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Abstract: 
In this paper, new nonparametric estimators for the population density D  using line transect 

sampling are proposed and studied. One estimator is developed when the shoulder condition is 
assumed to be true and another one when this assumption is violated. The mathematical and 
numerical properties of these estimators are investigated and compared -via simulation technique- 
with other existing estimators. A new technique is suggested to combine the proposed estimators. This 
technique relies on testing the shoulder condition, which in turn produces two new estimators. The 
simulation results show the good potential performances of the different proposed estimators.   
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Introduction  

Line transect method is a popular and convenient technique used to estimate the density 
(abundance) of a biological population D , since it is direct, cost efficient and can be carried out on 
foot, or from a variety of land, air, or watercraft. Assume that the population size is N  and the 
sampled area is A  then the population density is AND /= . In line transect method, an area of 
known boundaries and size is divided into non-overlapping strips, each with known length. Then an 
observer moves on the middle of line of the strip and records the perpendicular distance x  from the 
centerline to a detected object within the strip. The total length of lines klll ,,, 21   is denoted by L . 

The detection function )(xg   represents the probability of detecting an object given that its 
perpendicular distance is x . The logical assumptions on )(xg  are (Burnham et al., 1980) )(xg  must 
be monotonically decreasing and objects directly on the transect line will never be missed (i.e., )0(g  
= 1). 

Suppose that the observer detected n  objects with perpendicular distances nXXX ,,, 21  . 
These perpendicular distances form a random sample of size n  that follows a specific pdf )(xf  . 
/Burnham and Anderson (1976) introduced the basic relationship between )(xg  and )(xf , which is 
given by 

∫
= w

dttg

xgxf

0

)(

)()( ,       wx ≤≤0                                      (1.1) 

where w  is a truncated distance. They gave the fundamental relationship between 
1

0

)()0(
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dxxgf and the population abundance, D , which can be expressed as 
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where n   is the number of detected objects, )(nE  is the expected value of n , and L  is the 
total length of the transect lines. 
The estimation of D  can be accomplished via the estimation of )0(f  by (Burnham et al., 1980) 

L
fnD
2

)0(ˆ
ˆ =   ,                                                    (1.3) 

where )0(f̂  is an estimator of )(xf  evaluated on the transect line (i.e., at 0=x ). As 
Equation (1.3) demonstrates, the crucial problem in line transect sampling is to estimate )0(f  by 

)0(f̂ . This leads us to obtain the estimation of density D  by D̂ . Moreover,  the estimation of D  is 
equivalent to estimate the number of objects N  in a specific known area A . Therefore, the 
estimation of N  can be accomplished by DAN ˆ ˆ = . 

The estimator )0(f̂  can be obtained by using a parametric approach or a nonparametric 
approach. The first one assumed that the form of the probability density function );( θxf  is known 
with unknown parameter θ  (θ  may be a vector). A good statistical method – such as the maximum 
likelihood method - can be used now to estimate θ  and then );0( θf . While the parametric method 
performs well when the form of );( θxf  is chosen correctly, its performance is not satisfactory 
otherwise (Buckland et. al., 2001). As an alternative method to the parametric approach, recent works 
has focused on employing the nonparametric approach to estimate the parameter )0(f  and 
consequantely the parameter D  or N . A popular method is the kernel method which becomes an 
important tool in wildlife sampling (See for example, Chen, 1996, Mack and Quang, 1998 and 
Eidous, 2005). 
Some Estimators of )0(f   

The condition  0)0( =′f  is known in line transect literature as the shoulder condition 
assumption, which means that the probability of detecting an object in a narrow area around the 
centerline remains certain. In this section, we presented some existing estimators for )0(f . 
Chen (1996) suggested the classical kernel estimator for )0(f , which is given by  

∑
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1

2)0(ˆ ,                                                    (2.1) 

where h  is called the smoothing (or bandwidth) parameter, which controls the smoothness of 
the fitted density curve and K  is the kernel function assumed to be symmetric and satisfies, 

