
1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal               - Proceedings- 

1 
 

GLOBAL SOLUTIONS OF THE FUCHSIAN-CAUCHY PROBLEM  IN 
GEVREY SPACES 

 
 

 
Faiza Derrab, MA 

University Djillali Liabès/Sidi-Bel-Abbès, Mathematics Department,  Exact Sciences Faculty, Algeria 
 
 

 
Abstract: 

We consider the Fuchsian Cauchy problem associated to linear partial differential equations 
with Fuchsian principal part of order m and weight µ in the sense of M. S. Baouendi and C. Goulaouic 
[2]. We obtain existence and uniqueness of a global solution to this problem in the space of 
holomorphic functions with respect to the fuchsian variable t and in Gevrey spaces with respect to the 
other variable x. The method of proof is based on the application of the fixed point theorem in some 
Banach spaces defined by majorant functions that are suitables to this kind of equations. We introduce 
new majorant functions as in [4]and [5] which allow us to simplify the proof given in [3].  
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Introduction 
           In [1], is established by J.M.Bony and P.Schapira that the hyperbolicity of the operator is 
sufficient so that the Cauchy problem is well posed in the class of holomorphic functions (Bony-
Schapira-Theorem). But, this result was established by C.Wagschal in [10] for operators not 
necessarily hyperbolics. 
           To demonstrate his local existence theorem for an holomorphic solution of a semilinear 
operator, A.Cauchy used his method known as the "Majorant series method" which consists to find 
the solution of the problem in the form of a serie and to prove the convergence of this serie by 
bounding above the modulus of the coefficients of this serie by those of another serie whose terms are 
positive and is convergent. 
            C. Wagschal [10] simplified local resolution of the nonlinear Goursat problem in spaces of 
holomorphic functions and in Gevrey spaces to the fixed point theorem. His technique consists to 
define Banach algebras, either through the formalism of majorant functions of A.Cauchy in the 
holomorphic case, either through the formalism of formal series in the Gevrey case, in which his 
problem is reduced to the search for fixed points of some map that he builts from the original problem 
and he shows strictly contracting in balls of these algebras.  
 And since the method of fixed point developed by C.Wagschal [10] has been used 
successfully in other problems. It cites the work of P.Pongérard and C.Wagschal [7] its aim  is to 
reduce the global resolution of the Cauchy-Kowalvski problem to the fixed point theorem in spaces of 
entire functions and entire functions of finite order.  
 Interest was directed later to study or to simplify the study of Fuchsian equations by the 
method of fixed point. The major difficulty is in the search for Banach spaces, so for majorant 
functions, suitable for the study of this type of equations.  
 P.Pongérard [9] extended the conclusions of [7] to Fuchsian operators in the class of entire 
functions and entire functions of finite order using this method of fixed point. 
 In [4], we have simplified the proof given by P.Pongérard in [9] by defining new majorant 
functions by introducing a new parameter ρ and we generalized his result to a differential operator 
with several Fuchsian variables.  
               In [3], the authors have extended the result of [9] to a global resolution in spaces of 
holomorphic functions with respect to the Fuchsian variable and in Gevrey classes with respect to the 
other variables. One of these classes of Gevrey is more general than the class introduced in [10] and 
the second is introduced by H. Komatsu in [6]. 
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               In this work, we simplify the proof given in [3] using the same technique introduced in [4] 
by defining new majorant functions by introducing a new parameter ρ. Thus, we establish a global 
solution for our problem which is holomorphic with respect to the Fuchsian variable and is in Gevrey 
spaces with respect to the other variable. Our study is limited to Gevrey class defined by H.Komatsu 
[6]. This same technique has enabled us in [5] to give global resolution for some nonlinear equations 
of Fuchs type in these same Gevrey classes. 
The Problem Formulation And Result 
           We study Fuchsian linear partial differential equations in the space ℂ × ℝ𝑛. We denote by 𝑡 
the generic point of ℂ  and by  𝑥 = (𝑥1, … , 𝑥𝑛) the generic point of ℝ𝑛. Let Ώ be an open set in ℝ𝑛. 
For a multiindice 𝛼 = (𝛼1, … ,𝛼𝑛) ∈ ℕ𝑛 we denote 𝐷𝛼 = 𝐷1

