Sehgal1, P.K. (2012). Asit Baran
- Krishnamoorthy, G., Sadulla, S., & Sehgal1, P.K. (2012). Asit Baran Mandal, Green chemistry approaches to leather tanning process for making chrome-free leather by unnatural amino acids : Journal of Hazardous Materials, Vol. 215–216, 173–182.
- Haxing enfonce-free featurer by unnatural annuo actus : Journal of Hazardous Materials, Vol. 215–216, 173–182.
 10. Lua, A.C., Lau, F.Y., & Guo J. (2006). Influence of pyrolysis conditions on pore development of oil-palm-shell activated carbons : Journal of Analytical and Applied Pyrolysis 76, 96-102.
- 11. Ousmaila, S.M., Adamou, Z., Ibrahim, D., & Ibrahim, N. (2016). Préparation et caractérisation de charbons actifs à base de coques de noyaux de Balanites eagyptiaca et de Zizyphus mauritiana : J. Soc. Ouest-Afr. Chim. 041, 59- 67.
- Maâzou, S.D.B., Hima, I. H., Maman Mousbahou, M. A., Adamou, Z., & Ibrahim, N. (2017). Elimination du chrome par du charbon actif élaboré et caractérisé à partir de la coque du noyau de Balanites agyptiaca : Int. J. Biol. Chem. Sci. 11 (6) : 3050-3065. DOI : https://dx.doi.org/10.4314/ijbcs.v11i6.39.
- <u>https://dx.doi.org/10.4314/ijbcs.v11i6.39</u>.
 13. Raveendran, K. & Ganesh, A. (1998). Adsorption characteristics and pore-development of biomass-pyrolysis char. Fuel. 77 (7), 769-781.
- pore-development of biomass-pyrolysis char. Fuel. 77 (7), 769-781.
 14. Reffas, A. (2010). Etude de l'adsorption de colorants organiques (rouge nylosan et bleu de méthylène) sur des charbons actifs préparés

à partir de marc de café. Thèse de doctorat en génie de l'environnement à l'Université Mentouri-Contatine, Algérie AE, 153.

- 15. Sahu, J.N., Acharya, J., & Meikap, B.C. (2010). Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology: Bioresource Technology 101, 1974-1982.
- 16. Société Anonyme de Gestion des Eaux de Paris (2006). Traitement de potabilisation des eaux de surface, adsorption sur charbon actif : Conf, 2006.
- Soleimani, M. & Kaghazchi, T. (2008). Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones : An agricultural waste, Bioresourtechno 99, 5374-5383.
- Tchakala, I., Bawa, L. M., Djaneye-Boundjou, G., Doni, K.S., & Nambo, P. (2012). Optimisation du procédé de préparation des charbons actifs par voie chimique (H₃PO₄) à partir des tourteaux de Karité et des tourteaux de Coton : Int. J. Biol. Chem. Sci. 6 (1), 461– 478. DOI : <u>http://dx.doi.org/10.4314/ijbcs.v6i1.42</u>
- 19. Yang, H., Yan, R., Chin, T., Tee, L. D., Chen, H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis : Energy & Fuels 18, 1781-1788.
- 20. Yonli, A. H., Kabore, H. A., & Koulidiati J. (2014). α-Endosulfan removal from water by adsorption over natural clays from Burkina Faso : An Isothermal Study, Journal of Materials Science and Chemical Engineering 2, 49-57.

