B(E2) VALUE OF ⁸²Se, ⁸⁴Kr AND ⁸⁶Sr ISOTONES FOR N=48 BY USING INTERACTING BOSON MODEL-1.

Jobaidul Islam Md. Didarul Islam Bhuyan Obaydur Rahman

Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Bangladesh

Md. Habibur Rahman

Department of Physics, Shah Jalal University of Science & Technology, Bangladesh

Abstract

The reduced transition probability $B(E2)\downarrow$ of ⁸²Se, ⁸⁴Kr and ⁸⁶Sr isotones has been studied by using the Interacting Boson Model-1(IBM-1). Using this model the reduced transition probabilities B(E2) of these isotones have been calculated for the gamma transition from $8^+ \rightarrow 6^+$, $6^+ \rightarrow 4^+$, $4^+ \rightarrow 2^+$ and $2^+ \rightarrow 0^+$ states. For the first 4^+ and 2^+ excited states, the excitation energy ratio ($R_{4/2}$) has been also calculated.

Keywords: Reduced transition probabilities, ⁸²Se, ⁸⁴Kr and ⁸⁶Sr isotones, IBM-1.

1. Introduction

Arima and Lanchello has invented the Interaction Boson Model-1(IBM-1) (F Iachello and A Arima, 1975; A Arima and F Iachello, 1975). This model is helpful to describe the nuclear structure predicting the low-lying states. In this model the first approximation is only pairs with angular momentum L = 0 (called s-bosons) and L = 2 (called d-bosons) are considered. This model is also associated with an inherent group of structure, which allows the limiting symmetries called U(5), SU(3) and O(6) (F Iachello and A Arima, 1975; A Arima and F Iachello, 1975; R Kumar et al., 2010)

In the previous time, $\pi g_{9/2}^{-4}$ configurations for the Z=50 closed shell, the yrast states $I^{\pi} = 8^+$ in Z=46 isotopes were investigated. The investigation for even-even nuclei Z=46, which have been studied both theoretically and experimentally because they exist near the magic number 50 (Y B Wang and J Rissanen, 2012; R Krucken et al., 2001; K B Moore et al., 1999; X O Zhang et al., 2001; H Hua et al., 2003).

Neutron rich nuclei are particularly interesting since they might excess of neutron. The yrast state up to $I^{\pi} = 8^+$ in N=48 isotones can be ascribed to the two-hole state $vg_{9/2}^{-2}$ for the N=50 close shell. Neutron rich nuclei study is more important because the configurations $vg_{9/2}^{-2}$ are closer than that of $\pi g_{9/2}^{-4}$ to the magic number 50. Recently, Abdullah et. al has studied the reduce transition probability B(E2) \downarrow and other parameters of 8^+ isomers even-even nuclei from ⁷⁶Ni to ⁹⁴Pd for N=48 for the energy $8^+ \rightarrow 6^+$ (H. Y. Abdullah et al, 2001). In this study, we have calculated the reduced transition B(E2) of the 8^+ isomers in the N=48 isotones $\frac{82}{34}Se_{48}$, $\frac{84}{36}Kr_{48}$, $\frac{86}{38}Sr_{48}$ for the $8^+ \rightarrow 6^+$, $6^+ \rightarrow 4^+$, $4^+ \rightarrow 2^+$ and $2^+ \rightarrow 0^+$ states using IBM-1.

2. Theoretical calculation

2.1 Reduced transition probabilities B(E2)

We have calculated the reduced transition probabilities B(E2) from the reduced matrix elements of the E2 transition operator (T^{E2}) of the form (A Arima and F Iachello, 1975).

$$T^{E2} = \alpha_2 \left[d^* s + s^* d \right]^{(2)} + \left[d^* d \right]^{(2)}$$
(1)

Where α_2 is the role of effective boson charge and the low –lying levels of even-even (L_i = 2,4,6,8,....) decay E2 transition to the lower yrast states with L_f = L_i – 2. IBM-1 gives the reduced transition probabilities B(E2) \downarrow for the U(5)-O(6) (O Scholten and F Iachello, 1978) by

$$B(E2; L+2 \to L) \downarrow = \frac{1}{4} \alpha_2^2 (L+2)(2N-L)$$
(2)

Where N is the boson number and L is the translate state. The boson number N is equal to half the number f valence nucleons. Here α_2^2 has been determined from the experimental value B(E2) of transition $(8^+ \rightarrow 6^+)$. The parameter α_2^2 has been also calculated for each isotones which means square of the effective charge. The calculated value is used for the transition of $8^+ \rightarrow 6^+$, $6^+ \rightarrow 4^+$, $4^+ \rightarrow 2^+$ and $2^+ \rightarrow 0^+$ states.

3. Result and discussion

Table shows the boson number, transition levels and the downward reduced transition probabilities B(E2) \downarrow for the $8^+ \rightarrow 6^+$, $6^+ \rightarrow 4^+$, $4^+ \rightarrow 2^+$ and $2^+ \rightarrow {}^{0+}$ states of ${}^{82}_{34}Se_{48}$, ${}^{84}_{36}Kr_{48}$, ${}^{86}_{38}Sr_{48}$ isotones. The pair of valence nucleons is boson. And the boson number is calculated as the sum of pairs of

valence nucleons. Total bosons is $N = (N_P + N_n)/2 = n_{\pi} + n_v$. Where N_p is valence proton and N_n is valence neutron. $n\pi$ is the pair of valence proton and nv is pair of valence neutron. From the experimental value of B(E2) \downarrow from $8+ \rightarrow 6+$ transition, the reduced transition probabilities of $6^+ \rightarrow 4^+$, $4^+ \rightarrow 2^+$, $2^+ \rightarrow 0^+$ transitions of ${}^{82}_{34}Se_{48}$, ${}^{84}_{36}Kr_{48}$, ${}^{86}_{38}Sr_{48}$ isotones using IBM-1 and shown in the Table.

