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Abstract 
For enhanced production of Serratiopeptidase by an actinomycete 

strain, Streoptomyces hydrogenans MGS13, optimization of fermentation 
medium was initially carried out by conventional method of ‘one-factor-at-a-
time’. Later it was optimized by applying response surface methodology. 
Interactions were studied with four variables viz. levels of dextrose, soya 
bean meal and inoculum & pH using Central Composite Design. This model 
was validated by conducting the experiments under the optimized conditions, 
which resulted in the improved Serratiopeptidase production of 254.56 
IU/mL (Predicted response 278.087 IU/mL), thus proving the validity of the 
model. Streptomyces hydrogenans MGS13 strain isolated from mangrove 
soil sediment was taken up for this study. This study demonstrates the ability 
of the strain, Streptomyces hydrogenans MGS13 for the Serratiopeptidase 
production and the application of response surface methodology with 
improved Serratiopeptidase production. The statistical experimental design is 
simple and less time consuming & is adequate to economize the 
fermentation. This is the first report on the application of response surface 
methodology for Serratiopeptidase production by an actinomycete isolate. 

 
Keywords: Streptomyces hydrogenans MGS13, central composite design 
(CCD), serratiopeptidase 
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1. Introduction 
Optimization through factorial design and response surface analysis 

is a common practice in biotechnology and various research workers have 
applied this technology for the optimization of culture conditions (Chen 
1996; Rao et al., 1993). Recent research efforts have focused on medium 
optimization and scale up for enzyme production. The medium parameters 
play a vital role in enhancing the enzyme production; the determination of 
optimal values for processing parameters such as pH, temperature, aeration 
(Harris et al., 1990), feeding rates (Bazaraa & Hassan 1996) etc. 
Traditionally medium optimization is done by ‘one-factor-at-a-time’ 
technique (Gokhade, 1991). Single variable optimization methods are tedious 
and may lead to misinterpretation of results, especially if the interaction 
effects between factors are overlooked (Wenster-Botz, 2000). This method is 
not only time consuming but also laborious and also often leads to 
incomplete understanding of the system behaviour, and resulting in 
confusion and lack of ability to predict the results. 

Limitations and drawbacks of the single factor optimization can be 
eliminated by employing response surface methodology (RSM) which is 
used to explain the combined effects of all the factors in the fermentation 
process (Elibol, 2004). Response surface methodology not only deals with 
experimental strategies but also deals with mathematical methods and 
statistical inference for constructing and exploring an appropriate functional 
relationship between process variables and set of design variables. Basically 
this optimization process involves three major steps: performing the 
statistically designed experiments, estimating the coefficients in a 
mathematical model and predicting the response and checking the adequacy 
of the model. Using the mathematical model the levels of the variables 
giving the maximum response can then calculated (Maddox and Richert, 
1977). Statistical methods have been applied for optimization of enzyme 
production (Dey et al., 2001; Francis et al., 2002; Ahuja et al., 2004; 
Kunamaneni et al., 2005). No defined medium has been established for the 
optimum production of enzymes from different microbial sources. Each 
organism has its own specific conditions for enzyme production. The use of 
reliable statistical approach is essential to develop better strategies for the 
optimization of fermentation process (Ghaly et al., 2005). 

Serratiopeptidase (E.C.3.4.24.40) belongs to a group of alkaline 
extracellular metalloprotease which hydrolyses specifically insulin B chain 
(Morihara et al., 1968). Serratiopeptidase production is influenced by media 
components, especially carbon and nitrogen sources and physical factors 
such as pH, temperature, inoculum level and incubation time. Response 
surface methodology has been used to enhance enzyme production by 
optimizing the seed and induction conditions by S.marcesens (Venil 2009). 



European Scientific Journal   April 2014  edition vol.10, No.12   ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

198 

In the present study, a new actinomycete strain, Streptomyces hydrogenans 
MGS13 has been subjected to special conditions using response surface 
methodology for enhancing the Serratiopeptidase production with optimum 
medium factors and conditions. 
  
Materials and methods: 
Actinomycetes strain and growth conditions 

The novel actinomycete strain Streptomyces hydrogenans MGS13 
was isolated from Koringa mangrove forest soil sediments and the culture 
was maintained at 4°C and subcultured monthly. Nutrient medium 
containing (g/L): soya bean meal- 13.5g; glucose – 13.5; glycerol -2.44mL; 
CaCO3– 0.9 g; tryptone -15.6 g; KH2PO4 – 2.24 g; was prepared for the 
production of Serratiopeptidase from Streptomyces hydrogenans MGS13. 
The pH of the medium was adjusted to 7.0 with 1N HCl or 1N NaOH and 
was autoclaved at 121°C for 15 minutes.  
 