Pression Relative	Pression Absolue	Quantité	temps de	Pression de
(P/P^0)	(mmHg)	Adsorbée	contact	saturation
		(cm ³ /g STP)	(h:min)	(mmHg)
			00:44	787.169556
0.010216674	8.048897	302.6002	01:05	787.819702
0.020331208	16.011513	326.9923	01:12	787.533752
0.030388908	23.931738	342.2896	01:17	787.515564
0.040299413	31.732044	353.4900	01:22	787.407104
0.050764109	39.952751	362.7118	01:25	787.027527
0.060797017	47.877106	369.9891	01:29	787.491028
0.070251958	55.305653	375.7394	01:32	787.247131
0.080940207	63.708553	381.2612	01:35	787.106384
0.090001430	70.849869	385.2147	01:38	787.208252
0.100805894	79.365433	389.2764	01:40	787.309448

Isotherm Tabular Report CA-BA

_	0.114894043	90.448547	393.8751	01:43	787.234436
	0.130980731	103.072594	397.7674	01:44	786.929443
	0.149891072	117.962700	402.3182	01:47	786.989502
	0.171418373	134.919296	405.7578	01:48	787.076050
	0.191730709	150.920563	408.8027	01:50	787.148621
	0.212088278	166.954575	411.3712	01:51	787.193787
	0.232432775	182.926453	413.5685	01:53	787.007996
	0.250400896	197.066040	415.3028	01:54	787.002136
	0.272706343	214.597855	417.1320	01:56	786.919189
	0.292871181	230.497574	418.6277	01:58	787.027161
	0.313052115	246.436310	420.0247	01:59	787.205383
	0.333673418	262.513733	421.1983	02:01	786.738525
	0.353498550	278.183746	422.2814	02:02	786.944519
	0.373883588	294.272034	423.3303	02:04	787.068604
	0.394316851	310.308685	424.2462	02:05	786.952637
	0.414445494	326.143738	425.1131	02:07	786.940002
	0.434826691	342.185516	425.9281	02:08	786.946899
	0.455020029	358.037720	426.6843	02:10	786.861450
	0.475217564	374.007477	427.4141	02:11	787.023682
	0.495508109	389.965698	428.0628	02:13	787.001648
	0.515905218	405.868561	428.7057	02:14	786.711487
	0.535696245	421.643494	429.2900	02:16	787.094360
	0.556469404	437.934357	429.8547	02:17	786.987305
	0.576636644	453.669373	430.4044	02:19	786.750854
	0.596540994	469.381531	430.9125	02:20	786.838684
	0.616762593	485.347778	431.3608	02:22	786.928040
	0.636996238	501.202240	431.8551	02:23	786.821350
	0.656975314	516.876892	432.2842	02:25	786.752380
	0.676984934	532.655457	432.6441	02:26	786.805481
	0.697105689	548.490662	433.0756	02:28	786.811340
	0.737145630	580.130371	433.7078	02:29	786.995605
	0.757654609	596.117920	434.1233	02:31	786.793762
	0.797736599	627.595703	434.7005	02:32	786.720459
	0.817527952	643.429077	435.0585	02:34	787.042297
	0.838090208	659.423279	435.3059	02:36	786.816589
	0.878055228	690.875977	435.8145	02:37	786.825195
	0.898202708	706.722107	436.1350	02:39	786.818054
	0.938616690	738.600647	436.5815	02:40	786.903381

	0.958958050	754.639465	436.9880	02:42	786.936890	_
	0.979276633	770.626099	437.4418	02:43	786.934021	
	0.990476643	779.453369	437.9531	02:45	786.947754	
	0.951689567	748.815247	437.2952	02:49	786.827209	
	0.928520542	730.587891	437.0346	02:50	786.830078	
	0.905925555	712.736267	436.7812	02:52	786.749268	
	0.853613091	671.585205	436.2023	02:53	786.755981	
	0.807497357	635.384155	435.6447	02:55	786.856018	
	0.751554145	591.341187	434.9021	02:56	786.824463	
	0.709310134	558.081482	434.2568	02:58	786.794739	
	0.653395604	514.033508	433.3782	02:59	786.710999	
	0.595765107	468.617401	432.2556	03:01	786.580811	
	0.550312213	433.070587	431.2620	03:03	786.954346	
	0.501576273	394.657288	430.1093	03:05	786.834045	
	0.456109763	358.839874	428.1962	03:06	786.740173	
	0.421703046	331.737396	426.4263	03:08	786.661133	
	0.371399920	292.159149	424.1042	03:09	786.643005	
_	0.329036545	258.802887	421.9300	03:11	786.547546	
_						