𝛼1 …𝐷𝑛
𝛼𝑛  where 𝐷𝑗 = 𝐷𝑥𝑗  is the 

partial derivative with respect to 𝑥𝑗 and by |𝛼| = 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑛.  
 Let 𝑚 ≥ 1 be an integer, we denote by 𝐸 a subset of {(𝑙,𝛼)𝜖ℕ× ℕ𝑛;   𝑙 +|𝛼| ≤ 𝑚,   𝑙 <
𝑚,   𝛼 ≠ 0}. 
 Let 0 ≤ 𝜇 ≤ 𝑚, we consider the Cauchy problem 

�
𝑎(𝑡,𝐷𝑡)𝑢(𝑡, 𝑥) = � 𝑎(𝑙,𝛼)(𝑡, 𝑥) 𝑡𝜐+1+𝑙−𝜇

(𝑙,𝛼)𝜖𝐸

𝐷𝑡𝑙𝐷𝛼𝑢(𝑡, 𝑥)  + 𝑓(𝑡, 𝑥);         (𝑡, 𝑥) ∈ ℂ × Ώ,

𝐷𝑡
𝑗𝑢(𝑡, 𝑥) = 𝑤𝑗(𝑥),              0 ≤ 𝑗 < 𝜇,       𝑥 ∈ Ώ,                                                                            

 (1)    

 where 𝑎(𝑡,𝐷𝑡) is the linear differential operator defined by 𝑎(𝑡,𝐷𝑡) =  ∑ 𝑎𝑙𝑡𝑙−𝜇𝑚
𝑙=𝜇 𝐷𝑡𝑙 ,   

and 𝑎𝑙   for 𝜇 ≤ 𝑙 ≤ 𝑚   are complex constants with 𝑎𝑚 ≠ 0. 
𝑎(𝑡,𝐷𝑡) is then a Fuchsian principal part of order 𝑚 and weight 𝜇. 
 𝜐 = 𝜐(𝑙) is the integer number defined by 𝜐 = max(  𝜇 − 𝑙 − 1,0) and the coefficients 
𝑎(𝑙,𝛼) for (𝑙,𝛼)𝜖𝐸  are polynomial functions with respect to 𝑥 of order strictly inferior to |𝛼| with 
holomorphic coefficients in ℂ𝑡 . It means that 

𝑓𝑜𝑟 (𝑙,𝛼)𝜖𝐸,   𝑎(𝑙,𝛼)(𝑡, 𝑥)

= � 𝑎𝑙𝛼𝛽(𝑡) 𝑥𝛽
|𝛽|<|𝛼|

 𝑤ℎ𝑒𝑟𝑒 𝑎𝑙𝛼𝛽 𝑖𝑠 𝑎𝑛 ℎ𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 ℂ𝑡.                (2)     

 We associate to the operator 𝑎(𝑡,𝐷𝑡) the polynomial 𝑃(𝜆) =  ∑ 𝑎𝑙 ∏ (𝜆 − 𝑗)𝑙−1
𝑗=0

𝑚
𝑙=𝜇  and 

we consider ∐ = 1𝜙 . 
 We obtain:   𝑡𝜇 𝑎(𝑡,𝐷𝑡) =  ∑ 𝑎𝑙𝑡𝑙𝑚

𝑙=𝜇 𝐷𝑡𝑙 = 𝑃(𝑡𝐷𝑡).   Then  𝑃(𝑡𝐷𝑡)  is a Fuchsian 
principal part of weight 0. 
 For the choice of 𝑓 and  𝑤𝑗   (0 ≤ 𝑗 < 𝜇),  we introduce the following definitions. We recall 
the Gevrey class definition in the sense given by H.Komatsu in [6] 
Definition 1: Let 𝑑 ≥ 1. A function 𝑣 ∈ ∁∞(Ώ) is said to be in the Gevrey class 𝐺(𝑑) if for every 
compact set 𝐾 ⊂ Ώ and ℎ > 0 there exists a constant 𝑐 = 𝑐𝐾,ℎ ≥ 0 such that  