Production of Serratiopeptidase enzyme: 

50 mL of nutrient broth was inoculated with 10% inoculum and was 
incubated at 28°C for 4 days. After incubation the crude enzyme was 
recovered by centrifugation of the culture broth at 8000 ×g for 10 minutes at 
4°C. The cell free supernatant was assayed for Serratiopeptidase activity.  
 
Serratiopeptidase assay: 

Assay was done as per the procedure of IP 2010;  one  unit  of   
Serratiopeptidase  is  defined  as  the  amount  of  enzyme  required  to  
liberate  one  µm  of  free  tyrosine  per  minute  under  the  specified   assay  
conditions.  
 
Optimization by response surface methodology: 

Response surface methodology is an empirical statistical modeling 
technique employed for multiple regression analysis using quantitative data 
obtained from factorial design to solve multi variable equations 
simultaneously. The medium for maximum Serratiopeptidase production has 
been first optimized by ‘one-variable-at-a-time’ approach. The medium 
composition that resulted in the highest enzyme titre was considered as the 
basal medium and used for optimization by response surface methodology 
(RSM) using Central Composite Design (CCD) (Box and Wilson, 1951; Box 
and Hunter, 1957). 

According to this design, the total number of experimental 
combinations is 2K +2K+n0, where ‘K’ is the number of independent 
variables and n0 is the number of repetitions of the experiments at the center 
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point. For statistical calculation, the variables Xi have been coded as xi 
according to the following transformation: 

xi = Xi-X0 /δX 
Where xi is dimensionless coded value of the variables Xi, X0 the value of the 
Xi at the center point, and δX is the step change. The levels of four 
independent variables, dextrose (D), soya bean meal(S), pH (P) and 
inoculum level (I) chosen for this study were optimized by the experimental 
plan. 

 
Table 1: Levels of the four components used in the Central Composite 

Design 
Variable Medium parameter Level of the component 

-2 -1 0 1 2 
D Dextrose (%w/v) 0.5 1.0 1.5 2.0 2.5 
S Soya bean meal (%w/v) 0.5 1.0 1.5 2.0 2.5 
P pH 5.0 6.0 7.0 8.0 9.0 
I Inoculum level (%v/v) 5 7.5 10 12.5 15 

 
The statistical software package ‘DESIGN-EXPERT®9.0’ Trial 

version, Stat-Ease, Inc., Minneapolis, USA was used for analyzing  the 
experimental design. Each factor in the design was studied at five different 
levels (-2, -1, 0, +1, +2) as shown in Table 1.  
 A 2K –factorial design with axial points and six replicates at the 
center point with a total number of 30 experiments was employed for 
optimizing the medium components. All the variables were taken at a central 
coded value considered as zero. The minimum and maximum levels of 
variables were investigated and the full experimental plan with respect to 
their values in actual and coded form is listed in Table 2. Upon completion 
of experiments, the average maximum Serratiopeptidase production was 
taken as the dependent variable or response(Y). A second order polynomial 
equation was then fitted to the data by a multiple regression procedure. This 
resulted in an empirical model that related the response measured to the 
independent variables of the experiment. For a four factor system the model 
equation is,  
Y=βo +β1A 
+β2B+β3C+β4D+β11A2+β22B2+β33C2+β44D2+β12AB+β13AC+β14AD 
+β23BC+β24BD +β34CD 
Where Y, predicted response; βo, intercept; β1, β2, β3, β4, linear coefficients, 
β11, β22, β33, β44, squared coefficients; β12,  β13,  β14,  β23,  β24,  β34, interaction 
coefficients. 

