B(E2) VALUE OF ${ }^{82} \mathrm{Se},{ }^{84} \mathrm{Kr}$ AND ${ }^{86} \mathrm{Sr}$ ISOTONES FOR N=48 BY USING INTERACTING BOSON MODEL-1.

Jobaidul Islam
Md. Didarul Islam Bhuyan
Obaydur Rahman
Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Bangladesh
\section*{Md. Habibur Rahman}
Department of Physics, Shah Jalal University of Science \& Technology, Bangladesh

Abstract

The reduced transition probability B(E2) \downarrow of ${ }^{82} \mathrm{Se},{ }^{84} \mathrm{Kr}$ and ${ }^{86} \mathrm{Sr}$ isotones has been studied by using the Interacting Boson Model-1(IBM-1). Using this model the reduced transition probabilities $\mathrm{B}(\mathrm{E} 2)$ of these isotones have been calculated for the gamma transition from $8^{+} \rightarrow 6^{+}, 6^{+} \rightarrow 4^{+}, 4^{+} \rightarrow$ 2^{+}and $2^{+} \rightarrow 0^{+}$states. For the first 4^{+}and 2^{+}excited states, the excitation energy ratio ($\mathrm{R}_{4 / 2}$) has been also calculated.

Keywords: Reduced transition probabilities, ${ }^{82} \mathrm{Se},{ }^{84} \mathrm{Kr}$ and ${ }^{86} \mathrm{Sr}$ isotones, IBM-1.

1. Introduction

Arima and Lanchello has invented the Interaction Boson Model-1(IBM-1) (F Iachello and A Arima, 1975; A Arima and F Iachello, 1975). This model is helpful to describe the nuclear structure predicting the lowlying states. In this model the first approximation is only pairs with angular momentum $\mathrm{L}=0$ (called s-bosons) and $\mathrm{L}=2$ (called d-bosons) are considered. This model is also associated with an inherent group of structure, which allows the limiting symmetries called $\mathrm{U}(5), \mathrm{SU}(3)$ and $\mathrm{O}(6)$ (F Iachello and A Arima, 1975; A Arima and F Iachello, 1975; R Kumar et al., 2010)

In the previous time, $\pi g_{9 / 2}^{-4}$ configurations for the $\mathrm{Z}=50$ closed shell, the yrast states $I^{\pi}=8^{+}$in $Z=46$ isotopes were investigated. The investigation for even-even nuclei $\mathrm{Z}=46$, which have been studied both theoretically and
experimentally because they exist near the magic number 50 (Y B Wang and J Rissanen, 2012; R Krucken et al., 2001; K B Moore et al., 1999; X O Zhang et al., 2001; H Hua et al., 2003).

Neutron rich nuclei are particularly interesting since they might excess of neutron. The yrast state up to $\mathrm{I}^{\pi}=8^{+}$in $\mathrm{N}=48$ isotones can be ascribed to the two-hole state $v g_{g / 2}^{-2}$ for the $\mathrm{N}=50$ close shell. Neutron rich nuclei study is more important because the configurations $\mathrm{vg}_{9 / 2}^{-2}$ are closer than that of $\pi g_{9 / 2}^{-4}$ to the magic number 50. Recently, Abdullah et. al has studied the reduce transition probability $\mathrm{B}(\mathrm{E} 2) \downarrow$ and other parameters of 8^{+} isomers even-even nuclei from ${ }^{76} \mathrm{Ni}$ to ${ }^{94} \mathrm{Pd}$ for $\mathrm{N}=48$ for the energy $8^{+} \rightarrow 6^{+}$ (H. Y. Abdullah et al, 2001). In this study, we have calculated the reduced transition $\mathrm{B}(\mathrm{E} 2)$ of the 8^{+}isomers in the $\mathrm{N}=48$ isotones ${ }_{34}^{82} \mathrm{Se}_{48},{ }_{36}^{84} \mathrm{Kr}_{48}$, ${ }_{38}^{86} S r_{48}$ for the $8^{+} \rightarrow 6^{+}, 6^{+} \rightarrow 4^{+}, 4^{+} \rightarrow 2^{+}$and $2^{+} \rightarrow 0^{+}$states using IBM-1.

