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Abstract 
The canonical method is invoked to quantize dissipative systems 

using the WKB approximation. The wave function is constructed such that 
its phase factor is simply Hamilton’s principal function. The energy 
eigenvalue is found to be in exact agreement with the classical case. To 
demonstrate our approach, the three examples considered in our previous 
work (ESJ 9(30), 70-81, 2013) are quantized in detail: the damped harmonic 
oscillator, a system with a variable mass, and a charged particle in a 
magnetic field. 
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1. Introduction 
Many advanced methods of classical mechanics deal with only 

conservative systems, although all natural processes in the physical world are 
nonconservative. Whether treated classically or quantum-mechanically, and 
whether viewed macroscopically or microscopically, the physical world 
manifests different kinds of dissipation and irreversibility. Mostly ignored in 
analytic techniques, dissipation appears in friction, Brownian motion, 
inelastic scattering, electric resistance, and many other processes in nature. 

Several attempts have been made to incorporate nonconservative 
forces into Lagrangian and Hamiltonian formulations; but those attempts 
could not give a completely consistent physical framework for these forces. 
The Rayleigh dissipation function, invoked when the frictional force is 
proportional to the velocity (Goldstein,1980), was the first to describe 
frictional forces in the Lagrangian formulation. However, in that case, 
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another scalar function was needed, in addition to the Lagrangian, to specify 
the equations of motion. At the same time, this function did not appear in the 
Hamiltonian. Accordingly, the whole process was of no use when it was 
attempted to quantize nonconservative systems.   

The most substantive work in this context was that of (Riewe, 
1996,1997), who used fractional derivatives to study nonconservative 
systems and was able to generalize the Lagrangian and other classical 
functions to take into account nonconservative effects. 

As a sequel to Riewe`s work, (Rabei,2004) used Laplace transforms 
of fractional integrals and fractional derivatives to develop a general formula 
for the potential of an arbitrary force, conservative or nonconservative. This 
led directly to the consideration of dissipative effects in Lagrangian and 
Hamiltonian formulations.           
           Most recently, dissipative systems were investigated using the 
Hamilton-Jacobi equation (HJE) (Jarab’ah,2013). This equation was solved 
using the separation-of-variables technique. The corresponding principal 
function was found. The equation of motion could then be derived from this 
function, which represented the energy of the system, in terms of the 
generalized coordinates and momenta. This, in turn, could constitute a basis 
for the so-called canonical quantization using the WKB approximation, 
thereby obtaining the corresponding Hamiltonian and Schrödinger's equation 
(Das,2005). 

The purpose of the present work is indeed to quantize dissipative 
systems using the WKB approximation. The paper is organized as follows.  
In Section 2, our Hamilton-Jacobi method for dissipative systems is 
reviewed briefly. In Section 3, the quantization of such systems using the 
WKB approximation is outlined. In Section 4, the three dissipative systems 
examined in our previous work (Jaraba’ah,2005) -- namely, the damped 
harmonic oscillator (together with the RLC circuit and a viscous liquid); a 
system with a variable mass; and a charged particle in a magnetic field – are 
quantized within this approximation.  Finally, in Section 5, the work closes 
with some concluding remarks.  

2.  Brief Review of the Hamilton-Jacobi Formalism  

 We start with the Lagrangian  

 ),(0 qqLL = ,teλ       
 (1) 

 λ :  b e i n g  s o m e  c o n s t a n t .  
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 As usual, the generalized momentum, defined by [7] 

,
i

i q
Lp
∂
∂

=  

gives the corresponding Hamiltonian Ho  in terms of the generalized 
coordinates q and generalized momenta p as 

  ).,(000 iiii pqHLqpH ≡−=      
            (2)    

Therefore, the corresponding HJE of Eq. (2) will be of the form  
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(3)    

where 

  
.

i
i q

Sp
∂
∂

=                                                                                                     

Here the generalized momenta do not appear in Eq. (3), except as derivatives 
of Hamilton's principal function S, which is a function of the N generalized 

coordinates Nqqq ,...,, 21  and the time t. 

Since VTL −≡ is the physical Lagrangian of the system, T being the 

kinetic energy and V the potential energy, it follows that 0H is the physical 
Hamiltonian representing the system's total energy: T+V (Goldstein,1980). 

The resulting action S is 

                   
.)( 0 dtHqpLdttS e∫ ∫ −== λ                                                                          

(4) 
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           Now, if S ),...,,;,...,,( 2121 NNqqq ααα is a complete integral of 
HJE, the integrals of Hamilton's equations of motion will be given by 
(Goldstein,1980)                                                                                  

 ;j
j

S β
α

=
∂
∂

   

in addition to 

             ,
j

j q
Sp

∂
∂

=                                                                                                                          

jβ  being some constants.  

