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Abstract 

This paper presents a model for the creation of software systems using the example of 
a menu-select interaction system based on Communication Sequential Process (CSP) theory. 
This theory enables the specification and analysis of various patterns of communication 
between processes. The model includes the specifications of commonly used processes such 
as ‘stoppable’, ‘resettable’, ‘backtrackable’ and ‘coroutine’. Implementation of the model has 
been carried out on the basis of LISP language and it has been approved in a series of tests.  
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Introduction 
        Software systems have significantly increased in complexity and diversity in recent 
years, requiring the use of new, more efficient technological tools for their development. Most 
existing tools cannot guaranty high reliability in software products and do not allow their 
complete analysis. We propose a new model for the study of the properties of these products, 
starting from the initial description of the problems they are programmed to solve and also 
examining all stages of their development. 
        These problems can be solved using formal mathematical models which provide a 
rigorous approach to software development. However, the experience of software 
development shows that the use of formal methods in the design of software systems often 
leads to cumbersome constructions which cause a serious obstacle to the development 
process. It follows that we need to create an appropriate conceptual apparatus which will 
make these formal methods more applicable to software development in practice. Considering 
this problem, of the various tools for creating models available, the most appropriate one 
seems to be the theory of communicating sequential processes, or CSP (Hoare, 1985), which, 
by using the conceptualization of sequential processes, enables the specification and analysis 
of various patterns of communication between processes (including parallelism). The 
principles of process specification and analysis in CSP are consistent with the top – down 
method of development, and therefore permit reductions in the complexity of formal methods 
of software development by abstracting all non-essential parts of the process.  
        An advantage of using CSP facilities is that they allow the combination of formal 
methods with the programmer’s intuition to create software tools for the computer assisted 
development of software application. In particular, С.B. Jones, in his monograph (Jones, 
1980) proposed in cases of high complexity to replace the formal proof of program 
correctness by so-called correctness arguments, which can be formulated based on the 
experience and intuition of the programmer. One of the important stages of a rigorous 
approach to software development is the construction of a formal model of the application 
being created based on a suitable mathematical apparatus. In this paper we present the 
specification of a menu - select interactive system model using CSP.  
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Menu-select interaction 
        By an interactive system we mean a programming system in which interaction between 
the system and user is realized in the form of a question and answer. The main purpose of 
interactive systems is an optimization of human-machine interaction when problem solution 
cannot be completely formalized before execution, or the methods of their solution can be 
substantially improved by dialogue interconnection. The distinctive feature of this sort of 
problem is that the subsequent stages of their solution can be changed depending on the 
results of previous stages and usually cannot be chosen automatically by system programs. 
The most typical examples of systems intended to provide the above mentioned facilities, are 
managing, teaching, automatic design, information search and problem solving systems. 
       The first objective of dialogue interconnection is to prompt, invite and guide the end user 
to input all the data correctly. End users will particularly need interactive system guidance if 
they are occasional users, or if the data structure is complex. There are a number of different 
methods of providing this guidance of which the most appropriate is menus. By menu we 
mean lists of options from which the user may select by moving a cursor or entering the 
appropriate keyword. An interactive system based on the menu select interaction principle is 
called a menu-select interactive system. The most essential benefits provided by a menu select 
interactive system are the following: 
1. Menus help the user to clear the hurdle of getting started. 
2. Users do not have to type a syntactically structured request. Instead, they only select 
from a list of options.  
3. The user can go back up to any of the menus used on the previous steps to change the 
progress of problem solution. 
       The behavior of a menu–select interactive system can be modeled as a set of sequences of 
possible responses. This allows description of the menu-select interactive system model using 
CSP theory. In CSP notation these sequences are called traces. A trace is a finite sequence of 
symbols recording the actual or potential behavior of a process from its beginning up to some 
moment of time. Each symbol denotes a class of events in which a process can participate. 
       The set of symbols denoting events in which a process can participate defines the 
alphabet of a process. A process is defined by the set of all traces of its possible behavior. 
From the definition of a trace, it follows that process P with alphabet A; 
P0.  P⊆ A *, where A *denotes the set of all traces with symbols from a pre-defined alphabet 
A;   
P1. <> ∈  P , where <> denotes an empty trace; 
P2. st ∈  P =>  s ∈  P , for all st∈ A * ,where st is the concatenation of s with t 
Below we present some important definitions from CSP that will be used subsequently.   
        If s is a nonempty trace, we define s0 as its first symbol, and s’ as the result of removing 
the first symbol from s.  
        Let √ be a symbol denoting successful termination of the process. As a result, this 
symbol can appear only at the end of a trace. Let t be a trace recording a sequence of events 
which start when s has been successfully terminated. The composition of s and t is denoted (s; 