2. Theoretical calculation

2.1 Reduced transition probabilities B(E2)

We have calculated the reduced transition probabilities $\mathrm{B}(\mathrm{E} 2)$ from the reduced matrix elements of the E 2 transition operator $\left(\mathrm{T}^{\mathrm{E} 2}\right)$ of the form (A Arima and F Iachello, 1975).
$T^{E 2}=\alpha_{2}\left[d^{*} s+s^{*} d\right]^{(2)}+\left[d^{*} d\right]^{(2)}$
Where α_{2} is the role of effective boson charge and the low -lying levels of even-even ($L_{i}=2,4,6,8, \ldots$) decay E2 transition to the lower yrast states with $L_{f}=L_{i}-2$. IBM-1 gives the reduced transition probabilities $\mathrm{B}(\mathrm{E} 2) \downarrow$ for the $\mathrm{U}(5)-\mathrm{O}(6)$ (O Scholten and F Iachello, 1978) by
$B(E 2 ; L+2 \rightarrow L) \downarrow=\frac{1}{4} \alpha_{2}^{2}(L+2)(2 N-L)$
Where N is the boson number and L is the translate state. The boson number N is equal to half the number f valence nucleons. Here α_{2}^{2} has been determined from the experimental value $\mathrm{B}(\mathrm{E} 2)$ of transition $\left(8^{+} \rightarrow 6^{+}\right)$. The parameter α_{2}^{2} has been also calculated for each isotones which means square of the effective charge. The calculated value is used for the transition of 8^{+} $\rightarrow 6^{+}, 6^{+} \rightarrow 4^{+}, 4^{+} \rightarrow 2^{+}$and $2^{+} \rightarrow 0^{+}$states.

3. Result and discussion

Table shows the boson number, transition levels and the downward reduced transition probabilities $\mathrm{B}(\mathrm{E} 2) \downarrow$ for the $8^{+} \rightarrow 6^{+}, 6^{+} \rightarrow 4^{+}, 4^{+} \rightarrow 2^{+}$ and $2^{+} \rightarrow{ }^{0+}$ states of ${ }_{34}^{82} S e_{48},{ }_{36}^{84} \mathrm{Kr}_{48},{ }_{38}^{86} \mathrm{Sr}_{48}$ isotones. The pair of valence nucleons is boson. And the boson number is calculated as the sum of pairs of
valence nucleons. Total bosons is $\mathrm{N}=\left(\mathrm{N}_{\mathrm{P}}+\mathrm{N}_{\mathrm{n}}\right) / 2=\mathrm{n}_{\pi}+\mathrm{n}_{v}$. Where N_{p} is valence proton and N_{n} is valence neutron. $\mathrm{n} \pi$ is the pair of valence proton and $n v$ is pair of valence neutron. From the experimental value of B(E2) \downarrow from $8+\rightarrow 6+$ transition, the reduced transition probabilities of $6^{+} \rightarrow 4^{+}, 4^{+}$ $\rightarrow 2^{+}, 2^{+} \rightarrow 0^{+}$transitions of ${ }_{34}^{82} S e_{48},{ }_{36}^{84} K r_{48},{ }_{38}^{86} S r_{48}$ isotones using IBM-1 and shown in the Table.
$3.1 \mathrm{R}_{4 / 2}$ classification
The excitation energies ratio of first 4^{+}and first 2^{+}states is:
$R_{4 / 2}=\frac{E\left(4_{1}^{+}\right)}{E\left(2_{1}^{+}\right)}$
This ratio classifies the even-even nuclei (F Iachello and A Arima, 1987). The limit of the ratio $2.0 \sim 2.4$ is an harmonic vibrator $U(5), 2.4 \sim 2.7$ represents the limit of $\mathrm{O}(6), 2.7 \sim 3.0$ shows the transitional nuclei and the limit $3.0 \sim 3.3$ indicates an axially symmetric rotor $\operatorname{SU}(3)$. The variation of R4/2 values are plotted as a function of even-even proton numbers of ${ }_{34}^{82} \mathrm{Se}_{48}$, ${ }_{36}^{84} K r_{48},{ }_{38}^{86} S r_{48}$ isotones in figure.
Table: Reduced transition probability B(E2) $\downarrow{ }_{\text {in }}{ }^{82} S e_{48},{ }_{36}^{84} K r_{48},{ }_{38}^{86} S r_{48}$ nuclei (Habibur Rahman, 2010).