Isotherm Tabular Report CA-HT

Isotherm Tabular Report CA-III					
	Pression	Pression	Quantité	temps de	Pression de
	Relative	Absolue	Adsorbée (cm ³ /g	contact	saturation
	(P/P0)	(mmHg)	STP)	(h:min)	(mmHg)
				00:44	789.163147
	0.010231129	8.090036	141.7646	01:01	790.727600
	0.020312080	16.063156	153.0548	01:06	790.817871
	0.030361778	24.009516	160.3061	01:10	790.780945
	0.040294564	31.861967	165.5585	01:14	790.726196
	0.050736713	40.121189	169.7130	01:18	790.772339
	0.060825776	48.098061	172.9468	01:21	790.751282
	0.070272535	55.565746	175.3685	01:24	790.717834
	0.080907292	63.975273	177.6245	01:26	790.723206
	0.090043854	71.196869	179.2371	01:29	790.691040
	0.100839780	79.733566	180.7299	01:31	790.695557
	0.114971235	90.885582	182.3607	01:32	790.507141
	0.130938861	103.540512	183.8941	01:34	790.754639
	0.149931180	118.537537	185.2598	01:35	790.612976
	0.171469271	135.558777	186.4980	01:37	790.571838
	0.191846302	151.648331	187.4152	01:39	790.467834

0.212115806	167.676224	188.1723	01:40	790.493774
0.232403907	183.715118	188.7959	01:42	790.499268
0.250383487	197.948105	189.3025	01:44	790.579712
0.272714742	215.585464	189.8185	01:45	790.516357
0.292895134	231.544830	190.2616	01:47	790.538330
0.313246264	247.578842	190.6484	01:48	790.364868
0.333518416	263.615875	191.0125	01:50	790.408752
0.353663715	279.532593	191.3348	01:51	790.390930
0.373902644	295.565613	191.6538	01:53	790.488159
0.394224712	311.641541	191.9330	01:54	790.517517
0.414482352	327.646149	192.2078	01:56	790.494812
0.434804913	343.729950	192.4641	01:58	790.538330
0.455024882	359.667175	192.7062	01:59	790.434082
0.475314232	375.697693	192.9304	02:01	790.419617
0.495440544	391.615692	193.1262	02:02	790.439331
0.515861635	407.680847	193.3143	02:04	790.291077
0.536064963	423.613068	193.5146	02:05	790.227112
0.556299359	439.695496	193.6868	02:07	790.393677
0.576537701	455.645233	193.8651	02:08	790.312988
0.596603215	471.517944	194.0239	02:10	790.337585
0.616822725	487.491180	194.1861	02:11	790.326233
0.636814359	503.283630	194.3290	02:13	790.314514
0.656923138	519.159973	194.4692	02:14	790.290283
0.677056534	535.062439	194.5955	02:16	790.277344
0.697080206	550.906860	194.7275	02:17	790.306274
0.737352993	582.678711	194.9139	02:19	790.230347
0.757506950	598.555786	195.0818	02:20	790.165405
0.797581401	630.282471	195.2853	02:22	790.242188
0.817768775	646.280457	195.4109	02:23	790.297302
0.837859792	662.104126	195.5328	02:25	790.232605
0.878247081	693.897583	195.7651	02:26	790.093811
0.898263949	709.816956	195.9166	02:28	790.209778
0.938867626	741.841980	196.2695	02:29	790.145447
0.958922531	757.753296	196.5991	02:31	790.213257
0.979330136	773.834229	197.1980	02:33	790.166870
0.990425474	782.660034	198.1708	02:35	790.226074
0.951746494	751.916443	196.6786	02:38	790.038574
0.928367364	733.509094	196.3386	02:40	790.106506