           To construct HJE, we may write S in a separable form 
as(Goldstein,1980)  

                 ),(),(),,( tfqWtqS += αα      

 (5)                                                                   

Where the time-independent function W(q,α) is the so-called Hamilton's 
characteristic function.

 

Differentiating Eq. (5) with respect to t, we find that 
 

               
. 

t
f

t
S

∂
∂

=
∂
∂

        

 (6) 
 From Eq. (3), it follows that

 

              
. 0H

t
f

−=
∂
∂

         

 (7)
 

The left-hand side of this equation depends on t alone; whereas the right-
hand side depends on q alone. Each side must then be equal to a constant 
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independent of both q and t. Therefore, the time derivative tS ∂∂   in HJE 
must be a constant, usually denoted by (-α).  

 

Thus,                                                                 
 

              .),(),,( tqWtqS ααα −=        

 (8)                                                                                    
It follows that

 

 
              

.
q

W(q)q,H 0 α=







∂

∂

  

3. Quantization Using the WKB Approximation    
It is well known that HJE for dissipative systems leads naturally to 

the semiclassical approximation, namely, WKB (Rabei,2002). This is a basic 
technique for obtaining an approximate solution to Schrödinger's equation. It 
has been used since the early days of quantum mechanics for determining the 
approximate spectra of bound-state problems for certain potentials 
(Landau,1958,Alonso,1973, Griffth,1995). The quantization of classical 
systems can be achieved by the canonical method. Starting with the 
Hamiltonian, one raises the coordinates and momenta to the status of 
operators and carries out the quantization (Hasse,1975,Razavy,1977). 

For dissipative systems, the Hamiltonian operator 0Ĥ , corresponding 

to the classical function 0H , is found by using the conventional quantization 

rule and replacing the canonical momentum with .
qi

p
∂
∂

=
  The 

Schrödinger equation will then be 

);,()(
2

),(
2

22

tqqV
qmt

tqi ψψ








+

∂
∂

−=
∂

∂ 
           

(9)     

or, more explicitly,  
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;ˆ
0ψψ H

t
i =
∂
∂

  

Where 

       ).(
2

ˆ
2
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0 qV
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H +
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∂

−=


 

       The quantization procedure is realized as follows:    

Using the familiar complex form of the wave function (Merzbacher,1961) 

               





=



),(exp),( tqiStqψ ,   

the amplitude being set to unity for convenience, we have 
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S ince 0≠ψ ,  th i s  l eads  to      

       

  
 

.
22

1
2

22












+

∂
∂

−







∂
∂

=
∂
∂

− V
q
S

m
i

q
S

mt
S 

                                

(10)           In  the  l imi t 0→ :  

   













+








∂
∂

=
∂
∂

− V
q
S

mt
S

2

2
1

.                                                                

(11)        

The function S  is written as .),(),,( tqStqS ααα −=   

 Differentiating this equation with respect to t and q, and inserting the result in Eq. 
(11), we end up with  
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(12)  

Rearranging and integrating Eq. (12), we finally obtain  

( ) .)(2)( dqqVmqS ∫ −= α                        

This satisfies the canonical  relation 0)ˆˆ( 00 =+ ψpH ,  

where ;ˆ 0 ti
p

∂
∂

=


 and our quantization is  complete.  

4. Examples 

4.1 Damped Harmonic Oscillator  

        The following Lagrangian is suitable for this system in one dimension 
(Bateman,1931):  

          






 −= 222

0 2
1

2
1),,( qmqmtqqL ω  ,teλ

            

(13)                                  

Where m is the mass, andω  the frequency. 

The linear momentum is given by  

           
qm

q
Lp 

=

∂
∂

= 0 .teλ
 

Using the standard form of the Hamiltonian:  

        ,00 LqpH −=    
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we find 

       m
pH
2

2

0 =
te λ− 22

2
1 qmω+ .teλ

                

If we make the substitution 

 qy =  ,2
t

e
λ

 

then H0 can be obtained as 
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=                                                 

(14) 

The corresponding HJE takes the form   
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(15)  

It  is possible to propose that [1]  

       .),(),,( tyWtyS ααα −=                                                       

(16) 

Differentiating Eq. (16), first with respect to time and then with respect to the 

coordinate y, and substituting the results into Eq. (15), we get 

;0
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2
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=−+
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y
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(17)
 

so  tha t    
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 .2 222∫ −= dyymmW ωα                                                                                                                                                                                                                                                               

We finally obtain for the function S:                                                          

.2 222 tdyymmS αωα −−= ∫                    

(18)  

         We are now ready to obtain the equations of motion. Making use of the     
canonical transformation, we find      
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F ina l ly,  
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                        and       
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(20)   
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        We are now ready to quantize our example. Treating 0H  as an operator, 

we have   

.
2
1

2
ˆˆ 22

2

0 ym
m

p
H y ω+=  

The Schrödinger equation for a damped harmonic oscillator reads 

;0)ˆˆ( 00 =+ ψpH                                                           

(21)  or         
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Thus ,  the  Hami l tonian  becomes               









+

∂
∂

−
∂
∂ 22

2

22

2
1

2
ym

ymti
ω 

iS
e =0.                                 