Design Expert Software, using the above model to optimize 
experimental components, was used to generate response surface graphs 
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Table 2: Experimental and predicted values of Serratiopeptidase yield 
recorded in the experimental setup of RSM 

 
Std Run D S P I Serratiopeptidase activity (IU/mL) 

      Actual Predicted 
1 20 -1 -1 -1 -1 54.21 59.212 
2 21 1 -1 -1 -1 67.2 83.035 
3 16 -1 1 -1 -1 79.26 95.351 
4 12 1 1 -1 -1 111.89 124.009 
5 27 -1 -1 1 -1 54.87 53.131 
6 23 1 -1 1 -1 94.76 118.334 
7 10 -1 1 1 -1 59.45 74.925 
8 18 1 1 1 -1 142.67 144.963 
9 22 -1 -1 -1 1 56.32 63.001 
10 1 1 -1 -1 1 89.34 102.304 
11 7 -1 1 -1 1 163.31 168.175 
12 24 1 1 -1 1 201.60 212.313 
13 3 -1 -1 1 1 85.42 101.740 
14 11 1 -1 1 1 189.54 182.423 
15 15 -1 1 1 1 199.43 192.570 
16 2 1 1 1 1 254.65 278.087 
17 6 -2 0 0 0 56.32 47.108 
18 9 2 0 0 0 184.65 156.448 
19 30 0 -2 0 0 66.21 49.157 
20 8 0 2 0 0 201.32 180.960 
21 14 0 0 -2 0 134.87 111.442 
22 26 0 0 2 0 185.12 171.135 
23 13 0 0 0 -2 112.43 86.812 
24 19 0 0 0 2 235.52 223.725 
25 28 0 0 0 0 210.43 219.038 
26 5 0 0 0 0 221.23 219.038 
27 29 0 0 0 0 220.54 219.038 
28 25 0 0 0 0 219.93 219.038 
29 17 0 0 0 0 221.12 219.038 
30 4 0 0 0 0 220.98 219.038 
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Table 3:ANOVA for Response Surface Quadratic model 
 

 Sum of  Mean F p-value  
Source Squares df Square Value Prob> F  
Model 1.294E+005 14 9245.54 23.25 < 0.0001 significant 
A-D 17932.85 1 17932.85 45.09 < 0.0001  
B-S 26058.18 1 26058.18 65.53 < 0.0001  

C-pH 5344.94 1 5344.94 13.44 0.0023  
D-I 28117.89 1 28117.89 70.71 < 0.0001  
AB 23.38 1 23.38 0.059 0.8117  
AC 1712.30 1 1712.30 4.31 0.0556  
AD 239.63 1 239.63 0.60 0.4497  
BC 205.78 1 205.78 0.52 0.4830  
BD 4765.83 1 4765.83 11.98 0.0035  
CD 2008.83 1 2008.83 5.05 0.0401  
A^2 23571.27 1 23571.27 59.27 < 0.0001  
B^2 18534.58 1 18534.58 46.61 < 0.0001  
C^2 10362.96 1 10362.96 26.06 0.0001  
D^2 6971.34 1 6971.34 17.53 0.0008  

Residual 5965.03 15 397.67    
Lack of Fit 5874.97 10 587.50 32.62 0.0006 significant 
Pure Error 90.06 5 18.01    
Cor Total 1.354E+005 29     
 
Results  

The results of CCD experiments for studying the effects of four 
independent variables, dextrose, soya bean meal, pH and inoculum level are 
presented in the Table 2 along with the mean predicted and observed 
response. The regression equations obtained after the analysis of variance 
(ANOVA) give the level of Serratiopeptidase produced as a function of the 
initial values of dextrose, soya bean meal, pH and inoculum level. 
The results obtained were subjected to analysis of variance on Stat-Ease 
package, with the regression model, for the prediction of Serratiopeptidase 
production. 
 
Final equation in terms of actual factors:  
Y = + 219.038 + 27.335*D + 32.95*S +14.92*P + 34.22*I + 1.208*D*S + 
10.345*D * P + 3.8700* D * I  - 3.58625* S * P  + 17.2597* S * I  + 
11.20500* P * I  - 29.31500* D^2 - 19.43* P^2 - 15.94* I^2 
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Where Y, enzyme production (IU/mL); D, dextrose concentration 
(%w/v); S, soya bean meal concentration (%w/v); P, pH; I, inoculum level 
(%v/v). 

