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Abstract 

The first-order and second-order inclusion probabilities are chosen by 

the statistician. They are subjective probabilities. We innovatively define 

univariate and bivariate random quantities whose logically possible values are 

samples of a given size in order to obtain the first-order and second-order 

inclusion probabilities by means of their coherent previsions. We consider 

linear maps connected with univariate random quantities as well as bilinear 

maps connected with bivariate random quantities. The covariance of two 

univariate random quantities that are the components of a bivariate random 

quantity has been expressed by means of two bilinear maps. We show that a 

univariate random quantity denoted by S is complementary to the univariate 

Horvitz-Thompson estimator. We identify a quadratic and linear metric with 

regard to two univariate random quantities representing deviations that we 

innovatively define. We use the α-criterion of concordance introduced by Gini 

in order to identify it. It is a statistical criterion that we innovatively apply to 

probability. 

Keywords: Tensor Product, Linear Map, Bilinear Map, Horvitz-Thompson 

Estimator, Quadratic And Linear Metric, Composition Of Functions 

 

Introduction  

Given a finite population having N elements, we are only interested in 

considering samples containing units of this population where no element of 

the population under consideration can be selected more than once in the same 

sample (Basu [1971]). We are not interested in considering ordered samples 

of a given size selected from a finite population (Basu [1958], Hájek [1981], 

Kish [1965]). On the other hand, when we consider not ordered samples where 

repetitions are not allowed we have no loss of information about a given 

parameter of the population under consideration (Conti and Marella [2015], 

Godambe and Joshi [1965]). All logically possible samples of a given size 

http://dx.doi.org/10.19044/esj.2020.v16n15p1


European Scientific Journal May 2020 edition Vol.16, No.15 ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

2 

belong to a given set (Islam et al. [2017]). We suppose that we are always able 

to number all logically possible samples of a given size belonging to a given 

set. It is known that if the number of all logically possible samples of a given 

set is very large then it could be a very hard or impossible work to give to them 

a number. We simply disregard this thing. A sampling design is characterized 

by a pair of elements (Joshi [1971]). The first element of this pair represents 

the set of all logically possible samples selected from a finite population 

(Gladys [2014]). We will always consider sets whose elements are all logically 

possible samples having a given size selected from a finite population (Oksuz 

[2015]).  

The second element of this pair represents all probabilities assigned to 

the samples of the set of all logically possible samples of a given size. A 

probability is then assigned to each element of this set and this means that it is 

possible to consider a distribution of probability (Brewer and Hanif [1983], 

Hartley and Rao [1962]). Each element of the set of all logically possible 

samples of a given size can be viewed as a logically possible event of a finite 

partition of incompatible and exhaustive events (Kyburg jr. and Smokler 

[1964], Savage [1954]). It is then possible to assign a subjective probability to 

each logically possible event of this partition (Good [1962], Ramsey [1960]). 

A probability subjectively assigned to each logically possible event of a finite 

partition of events must be coherent. It is inadmissible only when it is not 

coherent (Koopman [1940], Jeffreys [1961]). A probability is subjectively 

assigned to each logically possible event of a finite partition of events even 

when it is an equal probability assigned to each of them. An equal probability 

assigned to each logically possible event of a finite partition of events is 

always a subjective judgment. It must therefore be coherent.  We have to note 

a very important point: when we say that it is possible to assign a coherent 

probability to every logically possible event of a given set of events we mean 

that the choice of any value in the interval from 0 to 1 is allowed. This implies 

that such an interval must include both endpoints. It is therefore possible to 

assign to every logically possible event of a given set of events a probability 

equal to 0. This choice is absolutely coherent. We will however introduce a 

restriction that is concerned with this point.  

We have to note another very important point: we methodologically 

distinguish what it is logically possible from what it is subjectively probable. 

What it is logically possible at a given instant it is not either certainly 

true or certainly false. One and only one element of the elements belonging to 

the set containing all logically possible elements at a given instant will be true 

a posteriori. A subjective probability is then assigned to each element of the 

set containing all logically possible elements before knowing this thing.  
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1.  The set of all logically possible samples of a given size embedded 

in a linear space provided with a metric on it 

We consider a finite set of objects denoted by S in the field R of real 

numbers (Lang [1966]). We number these elements. We consequently write  

𝑠1, …, 𝑠𝑁 

where it turns out to be 𝑠𝑖 ∈ S, i = 1, …, N. Each element of S is nothing but a 

letter with a subscript.  

We consider a linear space over R of all formal linear combinations of 

elements of S expressed in the form  

𝑐1𝑠1 + … + 𝑐𝑁𝑠𝑁                                          (1),                                                                                                                           

where every 𝑐𝑖, i = 1, …, N, is a real coefficient.  

For the moment, we do not describe the elements of this linear space 

because we are only interested in considering their addition given by (1). This 

thing is unusual but it can be done without problem. On the other hand, we 

speak about formal linear combinations for this reason. We observe that (1) is 

completely determined by the real coefficients 𝑐1, …, 𝑐𝑁. Each coefficient 𝑐𝑖 
is associated with the element 𝑠𝑖 of the set S. It is known that an association is 

exactly a function.  

