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Abstract: 
This paper presents a finite-difference analysis of stresses and displacements of the plane elastic 

problems of orthotropic materials. Starting from the Airy stress function, we assume that in the case 
of orthotropic materials there is a function ),( yxΨ  the partial derivatives of which determine the 
specific deformations with the material equations. We also use a potential function of the 
displacements, the partial derivatives of which lead to the stress fields with the help of the material 
equations. This will make the prescription of the mixed boundary conditions possible. Therefore, the 
description of the boundary conditions under the form of prescribed stresses (of the load distribution 
on the boundary) becomes possible, because there is a direct relation (differential equations) between 
the displacements and stresses. 
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Introduction 
      In the linear elasticity theory it is assumed that the relations between stress and deformations are 
linear. This relation can be described by the formula  
 { } [ ] { }εσ ⋅= E , (1) 
     where [ ]E   is the elasticity matrix, a 6-by-6 matrix, which contains 36 material constants (Szalai, 
1994).  

For orthotropic materials in plane stress state, and in plain strain state, the two elasticity matrices 
[ ]E  are valid only if the directions of orthotropy coincide with the directions of the coordinate axes. 
Otherwise, the two arrays must be rotated (Curtu, 1984). Thus, the transformation leads to a full 
matrix (Kakucs, 2007) 
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E E E
E E E

 
 =  
  

E , (2) 

      of which components are: 
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 (3) 

        where θ  is the angle measured from the first direction of the orthotropy 1 to the x  axis (figure 
1.) 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 1. Orthotropic direction 
        and 
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E , (4) 

         is the matrix of elasticity in the directions of orthotropy (it has only three independent elements). 
Therefore, where the directions of orthotrophy do not coincide with the axes, the elasticity matrix 
contains nine nonzero elements and is symmetric. In the general case of plane anisotropy, the 
elasticity matrix is also a full and symmetric, but it contains six independent elements. 
Formulation for finite-difference solution 

Starting from the idea of Airy stress function, we suppose that in the case of orthotropic materials 
there is a function )y,x(Ψ  of which partial derivatives give the projections of the displacement. We 
transcribe the equilibrium equations using Hooke’s law in specific strains (considering 0fx = ), then 
with the geometrical equations, we obtain the followings (Harangus, 2012): 
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We determine the α  coefficients in such manner to get the multipliers of the partial derivatives of 
the first equation equal to zero (in this case any function Ψ  is a solution of the first equation): 
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 (7) 

Since six coefficients cannot be determined from these five equations, we must prescribe one of 
the values (Reaz, 2005). Therefore, we assign 12 =α , and the five remaining coefficients are found 
by solving the system of equations (7), which can be solved by numerical methods. With the obtained 
α  coefficients the second equilibrium equation will be the following: 

 
4 4 4 4 4

1 2 3 4 5 04 3 2 2 3 4 yf
x x y x y x y y
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, (8) 

of which solution is the potential function sought by us. The coefficients of this equation are:  

 

1 1 31 4 33

2 1 21 33 2 31 4 23 32 5 33

3 1 23 2 21 33 3 31 4 22 5 23 32 6 33

4 2 23 3 21 33 5 22 6 23 32

5 3 23 6 22

0

,
( ) ( ) ,

( ) ( ) ,
( ) ( ),

,
1.

E E
E E E E E E

E E E E E E E E
E E E E E E
E E

β α α
β α α α α
β α α α α α α
β α α α α
β α α
β

= ⋅ + ⋅
= ⋅ + + ⋅ + ⋅ + + ⋅
= ⋅ + ⋅ + + ⋅ + ⋅ + ⋅ + + ⋅
= ⋅ + ⋅ + + ⋅ + ⋅ +
= ⋅ + ⋅
= −

 (9) 



1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal               - Proceedings- 

126 
 

In case that the orthotropy directions coincide with axes x  and y , the expression of coefficients 

iβ  simplifies and solving the equation becomes easier. Thus, if the angle θ  is an integer multiple of 

the right angle, the coefficients 2β  and 4β  are equal to zero.  
The problem is ultimately reduced to solving the equation (8); we propose the solving with finite 

differences. Therefore, in the point of coordinates )y,x( , which is the point )j,i(  of the grid for 
calculating finite differences, we can write the following equation: 

54 4
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At each point of the finite-difference grid we write an equation like such. In these equations 
appear the values of Ψ  function taken in the neighboring points, resulting in a system of equations to 
be solved in the )j,i(Ψ  nodal values. 