The coefficient of determination (R2) was calculated to be 0.9559 for 
Serratiopeptidase production. The R2 value provides a measure of how much 
variability in the observed response values can be explained by the 
experimental factors and their interactions. The R2 value is always between 0 
and 1. The closer the R2 is to 1.00, the stronger the model is and the better it 
predicts the response (Haaland 1989). When expressed as a percentage, R2 is 
interpreted as the percent variability in the response explained by the 
statistical model. This implied that the sample variation of 95.59% for 
Serratiopeptidase production was attributed to the independent variables and 
only 4.41% of the total variation was not explained by the model. This 
ensured a satisfactory adjustment of the quadratic model to the experimental 
data. The purpose of statistical analysis is to determine which experimental 
factors generate signals, which are large in comparison to the noise. 
Adequate precision measures signal to noise ratio (Haaland, 1989). A ratio 
greater than 4 is desirable. An adequate precision of 16.380 for 
Serratiopeptidase production indicated for adequate signal. The predicted R2 
of 0.7491 for Serratiopeptidase yield is in reasonable agreement with the 
Adjusted R2 of 0.9148. This indicated a good agreement between the 
experimental and predicted values for the Serratiopeptidase production. The 
adjusted R2 corrects the R2 value for the sample size and for the number of 
terms in the model. If there are many terms in the model and the sample size 
is not very large, the adjusted R2 may be noticeably smaller than the R2. This 
should be a caution signal that too many terms are present in the model 
(Haaland, 1989). In this case the adjusted R2 was very close to the R2 value. 
The coefficients of regression equation were calculated using Design Expert. 

The model F-value 23.25 for Serratiopeptidase production implied 
that the model is significant as shown in Table 3. Values of ‘Prob> F’ less 
than 0.0500 indicated that the model terms are significant. For 
Serratiopeptidase production A, B, C, D, BD, CD, A2, B2, C2, D2 are 
significant model terms, A being dextrose concentration (%), B being soya 
bean meal (%), C being pH and D being inoculum level (%) respectively. 
The ‘Lack of Fit F-value’ of 32.62 for Serratiopeptidase production, implied 
the lack of fit is significant. 

The three dimensional response surface graphs were plotted by 
statistically significant model to understand the interaction of the medium 
components and their optimum values required for maximum 
Serratiopeptidase production. Analysis of variance (ANOVA) showed that 
the factor DS, DP, DI, SP were insignificant, and D (dextrose concentration), 
S (soya bean meal), p(pH) and I (inoculum level), SI, PI, D2, S2, P2, and I2 
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were significant model terms. The interactive effect of four variables at 
constant & two variables at zero level are depicted in below figures. 
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Fig. 1: Response surface graph for Serratiopeptidase production showing interaction 

between dextrose and soya bean meal, at constant pH and inoculum level at zero. 
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Fig. 2: Response surface graph for Serratiopeptidase production showing interaction 

between pH and inoculum level, at constant dextrose and soya bean meal concentration. 
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Fig. 3: Response surface graph for Serratiopeptidase production showing interaction 

between dextrose and pH, at constant inoculum level and soya bean meal concentration. 
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Fig. 4: Response surface graph for Serratiopeptidase production showing interaction 

between dextrose and inoculum level, at constant pH and soya bean meal concentration. 
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Fig. 5: Response surface graph for Serratiopeptidase production showing interaction 

between soya bean meal and pH, at constant inoculum level and dextrose concentration. 
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Fig. 6: Response surface graph for Serratiopeptidase production showing interaction 

between soya bean meal and inoculum level, at constant pH and dextrose concentration. 
 

Fig.1 shows the response plot obtained as a function of dextrose vs 
soya bean meal, while all other variables are maintained at zero level. An 
increase in Serratiopeptidase yield by 235.67 IU/ml was observed at 2.09 
(%w/v) and 2.07 (%w/v) concentrations of dextrose and soya bean meal 
respectively. Fig. 2 shows the response plot obtained as a function of pH vs 
inoculum level, while all other variables are maintained at zero level. An 
increase in Serratiopeptidase yield by 245.5 IU/ml was observed at pH 8.5 
and inoculum level at 14.5% concentration. Fig. 3 shows the response plot 
obtained as a function of dextrose vs pH, while all other variables are 
maintained at zero level. An increase in Serratiopeptidase yield by 235.155 
IU/mL was observed at pH 8.2 and dextrose concentration at 2.06 
(%w/v).Fig. 4 shows the response plot obtained as a function of dextrose vs 
inoculum level, while all other variables are maintained at zero level. An 
increase in Serratiopeptidase yield by 241.055 IU/mL was observed at 
dextrose concentration at 2.03 (%w/v) and 14.5% inoculum level. Fig. 5 
shows the response plot obtained as a function of dextrose vs pH, while all 
other variables are maintained at zero level. An increase in Serratiopeptidase 
yield by 235.155 IU/mL was observed at pH 8.2 and dextrose concentration 
at 2.06 (%w/v). Fig. 6 showed the response plot obtained as a function of 
soya bean meal vs inoculum level, while all other variables are maintained at 
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zero level. An increase in Serratiopeptidase yield by 259.91 IU/mL was 
observed at 14.5% inoculum level and soya bean meal concentration at 2.20 
(%w/v). 
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Fig. 7: Contour plot showing the maximum Serratiopeptidase yield at optimum values of the 

various variables by Streptomyces hydrogenansMGS13. 
 