t). If  √ does not occur in s, then t cannot start. 
        If s is a copy of an initial subsequence of  t, it is possible to find some extension u of s 
such that su = t . We therefore define an ordering relation s ≤ t = df ∃ u (su=t ) and say that s is 
a prefix of t . For example, <x,y> ≤ <x, y, z> , <> < <x, y> . 
The ≤  relation is a partial ordering, and its smallest element is <>. 
        The expression (t A) denotes the trace t when restricted to symbols in the set 
A; it is formed from t simply by omitting all symbols outside A. For example,  
<a, d , c, d>   {a,c} =<a, c> . 
        The expression P0 denotes the set of first symbols of all traces in process P (initial state 
of process P). To put it formally:  P0 = df { c | < c > ∈  P }. 
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        Process FAIL = df {<>} , which does nothing, process SKIP = df {<>,<√ >}, which also 
does nothing, but unlike FAIL it always terminates successfully.  
        Let x be an event and let P be a process. Then (c → P) (called ‘c then P’) describes an 
object which first engages in the event c and then behaves exactly as described by P. The 
process (c → P) is defined to have the same alphabet as P; more formally, 
(c → P) = df {c→ s | c ∈  αP & s ∈  P }, where c→ s = df  < c > s, αP denotes an alphabet of 
process P. 
        Let P be a process and s ∈  P  then P / s (P after s) is a process which behaves the same 
as P behaves from the time after P has engaged in all the actions recorded in the trace s. 
 If s ∉ P, P / s is not defined; more formally, P / s = df {t | st ∈  P}. 
        Let P and Q be processes. The operation P | Q is defined as following:  
P | Q = df  P ∪ Q , where  α (P | Q ) = αP ∪  αQ (the choice between P and Q). 
The choice depends on which event from (P | Q)0 occurs. For example, if R=(a → P) | (b → 
Q), R/<a> =P and R/< b > = Q  
        Let P and Q be processes. Sequential composition P; Q is defined as a process which first 
behaves like P; but when P terminates successfully, (P; Q) continues by behaving as Q. If  P 
never terminates successfully, neither does (P; Q). More formally, P;Q = df { s;t | s ∈  P & t ∈  
Q }. 
     In CSP a menu select interaction can be specified as communicating process P. The initial 
menu, with a set of events, is displayed on the screen, represented as P0. After the user has 
selected one of these events, say x (x∈ P0), the subsequent interaction is defined by  
P/< x.> (P after x), i.e. (P/< x.>) 0 … . 
     A set of menus and interactive prompt representations are provided for a set of functions 
logically used together. Each symbol in the menu denotes a function, invoked after the user’s 
selection. We will make a distinction between the commonly used functions, controlling the 
interaction process, and the problem dependent functions, the choice of which can be defined 
depending on the particular sort of problems. 
     The most typical commonly used functions of the menu-select interaction are the 
following: 
functions for terminating or quitting a process; 
functions allowing the return to any of the previous steps; 
switch-functions – for switching to another process, in particular, to use another set of menus 
or  command and data entry, for which the menu technique is less suitable.       
The main objective of this paper is the specification of an abstract menu-select  
interaction on the basis of CSP, concentrating our attention on these commonly used 
functions.  
This paper investigates the following commonly used functions: 
 ‘stop’ – to terminate or quit a process; 
 2.1. ‘reset’ – to start again from the beginning of a process; 
 2.2. ‘back’  - to undo the most recent action in a process; 
 3.1. ‘off’    – to pause a process and switch to another; 
 3.2. ‘on’  – to restore the action of the most recent process interrupted by the ‘off’   - 
function. 
     The model of a menu-select interactive system is based on the specification of these 
functions, which can be described in CSP. But CSP facilities are not enough to describe a 
menu-select interaction model completely. Therefore we need to extend CSP facilities with 
new processes which define the above mentioned functions. 
      If ‘P’ is a process, let’s define the following processes: 
2.1. Stoppable (P). 
       Let ‘stop’ be a symbol not in the alphabet αP. Then a process stoppable (P) can be 
defined as a process which behaves like P, except that 
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‘stop’ is in its alphabet; 
‘stop’ is in every menu of  stoppable (P); 
when  ‘stop’ occurs, stoppable (P) terminates successfully 
       For example: 
<a, b, c, stop, √ > ∈  stoppable (P)  <a, b, c> ∈  P, where symbol √ denotes the event of a 
successful termination of the process.   
2.2.Resettable (P). 
      Let ‘reset’ be a symbol not in the alphabet αP. Define resettable (P) as a process that 
behaves 
like P, except that 
‘reset’ in its  alphabet; 
‘reset ‘ is in every menu of  resettable (P); 
when  ‘reset’ occurs, resettable (P) starts again from the beginning 
       For example: 
<a, b, reset, c, d>∈  resettable(P)  <a, b>∈  P & <c, d> ∈  P 
2.3. Backtrackable (P). 
       Let ‘back’ be a symbol not in the alphabet αP. Define backtrackable (P) as a process that 
behaves like P, except that 
‘back’ in its  alphabet; 
back is in every menu of  backtrackable (P); 
backtrackable (P)/s<x,back> = backtrackable (P)/s  provided x ≠ ‘back’ 
The intention is that ‘back’ will cancel the effect of the most recent action which has not 
already been cancelled (other than ‘back’ itself). 
       For example: 
<a, b, back,  d>∈  backtrackable (P)  < a, d >∈  P  
<a, b, c, back, back, d>∈  backtrackable (P)  < a, d >∈  P  
2.4, Coroutine (P). 
       Let (αP ∪ αQ) ∩ {off,on} = ∅ . Define coroutine (P,Q) as the following: 
initially coroutine (P,Q) starts from the process P and then 
when ‘off’  occurs it is switched to the process Q which  starts from the beginning, and then 
when ‘on’  occurs it is switched from the process Q to the process P, continuing from the 
point, at which process P had been interrupted;  
the subsequent behavior of  ‘coroutine (P,Q)’ is defined as following: 
(2.1)   when ‘off’ occurs it is switched from process P to process Q, continuing from the point 
at which process Q had been interrupted; 
the same as in (1.2). 
          The behavior of ‘coroutine (P,Q)’ can be illustrated as following: 
                 