For each 𝑠𝑖 ∈ S and c ∈ R we then consider c𝑠𝑖 to be the function that 

associates c to 𝑠𝑖 and 0 to 𝑠𝑗, with j ≠ i.  

Given a ∈ R, we have a(c𝑠𝑖) = (ac)𝑠𝑖. 
Given 𝑐′ ∈ R, we have (c + 𝑐′) 𝑠𝑖 = c𝑠𝑖 + 𝑐′𝑠𝑖. 

Thus, it is possible to consider a linear space over R. It is the set of all 

functions of S in R. These functions can be written in the form given by (1).  

The functions 1𝑠1, …, 1𝑠𝑁 are linearly independent, so they represent a basis 

of the linear space under consideration (Handley [1961]).  

We have then to suppose that 𝑐1, …, 𝑐𝑁  are elements of R such that it is 

possible to obtain the zero function given by  

𝑐1𝑠1 + … + 𝑐𝑁𝑠𝑁 = 0. 

This means that we have 𝑐𝑖 = 0 for every 𝑐𝑖, i = 1, …, N. This thing 

consequently proves the linear independence under consideration. Moreover, 

it is always possible to write 𝑠𝑖 instead of 1𝑠𝑖 . Having said that, we observe 

that our objects denoted by letters having numbers as subscripts are not generic 

objects any more but they coincide with N-dimensional vectors. A sample 

belonging to the set of all logically possible samples of a given size is then 

expressed by the vector  

𝛿(𝑠′) = [

𝛿(1;  𝑠′)

𝛿(2;  𝑠′)
⋮

𝛿(𝑁;  𝑠′)

] 
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having N components, where 𝑠′ is a sample of the set of all logically possible 

samples denoted by 𝑆′ (Cochran [1977], Särndal et al. [1992], Godambe 

[1955]).  

We will always consider vectors viewed as ordered lists of real 

numbers within this context. A sample can evidently be denoted by a letter 

having a number as a subscript as well as it can be expressed by the real 

coefficients of a linear combination of N-dimensional vectors by means of 

which another N-dimensional vector is obtained.  

If a sample is identified with an N-dimensional vector then its 

components express the real coefficients of a linear combination of the 

elements of a basis of the linear space under consideration. This linear space 

is denoted by 𝑅𝑁. Its basis is denoted by S = {𝑒𝑗}, j = 1, …, N.  

We always consider orthonormal bases within this context. It follows 

that 𝑅𝑁 is also a metric space.  

We therefore write 

𝛿(1;  𝑠′) 𝑒1 + 𝛿(2;  𝑠′) 𝑒2 + … + 𝛿(𝑁;  𝑠′) 𝑒𝑁 = y,  

where we have y ∈ 𝑅𝑁.  

We consider as many linear combinations of the elements of S = {𝑒𝑗}, 

j = 1, …, N, as logically possible samples there are into the set of all logically 

possible samples of a given size denoted by 𝑆′. 

We note that the real coefficients of every linear combination of the elements 

of S = {𝑒𝑗}, j = 1, …, N, represent one of the logically possible samples of 𝑆′. 

We have evidently   𝛿(𝑖;  𝑠′) = {
1
0

 

for every i = 1, …, N, where the elements of the population under 

consideration are N. If i ∈ 𝑠′ then we have 𝛿(𝑖;  𝑠′) = 1, while we obtain 0 

otherwise. We consider all logically possible samples of 𝑆′ having the same 

size denoted by n. Since the population has N elements we observe that the 

number of n-combinations is equal to the binomial coefficient denoted by (𝑁
𝑛
). 

We observe that 𝑆′ is a subset of 𝑅𝑁. We say that 𝑆′ is embedded in 𝑅𝑁. 

 

2.  Finite partitions of logically possible events 

Given N, all logically possible samples whose size is equal to n belong 

to the set denoted by 𝑆′. We have n = ∑ 𝛿(𝑖;  𝑠′)𝑁
𝑖=1  for every 𝑠′ ∈ 𝑆′.  

This means that every sample of the set of all logically possible 

samples corresponds to a vertex denoted by 𝛿(𝑠′) of an N-dimensional unit 

hypercube denoted by [0, 1]𝑁 (G. Coletti and D. Petturiti and B. Vantaggi 

[2016b]). All logically possible samples of 𝑆′ can be viewed as possible and 

elementary events of a finite partition of incompatible and exhaustive events 

(de Finetti [1982b]).  
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We are consequently able to define a univariate random quantity whose 

logically possible values are represented by all logically possible samples of 

𝑆′ (de Finetti [2011]).  

The logically possible values of this univariate random quantity are not 

real numbers but they are N-dimensional vectors of an N-dimensional linear 

space over R (Gilio and Sanfilippo [2014]).  

We consider sampling designs specifying a subjective probability for 

every logically possible sample of 𝑆′. Every logically possible sample 

belonging to 𝑆′ has a subjective probability of being selected. 