For the boundary points, in (10) appear values of Ψ in some non-existing external nodes. These 
values also appear when we apply (10) for the nodes next to the boundary ones: these external nodes 
define a new virtual boundary beyond the physical one, increasing the number of the unknowns to be 
determined.  

The system of equations can be solved only by writing boundary conditions: we will give these 
conditions in all boundary nodes, as prescribed displacements and/or loading forces. 
The boundary conditions in the form of prescribed displacement 

For easier applicability of this method, let’s approximate the physical boundary with one which is 
made from horizontal and vertical lines adapted to the grid. In this case we define the boundary 
conditions as the projections of the displacement, as prescribed values of u  and/or v . These 
projections are obtained by deriving of function Ψ , according to the relations: 

 

2 2 2

1 2 32 2

2 2 2

4 5 62 2

,

,

u
x x y y

v
x x y y

Ψ Ψ Ψα α α

Ψ Ψ Ψα α α

∂ ∂ ∂
= ⋅ + ⋅ + ⋅

∂ ∂ ⋅∂ ∂

∂ ∂ ∂
= ⋅ + ⋅ + ⋅

∂ ∂ ⋅∂ ∂

 (11) 

If we express the value of u  from the relation (11) with centered differences, we obtain the 
following equation: 
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h k k h k

αα αΨ Ψ Ψ
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 + ⋅ − − ⋅ + ⋅ ⋅ + ⋅ + − 
 

− ⋅ − + + ⋅ + + ⋅ + + =
⋅ ⋅ ⋅ ⋅

 (12) 

For v  we obtain the same formula, the index of the α -s has to be increased by 3. 
We can observe that applying the calculus for a grid node positioned on the boundary, it will be 

based on three points that are on the imaginary boundary. The concave corners will not raise issues or 
difficulties, however in the convex corners this scheme would include a point that does not belong to 
the imaginary boundary (figure 2). 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

Fig. 2. The imaginary boundary that appears due to finite-difference approximation 
 

In this case instead of centered difference approximation, we apply the derivatives’ 
approximations with the help of forward or backward differences, depending on the corner position 
(Harangus, 2012). 
The boundary conditions in the form of loading 

Distributed stress, that loads the boundary is defined by its projections according to x  and y  
directions, noted as xp  and yp . This stress usually is described by an arbitrary function. During the 
mesh, this function is replaced by a step function (figure 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Task discretion 
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If we cut an element from the area around a boundary point, the stresses along the boundary must 
be in balance with the external loads. Therefore we can write the relations which equal the projections 
of the exterior load with the stresses along the boundary (figure 4).  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Stresses along the boundary 
 

Relations between specific stresses and strains are given by the generalized Hooke's law, the 
specific deformations and displacements of geometrical equations and the displacements and Ψ  
function by (11) formula. Thus we obtain the relation:  
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The boundary conditions are written by stresses with the help of Ψ  function derivates, rewriting 

these derivates with finite-differences. 
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We exemplify determining conditions of the contour for the vertically side on the left, as follows 
(Harangus et al, 2012): 
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where 

 

1 11 1 13 4

2 11 2 12 4 13 1 13 5
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,
,
,

.

c E E
c E E E E
c E E E E
c E E

α α
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α α

= ⋅ + ⋅
= ⋅ + ⋅ + ⋅ + ⋅
= ⋅ + ⋅ + ⋅ + ⋅
= ⋅ + ⋅

 (15) 

Conclusions 
This paper presents a finite-difference computational method for the integration of differential 

equations with partial derivatives describing the plane state of displacement or stress of the 
anisotropic materials. As shown in the paper, the problem can be expressed in stress leading to Airy 
function, which describes the second order partial differential stress field. With stress and material 
equations we can determine the specific strains. This method has the disadvantage of the impossibility 
to express directly the displacements.  

By analogy with the Airy function, we used a "potential function" of the displacement, which 
made it possible to write mixed boundary conditions. The partial derivatives of this function are equal 
with the displacements in the directions of coordinate axes. Displacement derivatives, as in the 
derivatives of superior order displacement function give specific strains and by using material 
equations these superior order derivatives will lead to the stress field. Therefore becomes possible to 
write outline conditions as distributed load shape, there is a direct relationship (differential equations) 
between displacements and stresses. These relationships are approximated by finite differences.  

In approximation with finite differences the real boundary was replaced by a boundary consisting 
of horizontal and vertical straight lines and the boundary conditions as prescribed loading led to some 
equivalence relations between loads and stresses. The denser the grid is, the more accurate the 
modeling of the load will be and the negative effects of the approximations made in the corner points 
will be more reduced. The disadvantage of this method is the fact that we can have body forces only 
in one direction.  
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