0.906022983	715.707336	196.1378	02:42	789.943909
0.853383164	674.233276	195.8074	02:43	790.070984
0.807434054	637.965454	195.5442	02:45	790.114624
0.751454635	593.724426	195.2901	02:46	790.100159
0.709177012	560.290527	195.0607	02:48	790.057373
0.653120967	516.060120	194.7380	02:49	790.144775
0.595687404	470.676636	194.3586	02:51	790.140320
0.550642580	434.999908	194.0158	02:53	789.985962
0.501390770	396.104553	193.6323	02:55	790.011658
0.455864330	360.173248	193.1238	02:56	790.088684
0.421582898	333.065491	192.7508	02:58	790.035583
0.371216882	293.272552	192.1313	03:00	790.030212
0.328831848	259.826874	191.4898	03:01	790.151184

BET Surface Area Report CA-BA

 $\begin{array}{l} BET \; Surface \; Area: \; 1560.7401 \pm 6.1472 \; m^2/g \\ Slope: \; 0.002783 \pm 0.000011 \; g/cm^3 \; STP \\ Y\text{-Intercept: } \; 0.000006 \pm 0.000001 \; g/cm^3 \; STP \\ \; C: \; 440.353856 \\ \; Qm: \; 358.5272 \; cm^3/g \; STP \\ \; Correlation \; Coefficient: \; 0.9999535 \\ Molecular \; Cross-Sectional \; Area: \; 0.1620 \; nm^2 \end{array}$

	1/[Q(p°/p
Quantity	- 1)]
311.1387	0.000100
325.0774	0.000129
337.5462	0.000158
347.9795	0.000186
356.9530	0.000211
366.1908	0.000240
373.5663	0.000264
381.6606	0.000293
	Quantity 311.1387 325.0774 337.5462 347.9795 356.9530 366.1908 373.5663 381.6606

BET Surface Area Report : CA-HT

 $\begin{array}{c} \text{BET Surface Area: } 722.1510 \pm 4.0517 \text{ m}^2\text{/g} \\ \text{Slope: } 0.006018 \pm 0.000034 \text{ g/cm}^3 \text{ STP} \\ \text{Y-Intercept: } 0.000010 \pm 0.000002 \text{ g/cm}^3 \text{ STP} \\ \text{C: } 584.233007 \\ \text{Qm: } 165.8897 \text{ cm}^3\text{/g} \text{ STP} \\ \text{Correlation Coefficient: } 0.9999057 \\ \text{Molecular Cross-Sectional Area: } 0.1620 \text{ nm}^2 \end{array}$

Relative		
Pressure		1/[Q(p°/p
(p/p°)	Quantity	- 1)]
0.030054243	251.0777	0.000123
0.040032118	259.3163	0.000161
0.050417710	266.0310	0.000200
0.060543317	271.4300	0.000237
0.069958237	275.6608	0.000273
0.080679675	279.7571	0.000314
0.089757043	282.7913	0.000349
0.100717811	285.9887	0.000392

Kinetics repport : CA-BA

Temps en min	t ^{1/2}	Qt	Qe	LNQ	t/Qt
5	2,236068	33,97	37,54	1,2725656	0,1471887
10	3,1622777	34,54	37,54	1,0986123	0,2895194
15	3,8729833	34,75	37,54	1,0260416	0,43165468
20	4,472136	35,03	37,54	0,9202828	0,57093919
30	5,4772256	35,34	37,54	0,7884574	0,84889643
40	6,3245553	35,47	37,54	0,7275486	1,12771356
50	7,0710678	35,78	37,54	0,5653138	1,39742873
60	7,7459667	36,75	37,54	-0,235722	1,63265306
70	8,3666003	36,94	37,54	-0,510826	1,89496481
80	8,9442719	37,13	37,54	-0,891598	2,15459197
90	9,486833	37,21	37,54	-1,108663	2,41870465
100	10	37,29	37,54	-1,386294	2,6816841
110	10,488088	37,42	37,54	-2,120264	2,93960449
120	10,954451	37,54	37,54	##########	3,1965903
		Kinetics CA	-HT		
Temps en min	#VALEUR!	#VALEUR!			#VALEUR!
5	2,236068	39,79	49,13	2,2343063	0,12565971
10	3,1622777	43,32	49,13	1,7595806	0,23084026
15	3,8729833	45,26	49,13	1,3532545	0,33141847
20	4,472136	45,32	49,13	1,3376292	0,44130627
30	5,4772256	47,7	49,13	0,3576744	0,62893082
40	6,3245553	48,5	49,13	-0,462035	0,82474227
50	7,0710678	48,87	49,13	-1,347074	1,02312257