It represents the degree of belief in the selection of a logically possible 

sample assigned by a given individual (the statistician) at a certain instant with 

a given set of information (de Finetti [1975], de Finetti [1972]). An evaluation 

of probability known over a set of possible events coinciding with all logically 

possible samples of 𝑆′ is admissible when it is coherent. Only coherence is 

really necessary (G. Coletti and R. Scozzafava [2002]).  

This means that it must be  ∑ 𝑝(𝑠′∈ 𝑆′   𝑠′) = 1. 

It is essential to note a very important point: we have to introduce an 

unusual restriction with regard to the coherence because we exclude of 

choosing a subjective probability equal to 0 with respect to any possible event. 

This implies that any logically possible sample of 𝑆′ has always a probability 

greater than zero of being selected.  

We have consequently  0 < p(𝑠′) ≤ 1for every 𝑠′ ∈ 𝑆′ (G. Coletti and 

D. Petturiti and B. Vantaggi [2016a]).  

Thus, conditions of coherence coincide with positivity of every 

probability of a random event and finite additivity of probabilities of 

incompatible and exhaustive events (de Finetti [1989]). We will also consider 

bivariate random quantities whose components are two univariate random 

quantities. If the logically possible values of these univariate random 

quantities are the same vectors of the same N-dimensional linear space over R 

then these random quantities have the same marginal distributions of 

probability (G. Coletti and R. Scozzafava and B. Vantaggi [2015]).  

They represent the same finite partition of incompatible and exhaustive 

events (G. Coletti and D. Petturiti and B. Vantaggi [2014]). Putting them into 

a two-way table we observe that it is always a table having the same number 

of rows and columns. 

 

3.  First-order inclusion probabilities viewed as a coherent prevision 

of a univariate random quantity 

We innovatively define a univariate random quantity denoted by S 

whose logically possible values are vectors of 𝑹𝑁. They are all logically 

possible samples of the set 𝑆′. Given S = {𝑒𝑗}, j = 1, …, N, each sample of 

𝑆′ coincides with the real coefficients of a linear combination of the vectors of 
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S = {𝑒𝑗}, j = 1, …, N. Given N and n, the number of the logically possible 

values of S coincides with the binomial coefficient expressed by (𝑁
𝑛
) = k. 

The set of the logically possible values of S is then given by I(S) = {𝑠1
′ , 

…, 𝑠𝑘
′ }, with 𝑠𝑖

′ ∈ 𝑆′, i = 1, …, k. A nonzero probability is assigned to each 

sample of the set of all logically possible samples.  

Let p(𝑠1
′ ), …, p(𝑠𝑘

′ ) be these probabilities.  

It must therefore be ∑ p(𝑠𝑖
′)𝑘

𝑖=1  = 1,  with 0 < p(𝑠′) ≤ 1 for every I = 1, 

…, k. It is possible to obtain an N-dimensional vector after assigning a nonzero 

probability to each sample of 𝑆′. We denote it with 𝜋. It represents the first-

order inclusion probabilities of all units of the population under consideration. 

Thus, we write  

𝜋 = [

𝜋1

𝜋2

⋮
𝜋𝑁

] = p(𝑠1
′)   [

𝛿(1; 𝑠1
′)

𝛿(2; 𝑠1
′)

⋮
𝛿(𝑁; 𝑠1

′)

] + … + p(𝑠𝑘
′ )   [

𝛿(1; 𝑠𝑘
′ )

𝛿(2; 𝑠𝑘
′ )

⋮
𝛿(𝑁; 𝑠𝑘

′ )

]           (2),   

where wehave 𝜋𝑖 > 0 for every i = 1, …, N.  

We have evidently written a convex combination of the vertices of the 

N-dimensional unit hypercube [0, 1]𝑁 corresponding to the samples of 𝑆′.  

Each vertex is a sample having a nonzero weight representing a subjective 

probability. 

It is essential to note that 𝜋 is a coherent prevision of S denoted by P(S). We 

therefore write  

𝜋 = [

𝜋1

𝜋2

⋮
𝜋𝑁

] = P(S) = ∑ 𝛿(𝑘
𝑖=1 𝑠𝑖

′) p(𝑠𝑖
′) 

We observe that the logically possible values of S are represented by 

vectors having N components, so its coherent prevision must also be 

represented by a vector having N components. 

The logically possible values of S belong to the set denoted by I(S). 

Each element of this set contains first-order inclusion a posteriori 

probabilities. This implies that 𝜋 must contain first-order inclusion a priori 

probabilities based on the degree of belief in the selection of all logically 

possible samples attributed by the statistician at a certain instant with a given 

set of information.  

An a posteriori probability of a unit of the population of being included 

in a given sample is always predetermined. If a unit of the population is 

contained a posteriori in the sample that has been selected then its probability 

is equal to 1. If a unit of the population does not belong a posteriori to the 

sample that has been selected then its probability is equal to 0.  
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A convex combination coinciding with P(S) has conveniently been taken 

under consideration because the logically possible values of S are 

incompatible and exhaustive events of a finite partition of random events. In 

general, if we consider an event divided into two or more than two 

incompatible events then we obtain that its coherent probability is the sum of  

two or more than two coherent probabilities. This sum is a linear combination 

of probabilities (de Finetti [1980], de Finetti [1981], de Finetti [1982a]). We 

evidently consider a convex combination coinciding with P(S) within this 

context, where its weights or coefficients are a priori subjective probabilities 

connected with the samples of 𝑆′. This convex combination is characterized 

by k column vectors viewed as k matrices. Each row of every N × 1 matrix is 

a first-order inclusion a posteriori probability. We therefore consider a linear 

combination of probabilities. 