∀𝛼 ∈ ℕ𝑛 ,   𝑠𝑢𝑝𝑥∈𝐾 |𝐷𝛼 𝑣(𝑥)|  ≤  𝑐 ℎ|𝛼| (|𝛼|!)𝑑. 
Examples:  

1. For 𝑛 ∈ ℕ ;     𝑓𝑛(𝑥) = 𝑠𝑖𝑛 𝑛𝑥 ∈ 𝐺(𝑑)(ℝ). Then the vector space generated by   
{𝑠𝑖𝑛 𝑛𝑥, 𝑐𝑜𝑠 𝑛𝑥,  𝑛 ∈ ℕ} is a subset of 𝐺(𝑑)(ℝ). 

2. For 𝑏 ∈ ℕ ;   𝑥 ∈ ℝ𝑛,   𝐿(𝑥) = 𝑥𝛽  a polynomial of order 𝛽 ∈ ℕ𝑛  such that |𝛽| ≤ 𝑏, we 
obtain  𝐿(𝑥) ∈ 𝐺(𝑑)(ℝ𝑛). Then the set ℝ[𝑥] of polynomials is a subet of 𝐺(𝑑)(ℝ𝑛). 

       For 𝑈 an open set in ℂ, we denote by ∁𝜔,∞(𝑈 × Ώ) the algebra of functions 𝑢: 𝑈 × Ώ → ℂ  
which admit derivatives for every order with respect to 𝑥, are continuous in 𝑈 × Ώ and holomorphic 
with respect to 𝑡. 
Definition 2: We say that a function 𝑢 is of  𝐺(𝜔,𝑑)(𝑈 × Ώ) class if 𝑢  belongs to ∁𝜔,∞(𝑈 × Ώ) and 
if for every compact set 𝐾 ⊂ Ώ and ℎ > 0 there exists a constant 𝑐 = 𝑐𝐾,ℎ ≥ 0 such that  

∀𝛼 ∈ ℕ𝑛, ∀𝑡 ∈ 𝑈, ∀𝑥 ∈ 𝐾;   |𝐷𝛼 𝑢(𝑡, 𝑥)|  ≤  𝑐 ℎ|𝛼| (|𝛼|!)𝑑. 
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 For 𝑅 > 0, we denote by 𝐷𝑅 = {𝑡 ∈ ℂ;   |𝑡| < 𝑅}.    
 𝐺(𝜔,𝑑)(ℂ × Ώ) denotes the set of functions 𝑢 ∈ ∁𝜔,∞(ℂ × Ώ) such that  for all 𝑅 > 0, 
𝑢 ∈ 𝐺(𝜔,𝑑)(𝐷𝑅 × Ώ). 
 𝐺(𝜔,𝑑)(ℂ × Ώ) is a sub-algebra of  ∁𝜔,∞(𝑈 × Ώ). 
 The coefficients 𝑎(𝑙,𝛼) assumed verifying (2), then we obtain the following theorem: 
Theorem 1: If 𝑃(𝜆) ≠ 0 for every integer 𝜆 ≥ 𝜇, then for any functions 𝑤𝑗 ∈ 𝐺(𝑑)(Ώ),
(0 ≤ 𝑗 ≤  𝜇) and 𝑓 ∈ 𝐺(𝜔,𝑑)(ℂ × Ώ); the Cauchy problem (1) admits a unique solution 𝑢 ∈
𝐺(𝜔,𝑑)(ℂ × Ώ).  
Remark 1: 

1.  The theorem1 establishes that the solution of the problem (1) inherits  the G(d) Gevrey 
regularity of the data 𝑤𝑗 , (0 ≤ 𝑗 ≤  𝜇).  