Nuclei.	Boson (\#)	\mathbf{L}^{+}	${\underset{\text { Energy }}{\text { exp }}} /$	Transition level	$\begin{aligned} & \mathbf{E}_{\gamma} \\ & (\mathrm{keV}) \end{aligned}$	$\begin{aligned} & \text { B(E2) } \\ & \text { /w.u. } \\ & * * \end{aligned}$	$\begin{aligned} & \text { B(E2) } \text { IBM-1 } \\ & \text { /w.u. } \end{aligned}$
${ }^{82} \mathrm{Se}$	4	$\begin{aligned} & \hline 2 \\ & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 655 \\ & 1735 \\ & 3145 \\ & 3519 \\ & \hline \end{aligned}$	$\begin{aligned} & 2^{+} \rightarrow 0^{+} \\ & 4^{+} \rightarrow 2^{+} \\ & 6^{+} \rightarrow 4^{+} \\ & 8^{+} \rightarrow 6^{+} \end{aligned}$	$\begin{aligned} & 655 \\ & 1080 \\ & 1410 \\ & 374 \\ & \hline \end{aligned}$	0.53(3)	$\begin{aligned} & \hline 0.53 \\ & 0.795 \\ & 0.795 \\ & 0.53 \end{aligned}$
${ }^{84} \mathrm{Kr}$	5	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 882 \\ & 2095 \\ & 3173 \\ & 3236 \\ & \hline \end{aligned}$	$\begin{aligned} & 2^{+} \rightarrow 0^{+} \\ & 4^{+} \rightarrow 2^{+} \\ & 6^{+} \rightarrow 4^{+} \\ & 8^{+} \rightarrow 6^{+} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 882 \\ & 1213 \\ & 1078 \\ & 63 \\ & \hline \end{aligned}$	2.33(6)	$\begin{aligned} & 1.456 \\ & 2.33 \\ & 2.621 \\ & 2.33 \\ & \hline \end{aligned}$
${ }^{86} \mathrm{Sr}$	6	8 2 4 6 8	$\begin{aligned} & 1077 \\ & 2230 \\ & 2857 \\ & 2956 \\ & \hline \end{aligned}$	$\begin{aligned} & 2^{+} \rightarrow 0^{+} \\ & 4^{+} \rightarrow 2^{+} \\ & 6^{+} \rightarrow 4^{+} \\ & 8^{+} \rightarrow 6^{+} \end{aligned}$	$\begin{aligned} & \hline 1077 \\ & 1153 \\ & 627 \\ & 99 \end{aligned}$	2.83(10)	$\begin{aligned} & 1.415 \\ & 2.358 \\ & 2.833 \\ & 2.83 \\ & \hline \end{aligned}$

* Habibur Rahman, 2010; ** H. Y. Abdullah et al. 2001.

Figure: Variation of $\mathrm{R}_{4 / 2}$ values versus proton number of ${ }^{84}{ }^{82} S_{48},{ }_{46}^{84} K r_{48},{ }_{38}^{86} S_{48}$ isotones.

4. Conclusion

Here we have used the IBM-1 to calculate the reduced transition probability $\mathrm{B}(\mathrm{E} 2) \downarrow$ for the $\mathrm{B}(\mathrm{E} 2) \downarrow$ in ${ }^{34} S e_{48},{ }_{36}^{84} K r_{48},{ }^{86} S r_{48}$ nuclei. The analytical calculation of IBM-1 $\mathrm{B}(\mathrm{E} 2) \downarrow$ values of these isotones have been performed in $\mathrm{U}(5)-\mathrm{O}(6)$ character. This result is very much helpful for compiling the nuclear data table.

References

A Arima and F Iachello, Collective Nuclear States as Representations of a SU(6) Group, Phys. Rev. Lett. 35 1069, 1975.
F Iachello and A Arima, Boson symmetries in vibrational nuclei, Phys. Lett. B 53309 (1974)
F Iachello and A Arima, The Interacting Boson Model , Cambridge: Cambridge University Press, 1987.
H Hua et al., The sudden onset of the band crossing for the aligned $\pi \mathrm{g} 9 / 2$ orbitals: a possible transition of a triaxial shape from prolate to oblate, Phys. Lett. B 562 201, 2003.
Habibur Rahman, MS Thesis, Systematic study of $\left(\mathrm{vg}_{9 / 2}^{-2}\right)_{8^{+}}$isomers in ${ }^{80} \mathrm{Ge},{ }^{82} \mathrm{Se},{ }^{84} \mathrm{Kr},{ }^{86} \mathrm{Sr},{ }^{88} \mathrm{Zr},{ }^{90} \mathrm{Mo},{ }^{92} \mathrm{Ru}$ and ${ }^{94} \mathrm{Pd}$ nuclei, 2010.
H. Y. Abdullah et al.; Calculation of 8^{+}Isomers of even-even Nuclei from ${ }^{76} \mathrm{Ni}$ to ${ }^{94} \mathrm{Pd}$ for $\mathrm{N}=48$ Neutrons, 6(4) 901-7, 2001.

K B Moore et al., High-spin states in neutron-rich even-even Pd isotopes, J. Phys. G: Nucl. Part Phys. 25 2253, 1999.
O Scholten and F Iachello, Interacting boson model of collective nuclear states. III-The transition from SU(5) to SU(3), Annals Phys. 115 325, 1978.
R Krucken et al., Spectroscopy of ${ }^{112} \mathrm{Pd}$ in heavy-ion-induced Fission, Eur. Phys. J A 10 151, 2001.
R Kumar, S Sharma and J B Guta, Character of quasi-bands in 150sm using IBM , Arm. J. Phys. 3 150, 2010.
X O Zhang et al., Observation of a vh11/2 pair alignment in neutronrich ${ }^{18} \mathrm{Pd}$, Phys. Rev. C 63027302 , 2001.
Y B Wang and J Rissanen, Collective properties of neutron-rich Ru, Pd and Cd isotopes, Hyerfine Int. doi: 10 1007/s10751-012-0615-6, 2012.