 

4.  First-order inclusion probabilities obtained by means of linear 

maps 

We consider all logically possible samples belonging to the set 𝑆′. 

Given N and n, let k be the number of all elements of 𝑆′. We are consequently 

able to determine an N × k matrix in R.  

We denote it by B. It is therefore possible to define a linear map expressed by  

𝐿𝐵: 𝑹𝑘 → 𝑹𝑁. 

This linear map depends on B. Moreover, it also depends on the choice 

of bases for 𝑹𝑘 and 𝑹𝑁. 

We choose standard bases for 𝑹𝑘 and 𝑹𝑁. We consider all probabilities 

assigned to the logically possible samples of 𝑆′ whose size is equal to n. They 

can be viewed as a column vector. We denote it by Q. We have then  

Q = [

𝑝(𝑠1
′)

𝑝(𝑠2
′ )

⋮
𝑝(𝑠𝑘

′ )

]. 

Therefore, it turns out to be  

𝐿𝐵(Q) = BQ = 𝜋 = [

𝜋1

𝜋2

⋮
𝜋𝑁

]. 

We note that if k = N then we are able to define a linear map expressed by  

𝐿𝐵: 𝑹𝑁 → 𝑹𝑁. 

 

We observe that B is a square matrix. This linear map is an endomorphism. It 

is also an isomorphism. It is then an automorphism, so we write  
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𝐵− 1𝜋 = [

𝑝(𝑠1
′)

𝑝(𝑠2
′ )

⋮
𝑝(𝑠𝑘

′ )

]. 

Given B, each row of Q can subjectively vary because an evaluation 

of probability known over a set of logically possible events must only be 

coherent. This means that the sum of all probabilities of the samples of 𝑆′ must 

be equal to 1. We consequently observe that there are infinite ways of choosing 

all probabilities of the samples of 𝑆′. They are conveniently caught by 𝐿𝐵. 

Hence, it is possible to obtain 𝜋 as a multiplication of matrices according to a 

linear map depending on B and the standard bases of the linear spaces under 

consideration.  

Also, we always obtain  

∑ 𝜋𝑖
𝑁
𝑖=1  = n. 

 

1. First-order and second-order inclusion probabilities obtained by 

means of tensor products 

We define a bivariate random quantity denoted by 𝑆12 whose 

components are two univariate random quantities denoted by 1S and 2S. We 

therefore write 𝑆12 = {1S, 2S}. Given N and n, the logically possible values of 

each univariate random quantity coincide with k samples belonging to the set 

𝑆′.  

They are all logically possible samples of 𝑆′ whose size is equal to n. 

Each sample of 𝑆′ is a vector of 𝑹𝑁. The logically possible values of 1S and 

2S are the same N-dimensional vectors of the same N-dimensional linear space 

over R. These univariate random quantities have then the same marginal 

distributions of probability. Putting them into a two-way table we observe that 

it is always a square table. We observe that all probabilities of the joint 

distribution of probability outside of the main diagonal of this table are always 

equal to 0. The nonzero probabilities of the joint distribution of probability 

coincide with 𝑝(𝑠1
′), …, 𝑝(𝑠𝑘

′ ). They are on the main diagonal of the table 

under consideration. A coherent prevision of 𝑆12 denoted by P(𝑆12) is obtained 

by means of the sum of k square matrices. The number of rows and columns 

of every square matrix of this sum is equal to N.  

Each square matrix of this sum results from a tensor product belonging 

to the same linear space denoted by 𝑹𝑁 ⨂ 𝑹𝑁. It is an 𝑁2-dimensional linear 

space over R. We always consider as many tensor products as joint 

probabilities are associated with the samples of 𝑆′. We have then  
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𝑝(𝑠𝑖
′) (

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
,   

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
) ↦ 𝑝(𝑠𝑖

′) (

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
⨂

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
) 

for every i = 1, …, k. We note that it turns out to be  

𝑝(𝑠𝑖
′) (

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
⨂

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
) = 𝑝(𝑠𝑖

′) 

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
 [𝛿(1; 𝑠𝑖

′)  𝛿(2; 𝑠𝑖
′) … 

𝛿(𝑁; 𝑠𝑖
′)]. 

When we consider a coherent prevision of 𝑆12 we deal with a bilinear 

map expressed by 𝑹𝑁 × 𝑹𝑁 → 𝑀𝑁,𝑁  (R), where the linear space over R of the 

N × N matrices in R is denoted by 𝑀𝑁,𝑁  (R). This linear space is isomorphic 

to 𝑹𝑁2
. The matrix product resulting from this bilinear map is factorized by 

means of the tensor product of vectors of 𝑹𝑁. It is also factorized by means of 

a unique linear map whose domain coincides with 𝑹𝑁 ⨂ 𝑹𝑁. This is because 

we are able to know a basis of 𝑹𝑁 ⨂ 𝑹𝑁 as well as the value of the linear map 

under consideration on basis elements. We suppose that a basis of 𝑹𝑁 ⨂ 𝑹𝑁 

results from the standard basis of 𝑹𝑁, where 𝑹𝑁 is evidently considered two 

times.  