1) If Ώ is a bounded open set in ℝn, then we can extend the same study for Fuchsian operators 
where the coefficients 𝑎(𝑙,𝛼) are polynomials of any order 𝑁𝑙,𝛼. In this case, the hypothesis 
(2) is written in the form: 

     𝑓𝑜𝑟 (𝑙,𝛼)𝜖𝐸,   𝑎(𝑙,𝛼)(𝑡, 𝑥)

= � 𝑎𝑙𝛼𝛽(𝑡) 𝑥𝛽
|𝛽|<𝑁𝑙,𝛼

 𝑤ℎ𝑒𝑟𝑒 𝑎𝑙𝛼𝛽 𝑖𝑠 𝑎𝑛 ℎ𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 ℂ𝑡 . 

Proof of theorem 1 

A. Reduction of the Cauchy problem (1)  
     We set 

𝑃1(𝑢) = 𝑎(𝑡,𝐷𝑡)𝑢 − ∑ 𝑎(𝑙,𝛼)(𝑡, 𝑥) 𝑡𝜐+1+𝑙−𝜇(𝑙,𝛼)𝜖𝐸 𝐷𝑡𝑙𝐷𝛼𝑢. 

 Then by denoting  𝑣(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) − ∑ 𝑡𝑗

𝑗!
𝜇−1
𝑗=0 𝑤𝑗(𝑥)   and   𝑔 = 𝑓 − 𝑃1(∑ 𝑡𝑗

𝑗!
𝜇−1
𝑗=0 𝑤𝑗) ; 

the Cauchy problem (1) is equivalent to the problem  �
𝑃1(𝑣) = 𝑔                                   
𝐷𝑡
𝑗𝑣(𝑡, 𝑥) = 𝑤𝑗(𝑥),   0 ≤ 𝑗 < 𝜇.

 

 By a second change of unknown: 𝑣(𝑡, 𝑥) = 𝑡𝜇𝑧(𝑡, 𝑥), the previous problem is reduced to 
solving the equation: 𝑃1(𝑡𝜇𝑧) = 𝑔. 
 Using the relation:  𝑡𝜇𝑎(𝑡,𝐷𝑡) (𝑡𝜇𝑧) = 𝑃(𝑡𝐷𝑡)(𝑡𝜇𝑧) = 𝑡𝜇  𝑃(𝑡𝐷𝑡 + 𝜇)𝑧; the Cauchy 
problem (1) is reduced to the resolution of the equation  

𝑃(𝑡𝐷𝑡)𝑧 = � 𝑎(𝑙,𝛼)(𝑡, 𝑥) 𝑡𝜐+1+𝑙−𝜇
(𝑙,𝛼)𝜖𝐸

𝐷𝑡𝑙𝑡𝜇𝐷𝛼𝑧 + 𝑔                                         (3) 

 and its solution is given by:   𝑢 = ∑ 𝑡𝑗

𝑗!
𝜇−1
𝑗=0 𝑤𝑗+𝑡𝜇𝑧. 

 The coefficients 𝑎(𝑙,𝛼) always verify the hypothesis (2). 𝑃(𝑡𝐷𝑡) is a Fuchsian principal part 
of weight 0 which verifies 𝑃(𝜆) ≠ 0 for every 𝜆 ∈ ℕ. 
 For proving that  𝑔 ∈ 𝐺(𝜔,𝑑)(ℂ × Ώ) we need the following lemma. 
Lemma 1: Let  𝑅 > 0  and 𝑣 ∈ 𝐺(𝜔,𝑑)(𝐷𝑅 × Ώ).  Then for every 𝛼 ∈ ℕ𝑛,    𝐷𝛼𝑣 ∈ 𝐺(𝜔,𝑑)(𝐷𝑅 ×
Ώ). 