60	7,7459667	49,03	49,13	-2,302585	1,22374057
70	8,3666003	49,03	49,13	-2,302585	1,42769733
80	8,9442719	49,03	49,13	-2,302585	1,63165409
90	9,486833	49,04	49,13	-2,407946	1,83523654
100	10	49,05	49,13	-2,525729	2,03873598
110	10,488088	49,1	49,13	-3,506558	2,24032587
120	10,954451	49,13	49,13	##########	2,44249949

Ci	Ce	Qe	1/Qe	1/Ce	Ce/Qe	lnQe	lnCe	ln(Qe/Ce)
0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#NOMBRE!	#NOMBRE!	#DIV/0!
40	2,34	23,5375	0,0424854	0,4273504	0,0994158	3,15859489	0,85015093	2,30844396
60	2,59	35,88125	0,0278697	0,3861004	0,0721825	3,58021487	0,95165788	2,628557
70	2,76	42,025	0,0237954	0,3623188	0,0656752	3,73826468	1,01523068	2,723034
80	3,34	47,9125	0,0208714	0,2994012	0,0697104	3,86937643	1,20597081	2,66340562
100	3,82	60,1125	0,0166355	0,2617801	0,0635475	4,09621781	1,34025042	2,75596738
120	4,96	71,9	0,0139082	0,2016129	0,0689847	4,27527626	1,60140574	2,67387052

Isotherm Chromium adsorption repport : CA-HT

					1 1	-		
0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#NOMBRE!	#NOMBRE!	#DIV/0!
40	0,87	24,45625	0,0408893	1,1494253	0,0355737	3,19688581	-0,1392621	3,33614787
60	1,01	36,86875	0,0271232	0,990099	0,0273945	3,60736431	0,00995033	3,59741398
70	1,17	43,01875	0,0232457	0,8547009	0,0271974	3,76163607	0,15700375	3,60463232
80	1,39	49,13125	0,0203536	0,7194245	0,0282916	3,89449529	0,32930375	3,56519154
100	1,96	61,275	0,0163199	0,5102041	0,0319869	4,11537193	0,67294447	3,44242746
120	8,15	69,90625	0,0143049	0,1226994	0,1165847	4,24715506	2,09801793	2,14913713

Isotherm Chromium adsorption repport : CA-BA

Thermodynamic chromium adsorption repport : CA-BA

Ci	Ce	Q _{eq}	K _d	lnk _d	ΤC	ТК	1/T		
60	9,99906	100,00188	10,0011281	2,3026979	40	313	0,0031949		
60	6,93405	106,1319	15,3059035	2,7282386	60	333	0,003003		
60	4,27182	111,45636	26,0910713	3,26159316	80	353	0,0028329		
60	2,10876	115,78248	54,90548	4,00561316	100	373	0,002681		
60	4,93738	110,12524	22,3043882	3,10478344	120	393	0,0025445		
	Thermodynamic chromium adsorption report : CA-HT								
		0	#DIV/0!	#DIV/0!	40	313	0,0031949		
60	8,59795	102,8041	11,9568153	2,48130143	60	333	0,003003		
60	7,93239	104,13522	13,1278492	2,57473587	80	353	0,0028329		
60	5,27016	109,45968	20,7697072	3,03349554	100	373	0,002681		
60	4,27016	111,45968	26,1019915	3,26201161	120	393	0,0025445		