It is therefore possible to say that there exists a unique linear map given 

by 𝑹𝑁 ⨂ 𝑹𝑁 → 𝑀𝑁,𝑁  (R). It coincides with the product of a joint probability 

viewed as a scalar and a square matrix. We consider k products of a joint 

probability and a square matrix. We obtain k square matrices in this way. We 

consider the sum of these k square matrices in order to obtain a coherent 

prevision of 𝑆12. We observe that 𝑹𝑁 × 𝑹𝑁 → 𝑀𝑁,𝑁  (R) and 𝑹𝑁 ⨂ 𝑹𝑁 → 

𝑀𝑁,𝑁  (R) have the same codomain. A factorization of 𝑹𝑁 × 𝑹𝑁 → 𝑀𝑁,𝑁  (R) 

is then realized by means of a bilinear map given by 𝑹𝑁 × 𝑹𝑁 → 𝑹𝑁 ⨂ 𝑹𝑁 

and a linear map given by 𝑹𝑁 ⨂ 𝑹𝑁 → 𝑀𝑁,𝑁  (R). These two maps are 

connected, so we obtain a composition of functions identified with 𝑹𝑁 × 𝑹𝑁 

→ 𝑀𝑁,𝑁  (R). A coherent prevision of  𝑆12 is then bilinear and homogeneous. 

It is given by  

P( 𝑆12) = Π = [

𝜋1 ⋯ 𝜋1𝑁

⋮ ⋱ ⋮
𝜋𝑁1 ⋯ 𝜋𝑁

] = [

𝜋1 ⋯ 𝜋1𝑁

⋮ ⋱ ⋮
𝜋1𝑁 ⋯ 𝜋𝑁

]. 

It coincides with the symmetric matrix of the first-order and second-

order inclusion probabilities. It is isomorphic to a vector of 𝑹𝑁2
. The trace of 

this matrix is evidently equal to n. 
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6.  The covariance of two univariate random quantities obtained by 

considering two bilinear maps 

Given 𝑆12 = {1S, 2S}, the covariance of 1S and 2S is expressed by C(1S, 

2S) = P(𝑆12) – P(1S)P(2S), 

where P(𝑆12) represents the prevision or mathematical expectation or 

expected value of 𝑆12 while P(1S) and P(2S) represent the prevision or 

mathematical expectation or expected value of 1S and 2S. We note that a 

coherent prevision of 𝑆12 results from a bilinear map because we have  

P( 𝑆12) = [

𝜋1 ⋯ 𝜋1𝑁

⋮ ⋱ ⋮
𝜋𝑁1 ⋯ 𝜋𝑁

] 

Moreover, since we have  

P(1S) = [

𝜋1

𝜋2

⋮
𝜋𝑁

] 

as well as  

P(2S) = [

𝜋1

𝜋2

⋮
𝜋𝑁

], 

we note that the product of these two linear maps is evidently bilinear. Such a 

product is expressed in the form  

[

𝜋1

𝜋2

⋮
𝜋𝑁

][𝜋1 𝜋2 … 𝜋𝑁] = [

𝜋1𝜋1 ⋯ 𝜋1𝜋𝑁

⋮ ⋱ ⋮
𝜋𝑁𝜋1 ⋯ 𝜋𝑁𝜋𝑁

]. 

It is then evident that the covariance of 1S and 2S results from two bilinear 

maps because we can write  

C(1S, 2S) = [

𝜋1 ⋯ 𝜋1𝑁

⋮ ⋱ ⋮
𝜋𝑁1 ⋯ 𝜋𝑁

] − [

𝜋1𝜋1 ⋯ 𝜋1𝜋𝑁

⋮ ⋱ ⋮
𝜋𝑁𝜋1 ⋯ 𝜋𝑁𝜋𝑁

]. 

By writing  

C(1S, 2S) = [
(𝜋1  −  𝜋1𝜋1) ⋯ (𝜋1𝑁  −  𝜋1𝜋𝑁)

⋮ ⋱ ⋮
(𝜋𝑁1  −  𝜋𝑁𝜋1) ⋯ (𝜋𝑁  −  𝜋𝑁𝜋𝑁)

]               (3) 

we note that it is possible to consider as many random components as inclusion 

probabilities are studied. A unit of the population under consideration can be 

included, or not, in a given sample (Bondesson [2010], Hájek [1958]). This 

thing is uncertain until a given sample is selected.  

Two different units of the population under consideration can be included, or 

not, in the same sample (Deville and Tillé [1998]). This thing is uncertain until 

a given sample is selected.  