For the reduction of the equation (3) we use the following lemma 
Lemma 2:   

1.  ∃𝑐0 > 0 such that 𝑃(𝜆) ≥ 𝑐0 𝑚𝑎𝑥(1, 𝜆𝑚)  for every 𝜆 ∈ ℕ.  
2. For any 𝑅 > 0,  the operator 𝑃(𝑡𝐷𝑡) is an automophism of the vector space 𝐺(𝜔,𝑑)(𝐷𝑅′ ×

Ώ)  for every 0 < 𝑅′ < 𝑅.  Its inverse is defined by: 

𝑃−1(𝑢)(𝑡, 𝑥) = �
𝑡𝑘

𝑘!
𝑘∈ℕ

 
𝐷𝑡𝑘𝑢(0, 𝑥)
𝑃(𝑘)

 . 
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 In replacing 𝑧 by 𝑃−1(𝑧) in equation (3) and  noting again 𝑧 by 𝑢, then equation (3) is 
equivalent to:  

𝑢 = � 𝑎(𝑙,𝛼)(𝑡, 𝑥) 𝑡𝜐+1+𝑙−𝜇
(𝑙,𝛼)𝜖𝐸

𝐷𝑡𝑙𝑡𝜇𝐷𝛼𝑃−1(𝑢) + 𝑔                                         (4) 

 Thus, the resolution of the Cauchy problem (1) is reduced to looking for the fixed points of 
the map 𝐹  defined by:       

𝐹(𝑢) = 𝐻(𝑢) + 𝑔                                                                                                   (5) 
where the operator 𝐻 is defined by 

𝐻(𝑢) = � 𝑎(𝑙,𝛼)(𝑡, 𝑥) 𝑡𝜐+1+𝑙−𝜇
(𝑙,𝛼)𝜖𝐸

𝐷𝑡𝑙𝑡𝜇𝐷𝛼𝑃−1(𝑢)                                         (6) 

 This takes us to introduce a Banach space associated to a majorant function where we 
establish that the map 𝐹 is strictly contracting so we can apply the Banach fixed point theorem. We 
bring a new majorant function in this work compared to [3], we consider the majorant function of  [9] 
and we apply the same technique introduced in [4], it concerns the introduction of the parameter 𝜌 
which allows us to simplify the proof presented in [3]. 

B. Banach space   ∁
𝛷𝜌,𝜌𝑅,𝜁
𝑑

𝜔,∞ (𝛺𝑅)  

 Let 𝐷 be an open neighborhood of the origine in ℂ and Φ be the formal serie 𝛷 = 𝛷(𝑡, 𝑥) =
∑ 𝛷𝛼𝛼∈ℕ𝑛 (𝑡) 𝑥

𝛼

𝛼!
 where 𝛷𝛼 is an entire serie ≫ 0 which converges in 𝐷. 

 For any function  𝑢 ∈ ∁𝜔,∞(𝑈 × Ώ), the relation  𝑢 ≪ 𝛷 is defined in [10] by  
𝑢 ≪ 𝛷 ⇔ (∀𝛼 ∈ ℕ𝑛),    (∀𝑥 ∈ Ω),    𝐷𝛼𝑢(𝑡, 𝑥) ≪ 𝛷𝛼(𝑡). 

 Let 𝑅 > 0. For a parameter 𝜌 > 0, we denote by  𝐷𝜌𝑅 = {𝑡 ∈ ℂ;   𝜌|𝑡| < 𝑅},  Ω𝜌,𝑅 =
𝐷𝜌,𝑅 × Ω  and we denote by convention  𝐷𝜌𝜌,𝑅 = 𝐷𝑅 ;     Ω𝜌,𝜌𝑅 = Ω𝑅 .  
 For a parameter 𝜁 = (𝜁1, … , 𝜁𝑛) ∈ (ℝ+

∗ )𝑛 and a given integer 𝑠 ≥ 𝑚, we consider the 
Gevrey formal serie 

Φ𝜌,𝜌𝑅,𝜁
𝑑 = Φ𝜌,𝜌𝑅,𝜁

𝑑 (𝑡, 𝑥) = �(𝜌𝑡)𝑝 (𝜌𝑅)𝑠′𝑝  
𝑝∈ℕ 

�𝐷𝑠𝑝𝜙𝜌𝑅,𝜁�
𝑑

(𝜁. 𝑥)
(𝑠𝑝)!