∫
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The optimal formula of h  can be obtained by minimizing the asymptotic mean square error 
(AMSE) of )0(ˆ

kf  (see Chen, 1996).  Barabesi (2001) proposed a new estimator for )0(f  based on 
local parametric estimation technique. His estimator is given by 
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where ( )0ˆ
kf  is the classical kernel estimator and  

n

x
n

i
i∑
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2

2γ̂ . The two estimators )0(ˆ
kf  

and ( )0ˆ
Bf  are developed under the assumption that 0)0( =′f . Barabesi's estimator (2.1) can be 

consider as a special case of Eidous and Alshakhatreh (2011)'s estimator. 
 Mack et al. (1999) introduced the boundary kernel estimator for )0(f  under the assumption that the 
shoulder condition is not satisfied (i.e. 0)0( ≠′f ). Their estimator is given by 

∑
=

∗ 





=

n

i

i
ME h

X
K

nh
f

1

1)0(ˆ ,                                              (2.3) 

where ∗K  is a kernel function satisfying 

∫
∞

∗ =
0

1)( duuK  ,  ∫
∞

∗ =
0

0)( duuuK  and ∫
∞

∗ ≠=
0

2 0)( dduuKu . 

Note that the assumptions about ∗K  are little different from those about K . Here all integrals 
are defined on ( )∞,0 . According to Mack et al. (1999), the boundary kernel function that minimize 

the AMSE of  )0(ˆ
MEf  is  

( ) ( ) )(2316)( 1,0
2 uIuuuK +−=∗ ,                                     (2.4) 

where )(uI B  is an indicator function of a real set B .  
Eidous (2011) proposed a new estimator for )0(f  without requiring the assumption 

0)0( =′f . He named his estimator "additive histogram estimator". The additive histogram estimator 
is given by 

( ) ( )∑∑
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where the constant ski '   are 
60
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The Proposed Estimators 
Let nXXX ,...,, 21  be a random sample of perpendicular distances of size n . Under the 

assumption that 0)0( =′f , we propose the following estimator for )0(f ,  
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where 50/471 =r , 200/1272 =r , 150/913 −=r  and 400/614 =r . Let ∑
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( )tK  to be Gaussian function, i.e.  )1,0()( NtK = , then 1847.0),...,( 41 =rrT . The optimal 

value of h  can be obtained by minimizing the AMSE  of )0(ˆ
1Pf , which gives σ̂ 206.1=h 5

1
−

n  

when )(xf  is assumed to be half normal with scale parameter 2σ . The illustrations for the use 
of the above notations are given below. The asymptotic properties of Estimator (3.1) are stated 
in the following lemma.  

Lemma (3.1). Suppose that )(xf  is defined on [ )∞ ,0  and has a continuous second 
derivative at 0=x . Under the assumption that 0→h  and ∞→nh  as ∞→n , the expected 
value and the variance of )0(ˆ

1Pf  are, 

( ) )()()0( )()0(2)0()0(ˆ 2

0

2
3

2

0
211 hoduuKuDfhduuuKDfhDffE P +′′+′+= ∫∫

∞∞

 

( ) ( ) ( )∫
∞

′′−≅
0
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and 

( ) )(),...,()0(4)0(ˆvar 11
411

−−+= hnorrT
nh
ff P . 

nh
f )0(7388.0

≅  .                                                                            (3.3) 

The proof of Lemma (3.1) is given below together with the proof of Lemma (3.2). Note 
that, because 11 =D then )0(ˆ

1Pf  is asymptotically ( 0→h  as ∞→n ) unbiased estimator for 

)0(f  and since 0)0( =′f  then the convergence rate for bias of )0(ˆ
1Pf  is )( 2hO . Also note that 

the variance of )0(ˆ
1Pf  converges to zero as ∞→nh  when ∞→n .  

On the other hand if the shoulder condition is not true (i.e. 0)0( ≠′f ), then the bias of )0(ˆ
1Pf  is of 

order h , which is significantely larger than the order 2h  as 0→h . If 0)0( ≠′f , we propose the 
following estimator for )0(f , 
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where 30/431 =r , 10/72 =r , 30/313 −=r  and 60/194 =r . Now if ∑
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then  11 =D , 02 =D  and 6.03 −=D . Also 2742.0),...,( 41 =rrT  when the kernel 
function K  is chosen to be Gaussian function (i.e. )1,0()( NtK = ). Assume that 
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 then the optimal formula for estimating the 

smoothing parameter h  is θ̂ 248.1=h 5
1

−
n , where X=θ̂ . 