European Scientific Journal May 2020 edition Vol.16, No.15 ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

11 

A component associated with one or two different units of the 

population under consideration is evidently random for this reason (Connor 

[1966]). This means that each random component is characterized by a 

subjective probability. It is an a priori probability. It is also characterized by 

two logically possible values, 0 and 1. Only one of these two logically possible 

values will be true a posteriori. On the other hand, it is known that the notion 

of probability basically deals with an aspect that is included between two 

extreme aspects. The first extreme aspect deals with situations of non-

knowledge or ignorance or uncertainty determining the set of all logically 

possible samples of a given size. They must evidently be viewed as all 

logically possible alternatives that can be considered. The second extreme 

aspect deals with definitive certainty expressed in the form of what it is 

certainly true or certainly false. Thus, every logically possible sample of a 

given size definitively becomes true or false. Probability is subjectively 

distributed by the statistician as a mass over the domain of all logically 

possible samples of a given size before knowing which is the true sample to 

be selected a posteriori. Having said that, the variance of every random 

component as well as the covariance of two random components are dealt with 

by means of the first-order and second-order inclusion probabilities. The 

variance of each random component is represented by every element on the 

main diagonal of the symmetric matrix given by (3). The covariance of two 

random components is represented by every element outside of the main 

diagonal of the square matrix given by (3).  

 

7.  Univariate and bivariate random quantities representing 

deviations 

We define another univariate random quantity. We denote it by D. We 

note that D is based on S. Given N and n, the number of the logically possible 

values of S is equal to the binomial coefficient given by (𝑁
𝑛
) = k. We have I(S) 

= {𝑠1
′ , …, 𝑠𝑘

′ }, with 𝑠𝑖
′ ∈ 𝑆′, i = 1, …, k. A nonzero probability denoted by 

𝑝(𝑠𝑖
′), I = 1, …, k, is assigned to each sample of 𝑆′. We obtain 𝜋. We note that 

the number of the logically possible values of D is equal to k. It is the same of 

the one of S. The set of the logically possible values of D is given by I(D) = 

{𝑑1
′ , …, 𝑑𝑘

′ }, with  

𝑑𝑖
′ = 

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
− [

𝜋1

𝜋2

⋮
𝜋𝑁

] 

where we have i = 1, …, k.  

It follows that we have  
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𝑝(𝑠1
′ )𝑑1

′  + … + 𝑝(𝑠𝑘
′ )𝑑𝑘

′  = [

0
0
⋮
0

] 

This means that P(S) is an N-dimensional vector such that all 

deviations from it multiplied by the corresponding probabilities represent N-

dimensional vectors whose sum coincides with the zero vector of 𝑹𝑁. We are 

able to calculate the variance of S by using D. We use 𝐷12 = {1D, 2D}, where 

𝐷12 is a bivariate random quantity representing deviations whose components 

are two univariate random quantities representing deviations which are the 

same. We denote them by 1D and 2D.  

We refer to the 𝛼-criterion of concordance introduced by Gini. It is a 

statistical criterion that we innovatively apply to probability. An absolute 

maximum of concordance is then realized when each 𝑑𝑖
′, i = 1, …, k, is 

multiplied by itself. If each 𝑑𝑖
′, i = 1, …, k, is multiplied by itself then we 

obtain k square matrices. Every multiplication that we consider is a tensor 

product of two vectors of 𝑹𝑁. These two vectors represent two deviations 

which are the same. The components of these two vectors are then the same. 

Hence, the variance of S coincides with the sum of k traces. Each trace of the 

square matrix under consideration is an inner product viewed as an 𝛼-product. 

An 𝛼-product is a bilinear form. We consider each 𝑝(𝑠𝑖
′), i = 1, …, k, as a 

scalar. Each 𝑝(𝑠𝑖
′), i = 1, …, k, is firstly a subjective probability. Thus, it 

always characterizes a random quantity. It is nevertheless viewed as a scalar 

within this context. We can therefore multiply all components of 𝑑𝑖
′ by 𝑝(𝑠𝑖

′), 

i = 1, …, k. We write  𝜎𝑆
2 = tr (𝑑1

′𝑇(𝑝(𝑠1
′ ) 𝑑1

′ )) + … + tr (𝑑𝑘
′𝑇(𝑝(𝑠𝑘

′ ) 𝑑𝑘
′ )). 

We have evidently introduced a quadratic and linear metric in this way. 

We therefore note that 𝜎𝑆
2 is the sum of the squares of k 𝛼-norms. It is possible 

to verify that every trace of a square matrix is an 𝛼-product which is an 𝛼-

commutative product, an 𝛼-associative product, an 𝛼-distributive product and 

an 𝛼-orthogonal product. 

 

8.  Metric aspects of an estimate of the population mean  

We wonder what happens from a metric viewpoint when we study one 

attribute with respect to every element of the population under consideration 

(Hassanein and Elmelegy [2014]).  