The maximum experimental response for Serratiopeptidase 
production was obtained as 254.65 IU/mL whereas the predicted value is 
278.087 IU/mL indicating the strong agreement between them. The optimum 
values of the tested variables are when the dextrose concentration was 2.5%, 
Soya bean meal 2.5%, pH 9.0 and inoculum level 15%. Increasing the 
dextrose concentration to 4% led to a slight decline in Serratiopeptidase 
production, however on increasing the concentration of soya bean meal 
beyond (4%w/v), Serratiopeptidase production declined significantly and 
decline of Serratiopeptidase yield was observed when pH less than 7.0 and 
inoculum level less than 10%. This is very clear from the one factor plot of 
varying dextrose concentration with constant soya bean meal and vice versa. 
At constant dextrose concentration and soya bean meal, varied 
concentrations of pH and inoculum level on Serratiopeptidase production 
influenced significantly. The model was also validated by repeating the 
experiments under the optimized conditions, which resulted in the 
Serratiopeptidase production of 254.65 IU/mL (predicted response- 278.087 
IU/mL), thus providing the validity of the model. Similar response surface 
methodology has been used to optimize Serratiopeptidase production value 
by 279.05 IU/mL by Serratia marcescens SB08 was observed at a 
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concentration of yeast extract 3 g/L, pH 6.0, incubation time 51.0 h and 
agitation 100 rpm (Venil CK, 2009).  
 
 
Discussion 

Numerous studies were carried by various researchers to optimize the 
production of various microbial secondary metabolites by applying response 
surface methodology. The response surface methodology, a smaller and less 
time consuming experimental design, could generally satisfy the 
optimization of many microbial processes. Central Composite Design, a 
response surface methodology maximizes the amount of information that can 
be obtained, while considering the interaction of independent variables and 
limiting the numbers of individual experiments required (Chauhan and 
Gupta,  2004; Elibol, 2004; Abdel-Fattah et al., 2005). This study is an 
attempt that has demonstrated the application of a multifactorial statistical 
approach for determining the fermentation conditions that lead to the 
maximum yield of Serratiopeptidase production from Streptomyces 
hydrogenans MGS13, a novel isolate of actinomycete strain producing 
Serratiopeptidase enzyme. 

By applying response surface methodology, in Serratiopeptidase 
production by Streptomyces hydrogenans MGS13, optimum pH, inoculum 
level, dextrose and soya bean meal concentrations are found to be positive 
factors playing significant role. In this study, maximum Serratiopeptidase 
production of 254.65, when dextrose and soya bean meal concentrations at 
2.04 (%w/v) and 2.09 (%w/v) was supplemented at optimum levels. 
Production medium contains complex nutrients such as vitamins, lipids and 
other substances which might be necessary for growth and production of 
secondary metabolites. Soya bean meal and dextrose are the key nutrient 
materials which controls the biosynthesis of the Serratiopeptidase enzyme. 
This fact has also been suggested previously other enzyme production 
experiments on nitrogen repression effects (Crueger and Crueger, 1984; 
Frankena et al., 1986; Kole et al; 1988; Giesecke et al., 1991). Similar 
studies have been conducted on modelling to study pH and dextrose 
concentration on other enzyme production experiments (Tijskens et al., 
2001; Vohra and Satyanarayana, 2002). 
 
Validation  of the model 

A validation of the model and regression equation was done by 
taking D (2.04%w/v), S (2.09%w/v), P (pH 8.0) and I (12.5%) in the 
experiment. The predicted response for Serratiopeptidase was 278.087 
IU/mL and the actual response was 254.65 IU/mL, which thus proves the 
validity. 
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Conclusion 
This study using the method of factorial design and response surface 

analysis; it was possible to determine optimal cultural medium conditions to 
improve Serratiopeptidase yield. Response surface graphs and contour plots 
are very helpful in visualizing the main effects and interaction of effects. The 
optimum operational conditions obtained in this experiment give a basis for 
further study with batch or fed-batch cultivation in a bioreactor for scale up 
production of targeted secondary metabolite from Streptomyces hydrogenans 
MGS13. Thus, a multifactorial statistical approach that considers interaction 
of variables provided a basis for the model to search for a non-linear nature 
of the response in a short term experiment. 
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