Lemma (3.2).  Suppose that )(xf  is defined on [ )∞ ,0  and has a continuous second positive 
derivative at 0=x . Under the assumption that 0→h  and ∞→nh  as ∞→n , the expected value 

and variance of )0(ˆ
2Pf  are,  
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and 

( ) ( )11
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Proof of Lemma (3.1) and Lemma (3.2): 
Let )0(ˆ

Pif , 2 ,1=i  be the proposed estimators, where )0(ˆ
1Pf  is the Estimator (3.1) and 

)0(ˆ
2Pf  is the Estimator (3.4). The expected value of )/( jhXK  is 
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Now, for estimator )0(ˆ
1Pf  we indicated that 6.0,46.0,1 321 −=== DDD  and since 

0)0( =′f , we obtain,  

( )( ) )()0( 6.0)0(0ˆ 2
2

2
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Also, for estimator )0(ˆ
2Pf  we obtained 6.0 ,0,1 321 −=== DDD , which gives 

(without assuming that 0)0( =′f ),  
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Note that the bias of the two estimators is of order 2h . 
We turn to the variance of )0(ˆ

Pif , 2 ,1=i . Suppose that 0→h  and ∞→nh  as ∞→n  

then the variance of )0(ˆ
Pif  is 
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By substituting the expression of )/( jhXEK  in the second term of (3.7), then we obtain 
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By substituting (3.9) and (3.10) back into (3.8), we obtain  
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Now, for estimator )0(ˆ
1Pf , 1847.0),...,( 41 =rrT . This gives, 

( )( ) ( ) )(07388.00ˆ 11
1

−−+= hno
nh

ffVar P . 

Also, for estimator )0(ˆ
2Pf , 2742.0),...,( 41 =rrT . Therefore, 

( )( ) ( ) )(00896.10ˆ 11
2

−−+= hno
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ffVar P . 

This completes the proof. Note that the variance of )0(ˆ
1Pf  and )0(ˆ

2Pf  is of order 
11 −− hn  (or the convergence rate for the variance of )0(ˆ

1Pf  and )0(ˆ
2Pf  is )( 11 −− hnO ). 

Combining the Estimators 
In this section, we propose another two estimators for )0(f  that combining the two 

estimators )0(ˆ
1Pf  and )0(ˆ

2Pf . Let 0F = the class of all pdfs that satisfy 0)0( =′f  and =F  the 
class of all pdfs that are differentiable at 0, and consider the following test,  

00 : FfH ∈    vs.      01 \: FFfH ∈ .                                    (4.1) 
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According to Mack (1998), 0H  is reject  (i.e., the shoulder condition is not true) if | T | > -
Zα/2, where  Zα/2 represents the α/2th  quantile of the standard normal distribution. The test statistics 
T is defined by  

( )
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=   is the empirical cumulative distribution function. Based on testing (4.1), we 

propose the following two estimators for )0(f ,  
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and 

( ) ( ) ( ) ( )0ˆ 10ˆ 0ˆ
214 PPP fff αα −+= ,                                          (4.3) 

 

where the estimators )0(ˆ
1Pf  and )0(ˆ

2Pf  are given by (3.1) and (3.4) respectively. The 

parameter [ ]1,0∈α  represents the weight of ( )0ˆ
1Pf  in the final estimator ( )0ˆ

4Pf . In this study, we 
suggest to choose α  to be the valuep −  of the Test (4.1). A large valuep −  supports the 

hypothesis 00 : FfH ∈  and then )0(ˆ
1Pf  is more appropriate (has larger weight) than )0(ˆ

2Pf  to 
estimate ( )0f . The valuep − of Test (4.1) is  

( )||2 TZprvaluep −<=−  

          ( )||2 T−Φ=  , 

where Φ  is the standard normal distribution function. The p-value indicates how strong 0H  
is supported by the data. The properties of these proposed estimators are studied via simulation in the 
next section. 
Simulation Study 

To compare among the performances of the different estimators, a simulation study was 
performed. The data are simulated from densities that satisfy 0)0( =′f  (e.g. half normal) and from  
densities that do not  satisfy 0)0( =′f  (e.g. negative exponential). 