Let X be the variable concerning this attribute. If we study only one 

attribute of each element of the population under consideration then we 

estimate the population mean by using the univariate Horvitz-Thompson 

estimator. It is defined by  

𝑡𝐻𝑇
(𝑥)

 = 
1

𝑁
 ∑

1

𝜋𝑖

𝑁
𝑖=1  𝛿(𝑖; 𝑠′)𝑥𝑖,  
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where we have 𝑠′ ∈ 𝑆′. It is linear and homogeneous (Horvitz and Thompson 

[1952]). We note that 𝑠′ is one of the logically possible samples of 𝑆′. Also, 

the weight of the generic unit i of the population under consideration never 

depends on 𝑠′. It is obtained beginning from (2). We have conversely 

considered all logically possible samples of 𝑆′ when we have defined S. We 

did not consider only one of them. We say that S is complementary to the 

univariate Horvitz-Thompson estimator for this reason. We have taken P(S) = 

𝜋 into account after defining S. We observe that a coherent prevision of S is 

itself linear and homogeneous. The expected value of the univariate Horvitz-

Thompson estimator is given by  

E[𝑡𝐻𝑇
(𝑥)

] = 𝜇𝑥. 

It is equal to the population mean denoted by 𝜇𝑥 for any vector (𝑥1 𝑥2 … 𝑥𝑁)T 

∈ 𝑹𝑁. We have  

𝜇𝑥 = 
1

𝑁
 ∑ 𝑥𝑖

𝑁
𝑖=1  

The variance of the univariate Horvitz-Thompson estimator is given by  

V(𝑡𝐻𝑇
(𝑥)

) = 
1

𝑁2 ∑
𝑥𝑖

𝜋𝑖

𝑁
𝑖=1  ∑

𝑥𝑗

𝜋𝑗

𝑁
𝑗=1  ∆𝑖𝑗, 

where we have ∆𝑖𝑗 = 𝜋𝑖𝑗  −  𝜋𝑖𝜋𝑗, with i, j = 1, …, N. We note that ∆𝑖𝑗, i, j = 

1, …, N, is obtained through (3). Since we consider all logically possible 

samples whose size is equal to n we can also write  

V(𝑡𝐻𝑇
(𝑥)

) = 
1

2𝑁2 ∑ ∑ (
𝑥𝑖

𝜋𝑖

𝑁
𝑗=1

𝑁
𝑖=1  −  

𝑥𝑗

𝜋𝑗
)2 ∆𝑖𝑗                       (4),  

where we have again ∆𝑖𝑗 = 𝜋𝑖𝑗  −  𝜋𝑖𝜋𝑗, with i, j = 1, …, N (Yates and 

Grundy [1953]).  

This variance is estimated by the univariate Yates-Grundy estimator given by  

�̂�YG (𝑡𝐻𝑇
(𝑥)

) = 
1

2𝑁2 ∑ ∑ (
𝑥𝑖

𝜋𝑖
 −  

𝑥𝑗

𝜋𝑗
) 𝑗 ∈ 𝑠′𝑖 ∈ 𝑠′

2     𝜋𝑖 𝜋𝑗− 𝜋𝑖𝑗

𝜋𝑖𝑗

 , 

where we have 𝜋𝑖𝑗 > 0 because we assume that the sampling design is 

measurable and 𝜋𝑖𝑗 ≤ 𝜋𝑖𝜋𝑗, with i, j = 1, …, N. We have to note a very 

important point: the variance of S denoted by 𝜎𝑆
2 coincides with the variance 

of the univariate Horvitz-Thompson estimator given by (4) when the absolute 

values of each deviation of 𝑥𝑖 from 𝑥𝑗, with i ≠ j = 1, …, N, are multiples of 

N. In addition to this thing, the variance of S coincides with the variance of 

the univariate Horvitz-Thompson estimator given by (4) when the entropy H 

of the sampling design with fixed sample size is maximum (Tillé and Wilhelm 

[2017]), where we have  

H = − ∑ 𝑝(𝑠′𝑠′ ∈ 𝑆′    )log 𝑝(𝑠′)                              (5). 

We note that H is maximum when we have  

𝑝(𝑠1
′ ) = 𝑝(𝑠2

′ ) = … = 𝑝(𝑠𝑘
′ ), 

with ∑ 𝑝(𝑠𝑖
′)𝑘

𝑖=𝑖  = 1.  
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It does not turn out to be p(𝑠′) = 0 within this context. However, if we 

observe p(𝑠′) = 0 with regard to (5) then it turns out to be [0log 0] = 0 by 

convention. We therefore say that the weights of the univariate Horvitz-

Thompson estimator are based on a coherent prevision of a particular random 

quantity that we have innovatively defined. We have denoted it by S. On the 

other hand, we have obtained a linear and quadratic metric by considering two 

univariate random quantities denoted by 1D and 2D. They are based on S. We 

have obtained the variance of S by using this metric. 