 $3.1 R_{4/2}$ classification

The excitation energies ratio of first 4^+ and first 2^+ states is:

 $R_{4/2} = \frac{E(4_1^+)}{E(2_1^+)}$

This ratio classifies the even-even nuclei (F Iachello and A Arima, 1987). The limit of the ratio 2.0~2.4 is an harmonic vibrator U(5), 2.4~2.7 represents the limit of O(6), 2.7~3.0 shows the transitional nuclei and the limit 3.0~3.3 indicates an axially symmetric rotor SU(3). The variation of R4/2 values are plotted as a function of even-even proton numbers of ${}^{82}_{34}Se_{48}$, ${}^{84}_{36}Kr_{48}$, ${}^{86}_{38}Sr_{48}$ isotones in figure.

Table: Reduced transition probability $B(E2)\downarrow in {}^{82}_{34}Se_{48}$, ${}^{84}_{36}Kr_{48}$, ${}^{86}_{38}Sr_{48}$ nuclei (Habibur Rahman, 2010).

Nuclei.	Boson (#)	\mathbf{L}^+	Energy _{exp} / keV *	Transition level	E _γ (keV)	B(E2) /w.u. **	B(E2) _{IBM-1} /w.u.
⁸² Se	4	2	655	$2^+ \rightarrow 0^+$	655	**	0.53
~~		4	1735	$4^+ \rightarrow 2^+$	1080		0.795
		6	3145	$6^+ \rightarrow 4^+$	1410		0.795
		8	3519	$8^+ \rightarrow 6^+$	374	0.53(3)	0.53
⁸⁴ Kr	5	2	882	$2^+ \rightarrow 0^+$	882		1.456
		4	2095	$4^+ \rightarrow 2^+$	1213		2.33
		6	3173	$6^+ \rightarrow 4^+$	1078		2.621
		8	3236	$8^+ \rightarrow 6^+$	63	2.33(6)	2.33
⁸⁶ Sr	6	2	1077	$2^+ \rightarrow 0^+$	1077		1.415
		4	2230	$4^+ \rightarrow 2^+$	1153		2.358
		6	2857	$6^+ \rightarrow 4^+$	627		2.833
		8	2956	$8^+ \rightarrow 6^+$	99	2.83(10)	2.83

* Habibur Rahman, 2010; ** H. Y. Abdullah et al. 2001.

Figure: Variation of $R_{4/2}$ values versus proton number of ${}^{82}_{34}Se_{48}$, ${}^{84}_{36}Kr_{48}$, ${}^{86}_{38}Sr_{48}$ isotones.

4. Conclusion

Here we have used the IBM-1 to calculate the reduced transition probability B(E2) \downarrow for the B(E2) \downarrow in ${}^{82}_{34}Se_{48}$, ${}^{84}_{36}Kr_{48}$, ${}^{86}_{38}Sr_{48}$ nuclei. The analytical calculation of IBM-1 B(E2) values of these isotones have been performed in U(5)-O(6) character. This result is very much helpful for compiling the nuclear data table.

References

A Arima and F Iachello, Collective Nuclear States as Representations of a SU(6) Group, Phys. Rev. Lett. 35 1069, 1975.

F Iachello and A Arima, Boson symmetries in vibrational nuclei, Phys. Lett. B 53 309 (1974)

F Iachello and A Arima, The Interacting Boson Model, Cambridge: Cambridge University Press, 1987.

H Hua et al., The sudden onset of the band crossing for the aligned $\pi g9/2$ orbitals: a possible transition of a triaxial shape from prolate to oblate, Phys. Lett. B 562 201, 2003.

Habibur Rahman, MS Thesis, Systematic study of $(\nu g_{9/2}^{-2})_{8^+}$ isomers in ⁸⁰Ge, ⁸²Se, ⁸⁴Kr, ⁸⁶Sr, ⁸⁸Zr, ⁹⁰Mo, ⁹²Ru and ⁹⁴Pd nuclei, 2010.
H. Y. Abdullah et al.; Calculation of 8⁺ Isomers of even-even Nuclei from

⁷⁶Ni to ⁹⁴Pd for N=48 Neutrons, 6(4) 901-7, 2001.

K B Moore et al., High-spin states in neutron-rich even-even Pd isotopes, J. Phys. G: Nucl. Part Phys. 25 2253, 1999.

O Scholten and F Iachello, *Interacting boson model of collective nuclear states. III-The transition from SU(5) to SU(3)*, Annals Phys. 115 325, 1978. R Krucken et al., Spectroscopy of ¹¹² Pd in heavy-ion-induced Fission, Eur.

R Krucken et al., Spectroscopy of ¹¹² Pd in heavy-ion-induced Fission, Eur. Phys. J A 10 151, 2001.

R Kumar, S Sharma and J B Guta, Character of quasi-bands in 150sm using IBM, Arm. J. Phys. 3 150, 2010.

X O Zhang et al., Observation of a vh11/2 pair alignment in neutronrich ¹¹⁸Pd, Phys. Rev. C 63 027302, 2001.

Y B Wang and J Rissanen, Collective properties of neutron-rich Ru, Pd and Cd isotopes, Hyerfine Int. doi: 10 1007/s10751-012-0615-6, 2012.