The smoothing parameter h  for the different estimators is computed by using the formula 

σ̂ Ah = 5
1

−
n , where 933.0=A  for ( )0ˆ

kf  and ( )0ˆ
Bf ; and 206.1=A  for the proposed estimator 

( )0ˆ
1Pf . Also, 5

1

 ˆ 
−

= nBh θ , where 438.3=B  for estimator )0(ˆ
MEf ; 122.3=B  for estimator 

)0(ˆ
EEf ; and 248.1=B  for the proposed estimator )0(ˆ

2Pf . 
All results in tables (1) and (2) depend on simulated 1000  samples of sizes 

200,100,50=n . The data generated from three different families of models which are commonly 
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used in line transect studies (see Barabesi, 2001 and Eidous, 2009). The first model is the exponential 
power (EP) family (Pollock,1978) 

( ) ( )β

β

xxf −









+Γ

= exp
11

1
,   ,0≥x 1≥β , 

with detection function ( ) ( )βxxg −= exp . The hazard rate (HR) family (Hayes and Buckland,1983) 

( ) ( )( ) 0    ,exp1
11

1
≥−−









−Γ

= − xxxf β

β

, 1>β , 

with detection function ( ) ( ))exp(1 β−−−= xxg , and the beta (BE) model (Eberhardt,1968) 

( ) ( ) ( ) ,1 1 ββ xxf −+= 10 <≤ x 0≥β , 

with detection function ( ) ( )βxxg −= 1 . In our simulation design, these three families were 
truncated at some distance w . Four models were selected from EP family with parameter values 

5.2,0.2,5.1,0.1=β  and corresponding truncation points given by 0.2,5.2,0.3,0.5=w . Four 

models were selected from HR family with parameter values 0.3,5.2,0.2,5.1=β  and 

corresponding truncation points given by 6,8,12,20=w . Moreover, four models were selected 

from BE model with parameter values 0.3,5.2,0.2,5.1=β  and 1=w  for all cases. The 
considered models cover a wide range of perpendicular distance probability density functions which 
vary near zero from spike to flat. The shoulder condition do not satisfy for BE model with different 
values of β  and for EP model with 1=β . Also, despite the shoulder condition is satisfied for HR 
model, this model decreases sharply away from the original point (i.e. 0=x ) when 5.1=β , 2.0. 
This case may be occur in practice when the visibility away from the transect line is not distinct due to 
- may be – fog and tall grass.  

For each considered estimator and for each sample size, the relative bias 
( ) ,

)0(
)0()0(ˆ

f
ffERB −

=  

and the relative mean error 

( )
)0(

)0(ˆ

f
fMSE

RME = , 

are computed. The relative bias of the different estimators are presented in Table (1), while the 
relative mean errors are given in Table (2). 
Results and Conclusions 

(1) The proposed estimator ( )0ˆ
1Pf  performs well as a general estimator. Despite that this 

estimator is developed under the constraints 0)0( =′f , it performs well even for models 

with 0)0( ≠′f . Also, the results of Barabesi's estimator ( )0ˆ
Bf  are acceptable in general. 
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(2) If the set of data seem to be spike at the origin, the proposed estimator ( )0ˆ
2Pf  is a very 

competitor for the other existing estimators and can be recommended in this case.  
(3) The idea of combining between the proposed estimators based on testing the shoulder 

condition assumption seems to be success in some cases. Among the two combining 
estimators, the estimators ( )0ˆ

3Pf  performs better than ( )0ˆ
4Pf  in general.  

(4) It is not easy job to recommend a specific estimator –from those considered in this thesis- as a 
best estimator for all cases. However, we can close our comments and conclusions by saying 
that: 

• The classical kernel estimator ( )0ˆ
kf  is recommended when the model of data has a large 

shoulder at the origin provided that it does not decrease sharply away the origin (e.g. EP 
model with 5.2=β  and HR model with 0.3=β ). 

• The Barabesi's estimator ( )0ˆ
Bf  and the proposed estimator ( )0ˆ

1Pf  are recommended for data 
models with moderate shoulder condition at the origin (e.g. EP model with 5.1=β  and HR 
model with 0.2=β ). 

• Eidous's estimator ( )0ˆ
EEf  and the proposed estimator ( )0ˆ

2Pf  are recommended for data 
models that do not have a shoulder condition at the origin (e.g. EP model with 0.1=β  and 
BE model with different values of β ), or even for data models that have a shoulder but 
decreases markedly away the origin (e.g. HR model with 5.1=β ). In these two cases, the 

proposed estimators  ( )0ˆ
3Pf  and ( )0ˆ

4Pf  are also perform well. 
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Table 1. The Relative Bias (RB) for ( )0ˆ
kf ,  ( )0ˆ

Bf , ( )0ˆ
1Pf , ( )0ˆ

MEf , ( )0ˆ
EEf , ( )0ˆ

2Pf , ( )0ˆ
3Pf  and 

( )0ˆ
4Pf . 