 

9.  Why it is meaningful what we have shown 

We consider an auxiliary variable denoted by 𝑋′ related to X when the 

values of X given by 𝑥𝑖, i = 1, …, N, are unknown. The known values of 𝑋′ 

are given by 𝑥𝑖
′, i = 1, …, N. We write  

𝜇𝑥′ = 
1

𝑁
 ∑ 𝑥𝑖

′𝑁
𝑖=1  

If X and 𝑋′ are approximately proportional then it turns out to be  
𝑥𝑖

𝑥𝑖
′ ≈ constant, 

where we have i = 1, …, N. The first-order inclusion probabilities chosen by 

the statistician are then given by  

𝜋𝑖 = 
𝑛𝑥𝑖

′

𝑁𝜇𝑥′
                                                  (6),  

where we have i = 1, …, N. If there exists a direct linear relationship between 

𝑋′ and X then the statistician chooses high inclusion probabilities denoted by 

𝜋𝑖 with respect to the units of the population under consideration having high 

attributes of 𝑋′ denoted by 𝑥𝑖
′, i = 1, …, N. This is because they are likely 

associated with high attributes of X denoted by 𝑥𝑖, i = 1, …, N. If X and 𝑋′ 

are approximately proportional then the first-order inclusion probabilities 

chosen by the statistician are given by (6). It is also possible to write  

𝜋𝑖 = 
𝑛𝑥𝑖

′

∑ 𝑥𝑗
′𝑁

𝑗=1

 , 

where we have i = 1, …, N. If it turns out to be 𝜋𝑖 > 1 for some unit of the 

population under consideration then we have 𝜋𝑖 = 1 for all units of the 

population under consideration having i as a label and such that it turns out to 

be 𝑛𝑥𝑖
′ ≥ ∑ 𝑥𝑗

′𝑁
𝑗=1  because 𝑥𝑖

′ is high.  

We consider n > 1 within this context.  

The statistician consequently chooses  

𝜋𝑖 = (n − 𝑛𝐴) 
𝑥𝑖
′

∑ 𝑥𝑗
′𝑁

𝑗=1

 , 

where we have j ∉ A, i = 1, …, N, i ∉ A, concerning the remaining units of 

the population under consideration. The set of the units of the population under 

consideration such that it turns out to be  
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𝑛𝑥𝑖
′ ≥ ∑ 𝑥𝑗

′𝑁
𝑗=1  is denoted by A while their number is denoted by 𝑛𝐴. Having 

said that, we evidently establish a linear relationship between 𝑝(𝑠𝑖
′), i = 1, …, 

k, and 𝜋𝑖, i = 1, …, N.  

If the statistician chooses 𝑝(𝑠𝑖
′), i = 1, …, k, with ∑ 𝑝(𝑠𝑖

′)𝑘
𝑖=𝑖  = 1, then it is 

possible to get 𝜋𝑖, i = 1, …, N, with ∑ 𝜋𝑖
𝑁
𝑖=1  = n. We write  

[

𝜋1

𝜋2

⋮
𝜋𝑁

] = ∑ 𝛿(𝑘
𝑖=1 𝑠𝑖

′) p(𝑠𝑖
′) 

He is consequently able to obtain 𝜋𝑖 > 0 for every i = 1, …, N. He 

methodologically distinguishes what it is logically possible from what it is 

subjectively probable. All samples belonging to 𝑆′ are logically possible 

because they are not either certainly true or certainly false. Conversely, if the 

statistician chooses 𝜋𝑖, i = 1, …, N, then it is possible to get 𝑝(𝑠𝑖
′), i = 1, …, 

k. We observe that 𝛼-products and 𝛼-norms use 𝑝(𝑠𝑖
′), i = 1, …, k, as scalars. 

We obtain different metric relationships by using 𝛼-norms whose scalars are 

𝑝(𝑠𝑖
′), i = 1, …, k.  

We note that 𝜋1, …, 𝜋𝑁 are used into 

𝐵− 1𝐏(𝑆) = [

𝑝(𝑠1
′)

𝑝(𝑠2
′ )

⋮
𝑝(𝑠𝑘

′ )

] 

in order to obtain 𝑝(𝑠𝑖
′), i = 1, …, k, when we have k = N. We note that B is a 

square matrix while 𝐵− 1 is its inverse. If we have k ≠ N then we consider a 

system of N linear equations with k unknowns, where 𝜋1, …, 𝜋𝑁 are constant 

terms. We evidently refer to  

𝐿𝐵(Q) = B [

𝑝(𝑠1
′)

𝑝(𝑠2
′ )

⋮
𝑝(𝑠𝑘

′ )

] = [

𝜋1

𝜋2

⋮
𝜋𝑁

] = P(S).  

It is known that if the statistician chooses appropriate inclusion probabilities 

then he is able to obtain a more efficient estimator of the population mean. 

 

Conclusion 

We have defined univariate and bivariate random quantities whose 

logically possible values are all logically possible samples of a given size 

belonging to a given set. Every logically possible sample belonging to a given 

set has a subjective probability of being selected. We have obtained the first-

order inclusion probabilities by means of a coherent prevision of a univariate 

random quantity denoted by S whose logically possible values are all logically 

possible samples of a given size belonging to a given set. We have defined a 
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bivariate random quantity denoted by 𝑆12 whose components are two 

univariate random quantities having all logically possible samples of a given 

size as their logically possible values. We have shown that S is complementary 

to the univariate Horvitz-Thompson estimator. This estimator is linear and 

homogeneous like a coherent prevision of S. We have identified a quadratic 

and linear metric with regard to two univariate random quantities representing 

deviations that we have innovatively defined. We have used the 𝛼-criterion of 

concordance introduced by Gini in order to identify it. It is a statistical 

criterion that we have innovatively applied to probability. 
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