                (7) 

where 𝜁. 𝑥 = (𝜁1. 𝑥1, … , 𝜁𝑛. 𝑥𝑛);  𝑠′ = 𝑠 − 1 ≥ 0;  𝜙 is the majorant function defined by 

𝜙𝜌𝑅,𝜁(𝜁. 𝑥) = 𝑒𝜌−1(𝜁.𝑥) 1
𝜌𝑅 − 𝜁. 𝑥

 .                                                                      (8) 

 We denote by ∁
Φ𝜌,𝜌𝑅,𝜁
𝑑

𝜔,∞ (𝐷𝑅 × Ώ) the space of functions  𝑢 ∈ ∁𝜔,∞(𝐷𝑅 × Ώ) such that 

∃𝑐 ≥ 0;  𝑢 ≪ Φ𝜌,𝜌𝑅,𝜁
𝑑 . 

 ∁
Φ𝜌,𝜌𝑅,𝜁
𝑑

𝜔,∞ (𝐷𝑅 × Ώ)  with the norm  ||𝑢||Φ𝑑 = min{𝑐 ≥ 0;       𝑢 ≪ c Φ𝜌,𝜌𝑅,𝜁
𝑑 }  is a Banach 

space. 

C. Proof of the contracting of  𝐹 
For every compact set  𝐾 in Ώ of non-empty interior 𝐾°, we denote 𝐾𝑅 = 𝐷𝑅 × 𝐾°. 

If 𝜁 = (𝜁1, … , 𝜁𝑛);   𝜁′ = (𝜁′1, … , 𝜁′𝑛) ∈ (ℝ+
∗ )𝑛, we write 𝜁 ≤ 𝜁′  if  𝜁𝑗 ≤ 𝜁𝑗′  for every  1 ≤ 𝑗 ≤

𝑛 and we write  𝜁 < 𝜁′ if  (𝜁 ≤ 𝜁′ 𝑎𝑛𝑑  𝜁 ≠ 𝜁′).   
 Assume that the coefficients 𝑎(𝑙,𝛼) verify the hypothesis (2) then for any function 𝑔 ∈
𝐺(𝜔,𝑑)(ℂ × Ώ) and using some intermediate results not stated in this paper , we prove the following 
proposition. 
Proposition 1: Let 𝐾 be a fixed compact set  in Ώ of non-empty interior 𝐾° and let 𝑅 > 0 be fixed. 
Then, for 𝜌 > 0  and  𝜁 ∈ (ℝ+

∗ )𝑛 verifying  𝜌𝑅 > 1 and  𝜁 = (𝜁0, … , 𝜁0) < (1, … ,1),  there exists  
𝜌0 > 0 and a constant 𝑐 ∈]0,1[ such that: for any 𝜌 ≥ 𝜌0, there exists 𝑏𝜌 > 0 for which 

∀𝑏 ≥ 𝑏𝜌;     𝐹�𝐵(0, 𝑏)� ⊂ 𝐵(0, 𝑏) ⊂ ∁
Φ𝜌,𝜌𝑅,𝜁
𝑑

𝜔,∞ (𝐾𝑅)                                     (9) 
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∀𝑢,𝑢′ ∈ ∁
Φ𝜌,𝜌𝑅,𝜁
𝑑

𝜔,∞ (𝐾𝑅);    �|𝐹(𝑢) − 𝐹(𝑢′)|�
Φ𝑑  ≤ c �|𝑢 − 𝑢′|�

Φ𝑑               (10) 

 where 𝐵(0, 𝑏) is the closed ball of center 0 and radius 𝑏 of  ∁
Φ𝜌,𝜌𝑅,𝜁
𝑑

𝜔,∞ (𝐾𝑅). 