β  w  n  ( )0ˆ
kf  ( )0ˆ

Bf  ( )0ˆ
1Pf  ( )0ˆ

MEf  ( )0ˆ
EEf  ( )0ˆ

2Pf  ( )0ˆ
3Pf  ( )0ˆ

4Pf  

Exponential power (EP) model       

 

1.0 

 

5.0 

50 -0.323 -0.264 -0.309 -0.070 -0.204 -0.116 -0.247 -0.168 

100 -0.290 -0.242 -0.270 -0.045 -0.163 -0.100 -0.193 -0.129 

200 -0.262 -0.225 -0.234 -0.040 -0.130 -0.085 -0.171 -0.105 

 

1.5 

 

3.0 

50 -0.147 -0.072 -0.099 0.046 0.062 0.057 -0.089 -0.013 

100 -0.130 -0.072 -0.072 0.027 0.084 0.074 -0.060 0.011 

200 -0.109 -0.063 -0.048 0.027 0.100 0.057 -0.035 0.021 

 

2.0 

 

2.5 

50 -0.076 0.005 -0.004 0.064 0.200 0.124 -0.001 0.065 

100 -0.060 0.003 0.013 0.049 0.207 0.117 -0.005 0.035 

200 -0.049 0.001 0.036 0.029 0.204 0.099 0.028 0.065 

 

2.5 

 

 

2.0 

 

50 -0.036 0.049 0.037 0.063 0.298 0.150 0.039 0.094 

100 -0.032 0.033 0.055 0.038 0.286 0.123 0.067 0.106 

200 -0.025 0.024 0.074 0.024 0.253 0.098 0.049 0.070 

Hazard rate (HR) model        

 

1.5 

 

20.0 

50 -0.363 -0.308 -0.406 0.157 -0.275 -0.053 -0.095 -0.072 

100 -0.329 -0.284 -0.355 0.183 -0.228 -0.012 -0.008 -0.004 

200 -0.275 -0.238 -0.296 0.223 -0.153 0.061 0.065 0.065 

 

2.0 

 

12.0 

50 -0.225 -0.157 -0.228 0.166 -0.066 0.090 -0.008 0.075 

100 -0.179 -0.124 -0.181 0.180 0.009 0.135 0.030 0.104 

200 -0.135 -0.091 -0.130 0.176 0.087 0.162 0.089 0.153 

 

2.5 

 

8.0 

50 -0.102 -0.023 -0.074 0.138 0.142 0.176 -0.023 0.103 

100 -0.067 -0.005 -0.031 0.127 0.211 0.207 0.012 0.124 

200 -0.040 0.009 0.016 0.101 0.272 0.208 0.042 0.128 
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3.0 

 

 

6.0 

 

50 -0.046 0.037 0.012 0.108 0.261 0.216 0.037 0.131 

100 -0.023 0.042 0.044 0.065 0.330 0.215 0.069 0.141 

200 -0.007 0.043 0.078 0.048 0.354 0.199 0.096 0.143 

Beta (BE) 
model 

        

 

1.5 

 

1.0 

50 -0.166 -0.093 -0.126 0.002 0.049 0.018 -0.104 -0.041 

100 -0.149 -0.092 -0.095 -0.002 0.055 0.009 -0.090 -0.045 

200 -0.127 -0.083 -0.061 0.003 0.044 0.006 -0.075 -0.033 

 

2.0 

 

1.0 

50 -0.186 -0.115 -0.151 0.004 0.006 -0.009 -0.126 -0.061 

100 -0.172 -0.117 -0.123 -0.016 0.014 -0.010 -0.113 -0.056 

200 -0.153 -0.110 -0.095 -0.007 0.004 -0.003 -0.094 -0.046 

 

2.5 

 

1.0 

50 -0.213 -0.144 -0.174 -0.025 -0.030 -0.028 -0.157 -0.088 

100 -0.190 -0.135 -0.145 -0.018 -0.015 -0.033 -0.131 -0.070 

200 -0.176 -0.133 -0.112 -0.026 -0.016 -0.011 -0.105 -0.054 

 

3.0 

 

 

1.0 

 

50 -0.223 -0.155 -0.192 -0.026 -0.047 -0.033 -0.159 -0.083 

100 -0.200 -0.146 -0.162 -0.019 -0.033 -0.036 -0.138 -0.075 

200 -0.180 -0.138 -0.129 -0.017 -0.025 -0.023 -0.115 -0.062 
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Table 2. The Relative Mean Error (RME) for ( )0ˆ
kf ,  ( )0ˆ

Bf , ( )0ˆ
1Pf , ( )0ˆ

MEf , ( )0ˆ
EEf , ( )0ˆ

2Pf , ( )0ˆ
3Pf  

and ( )0ˆ
4Pf . 