(23)           In fact, 
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and the partial derivative with respect to y is                   
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With  Eq.  (25) ,  thi s  becomes    
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Putting Eqs. (24) and (27) into (23), we get       
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Taking the  formal  l imi t  ћ→0,  and  recal l ing tha t  

tdyymmS αωα −−= ∫ 2222 ,  we obta in  the  c lass ica l  HJE:                                                            

   .0
2
1)2(

2
1 22222 =+−+− ymymm
m

ωωαα                       

This satisfies Eq. (21). The quantization of the damped harmonic oscillator is 

now complete. 

           One can  fo l low the  same s teps  out l ined  in  th i s  example  

to  s tudy o ther  d i ss ipat ive  sys tems ,  such  as  the  RLC ci rcu i t  

and  a  v i scous  l iqu id ,  as  fo l lows:  

        For  the  RLC ci rcu i t ,  an  appropr ia te  Lagrangian  i s  

(Pain ,2005)   
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I t  fo l lows  tha t  
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Us ing the  same s teps  for  quant iza t ion ,  we have  the  fo l lowing 

resu l t :   
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which  sa t is f ies  the  quant iza t ion  condi t ion .  

         For a viscous liquid in a tube, we have the following Lagrangian(Pain,2005): 
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where l is the length of the  liquid column, g is the gravitational  acceleration 

taken here as  constant, and q  represents the variations in  the liquid height. 

I t s  Hami l tonian  i s  given  by 
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The  quant iza t ion  resu l t  i s  
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4.2 System with a Variable Mass  

  A suitable Lagrangian for this system is(Razavy,2005): 

       
.

2
1),,( 2 
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(30)   

Suppose that the mass changes with time according to     

         0mm = .teλ
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(31)              

Clearly, the damping factor here arises from the variation of the mass with time.         

     The linear momentum is given by       

        qmp 0= .teλ
                                                                                                         

The usual treatment gives  
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and HJE is  
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  Further, the principal function takes the form  
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The corresponding HJE takes the form  
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      From Eq. (33), it follows that 
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 Now, using 0H  and p as operators, we have the Schrödinger equation                                                                                                         
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But 
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 Putting the above equations into Eq. (40), it is easy to show that  in the limit  ћ→0, 
we will satisfy the canonical relation; and our quantization is complete. 

4.3  A Charged  Par t ic le  in  a  Magnet ic  Fie ld  

         As a final example, consider the motion in two dimensions of a charged 
particle under the influence of a central force potential, V=kr2/2, as well as an 
external constant magnetic field perpendicular to the plane of motion: 

kBB ˆ
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The vector potential is 
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The Lagrangian is (Goldstein,1980) 
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   In  the  presence  of  damping ef fec t s ,  the  Lagrangian  becomes
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To simplify, polar coordinates are used: 
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The final form of the Lagrangian is  
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The Hamiltonian is   
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the corresponding HJE is 
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Sinceθ  is a cyclic coordinate, the conjugate momentum must be constant:
 

.γ
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∂
∂

=
SP  To simplify, we choose .0=γ  

The corresponding HJE then reduces to 
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Now, using a change of variables ,2
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            We can quantize the above system by applying the usual rules of canonical 

quantization. Specifically, we may construct Schrödinger's equation from the 

Hamiltonian:                                   

                   


iS

e
ti

Cy
ym 














∂
∂

++
∂

∂− 2

2

22

2 =0.                                                                         

(48)                   Using   



European Scientific Journal   December 2013  edition vol.9, No.36  ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 
  

153 
 

 
 t∂
∂ 

),( tyiS
e  ;)( ψα−=



i
                                                   (49)      

                             

2

2

y∂
∂ 

),( tyiS
e  ;1

2

22

2 y
Si

y
S

∂
∂

+







∂
∂−

= ψψ


                                    (50)
 

 so after some algebra and cancellation, taking the semiclassical limit ћ→0,we get                                                 

     .0)ˆˆ( 00 =+ ψpH
 

5. Conclusion  

            This work has focused on quantizing dissipative systems using the 
WKB approximation. The Hamilton-Jacobi function is used to construct a 
suitable wave function for such systems. 

To test our proposed method, and to get a somewhat deeper 
understanding, we have examined three examples: the damped harmonic 
oscillator (together with two "variants": the RLC circuit and a viscous 
liquid); a system with a variable mass; and a charged particle in a magnetic 
field. Our formalism may shed further light on such systems as two 
interacting particles moving in a viscous medium, and the classical radiating 
electron, among others.             
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