 Under the hypotheses of this proposition, we deduce from the fixed point theorem that the 
map 𝐹 admits a unique fixed point in ∁

Φ𝜌,𝜌𝑅,𝜁
𝑑

𝜔,∞ (𝐾𝑅).  

D. Construction of the fixed point of  𝐹  in Ώ𝑅 
 In the rest of  the proof we fix 𝜁 = (𝜁0, … , 𝜁0) < (1, … ,1).  

 For the construction of the fixed point of  𝐹  in Ώ𝑅, we use the three following statements. 
Lemma 3: Let  𝑅 > 0  and let  𝐾 be a compact set in Ώ of non-empty interior 𝐾°.   For any 𝜌,𝜌′ >
0 such that 𝜌 ≥ 𝜌′ we have 

∁
Φ𝜌,𝜌𝑅,𝜁
𝑑

𝜔,∞ (𝐾𝑅) ⊂ ∁
Φ𝜌′,𝜌′𝑅,𝜁
𝑑

𝜔,∞ (𝐾𝑅) 

 and the canonical function of the inclusion is continuous of norm inferior to 1. 
Proposition 2: Let  �𝐾𝑗�𝑗∈ℕ  be an exhaustive sequence of compact sets in Ώ, then there exist an 

increasing sequence of positive numbers 𝜌𝑗 = 𝜌𝐾𝑗  and a sequence  �𝑢𝑗�𝑗∈ℕ  of fixed points of 𝐹 
such that 

i) 𝑢𝑗  is unique in  ∁
Φ𝜌𝑗,𝜌𝑗𝑅,𝜁
𝑑

𝜔,∞ �𝐷𝑅 × 𝐾𝑗°�, 

ii) 𝑢𝑗 ∈ ⋂ ∁
Φ𝜌,𝜌𝑅,𝜁
𝑑

𝜔,∞ �𝐷𝑅 × 𝐾𝑗°�𝜌≥𝜌𝑗 . 

Lemma 4: There exists a unique fixed point 𝑢 of the strictly contracting 𝐹 defined in 𝐷𝑅 × Ω 
satisfying  

(∀𝑗 ∈ ℕ),       𝑢 ∕ 𝐾𝑗° ∈ � ∁
Φ𝜌,𝜌𝑅,𝜁
𝑑

𝜔,∞ �𝐷𝑅 × 𝐾𝑗°�
𝜌≥𝜌𝑗

. 

              Next, we prove that this solution 𝑢 defined in 𝐷𝑅 × Ω in lemma 4 is in the class 
𝐺(𝜔,𝑑)(𝐷𝑅 × Ώ). Then, using the priciple of analytic continuation we show for every 𝑅 > 0, the 
uniqueness of this fixed point of 𝐹 in the class  𝐺(𝜔,𝑑)(𝐷𝑅 × Ώ).  
E. End of the proof of theorem 1 

         For every 𝑅 > 0, the map 𝐹 admits a unique fixed point 𝑢𝑅 in 𝐺(𝜔,𝑑)(𝐷𝑅 × Ώ). Then, 
 using the reattachment of the solutions 𝑢𝑅, we define a unique fixed point of 𝐹 in  
𝐺(𝜔,𝑑)(ℂ × Ώ). 

To complete the proof of the theorem 1, we take 𝑡𝜇𝑢 +  ∑ 𝑡𝑗

𝑗!
𝜇−1
𝑗=0 𝑤𝑗  as the unique solution in 

𝐺(𝜔,𝑑)(ℂ × Ώ) of the Cauchy problem (1). 

Conclusion 
This technique of introducing the parameter 𝜌 > 0,  allows us to define new majorant 

functions in this paper to simplify the proof given in [3]. We have also used this same technique in [5] 
with success to study some nonlinear equations of Fuchs type in this same class of Gevrey. Also we 
have used this technique in [4] to simplify the proof of [9] for linear Fuchsian operators with several 
variables.  
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