β  w  n  ( )0ˆ
kf  ( )0ˆ

Bf  ( )0ˆ
1Pf  ( )0ˆ

MEf  ( )0ˆ
EEf  ( )0ˆ

2Pf  ( )0ˆ
3Pf  ( )0ˆ

4Pf  

Exponential power (EP)  model       

 

1.0 

 

5.0 

50 0.338 0.284 0.325 0.208 0.236 0.189 0.294 0.232 

100 0.299 0.255 0.280 0.160 0.188 0.150 0.245 0.186 

200 0.269 0.233 0.241 0.125 0.149 0.121 0.207 0.143 

 

1.5 

 

3.0 

50 0.193 0.154 0.157 0.252 0.160 0.181 0.148 0.136 

100 0.160 0.123 0.113 0.187 0.137 0.155 0.132 0.142 

200 0.132 0.101 0.086 0.151 0.131 0.116 0.097 0.099 

 

2.0 

 

2.5 

50 0.154 0.146 0.126 0.283 0.246 0.218 0.126 0.163 

100 0.119 0.109 0.097 0.208 0.233 0.182 0.097 0.120 

200 0.094 0.085 0.084 0.159 0.222 0.145 0.095 0.125 

 

2.5 

 

 

2.0 

 

50 0.151 0.167 0.134 0.294 0.335 0.239 0.137 0.190 

100 0.117 0.125 0.116 0.224 0.309 0.187 0.129 0.165 

200 0.088 0.092 0.105 0.169 0.268 0.149 0.090 0.117 

Hazard rate (HR) model        

 

1.5 

 

20.0 

50 0.382 0.333 0.421 0.279 0.318 0.206 0.216 0.192 

100 0.339 0.297 0.365 0.246 0.256 0.134 0.144 0.140 

200 0.283 0.249 0.303 0.258 0.180 0.120 0.120 0.120 

 

2.0 

 

12.0 

50 0.257 0.208 0.264 0.275 0.184 0.198 0.220 0.200 

100 0.202 0.159 0.205 0.243 0.136 0.184 0.183 0.172 

200 0.150 0.114 0.147 0.216 0.131 0.180 0.193 0.192 

 

2.5 

 

8.0 

50 0.159 0.134 0.147 0.267 0.230 0.246 0.186 0.213 

100 0.113 0.097 0.100 0.224 0.247 0.244 0.142 0.189 

200 0.077 0.072 0.067 0.171 0.289 0.230 0.108 0.168 

 

3.0 

 

6.0 

50 0.129 0.137 0.128 0.272 0.308 0.281 0.152 0.219 

100 0.094 0.106 0.100 0.197 0.353 0.255 0.131 0.192 
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200 0.076 0.091 0.106 0.167 0.365 0.222 0.122 0.170 

Beta (BE) 
model 

        

 

1.5 

 

1.0 

50 0.207 0.164 0.175 0.249 0.140 0.175 0.178 0.176 

100 0.178 0.138 0.135 0.191 0.115 0.133 0.138 0.126 

200 0.148 0.115 0.092 0.152 0.089 0.100 0.117 0.107 

 

2.0 

 

1.0 

50 0.222 0.175 0.184 0.244 0.129 0.167 0.187 0.174 

100 0.196 0.154 0.150 0.186 0.100 0.123 0.151 0.130 

200 0.168 0.131 0.116 0.139 0.077 0.103 0.130 0.110 

 

2.5 

 

1.0 

50 0.243 0.192 0.205 0.240 0.126 0.167 0.211 0.182 

100 0.209 0.165 0.167 0.179 0.097 0.128 0.173 0.144 

200 0.189 0.152 0.130 0.142 0.081 0.106 0.146 0.119 

 

3.0 

 

1.0 

50 0.249 0.197 0.218 0.223 0.133 0.165 0.210 0.176 

100 0.219 0.175 0.182 0.178 0.105 0.137 0.179 0.142 

200 0.192 0.154 0.143 0.133 0.082 0.101 0.153 0.118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