   
Figure 1. 
 
        The coroutine (P,Q) process is an important one, because it permits the description of 
such well-known processes as lexicographic analysis and parsing in compilers, 
multiprogramming, time sharing and other important processes.  
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The specifications and properties of commonly used operations                                          
         Interactive systems are more difficult to specify and analyze than other concurrent 
systems. This is because they require the conceptualization not only of interactions between 
their subsystems, but also of the complex interactions between the user and the system. It is 
clear that the programmer’s intuition is not enough, being unreliable in cases of high 
complexity. One of the important problems in system specification and analysis is the 
definition of process properties and their proofs using a satisfactory conceptual apparatus. 
This chapter concerns the specifications and proofs of the properties of the main commonly 
used processes of menu-select interactive systems using CSP. The ‘stoppable’, ‘resettable’, 
‘backtrackable’ and ‘coroutine’ process operations are considered. These operations introduce 
new commonly used actions to supplement arbitrary menu-select applications. We stipulate 
that all processes controlled by the above mentioned commonly used operations are well 
terminating in the sense that they do not  progress  towards FAIL process. FAIL process 
represents a state after the run time errors such as divergence, deadlock and non-termination. 
A more formal definition is: 
        P is WTP (Well Terminating Process)  ∀s∈P. (P/s<>FAIL)                                                                       
This assumption is important for the implementation of operations. 
        In this paper we intend to use the following styles of process definition: 
a trace based definition, defining a process as the set of its traces; 
a derivative definition,  defining a process P by two objects: 
a set I, defining the initial state of  process P , i.e.  P0; 
a function mapping each member ‘c’ of I into a process,  defining the subsequent behavior of  
P, i.e. P/<c> 
         To prove the relevant properties it is reasonable to use the first definition style. 
Derivative definitions are useful for the implementation of processes, because they directly 
define their behavior. Below we formally define the commonly used processes based on the 
above mentioned styles of process definition. 
3.1. Definition of ‘stoppable’. 
Definition 1 (trace based). 
      stoppable (P) = df  {st | s∈P & t ∈(stop->SKIP )), where  P is WTP & stop∉αP   
Definition 2 (derivative). 
      stop∉αP& 
      (stoppable(P))0 = P0 ∪ {stop} & 
                                            SKIP, if x=stop 
      (stoppable(P))/<x>= │                                     
                                            stoppable(P/x), if x ≠ stop 
      The last definition can be adequately implemented in the form of a recursively defined 
function or procedure.                                          
3.2. Definition of ‘resettable’. 
Definition 1 (trace based). 
resettable(P) = df  {s | s∈(αP∪ {reset} )* & (∀ s1<=s) rest(s1)∈P}, where P is WTP& 
reset∉αP, rest(s)=s, if s  {reset}=<>, 
rest(s)=s2 , if s= s1<reset> s2 & s1  {reset}=<>&last(s1) ≠ √ 
last(u<a>)=a 
Definition 2 (derivative). 
       reset∉αP& 
       resettable(P) =start(P,P), where 
      (start(P,Q))0 = P0 ∪ {reset} & 
                                            start(Q, Q), if x=reset 
      (start(P,Q))/<x>= │                                     
                                            start(P/x, Q), if x ≠ reset 



European Scientific Journal  May 2014  /SPECIAL/ edition   ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 
 

151 
 

          The last definition can be adequately implemented in the form of a recursively defined 
function or procedure.   
                                    
Definition of ‘backtrackable’ 
Definition 1 (trace based). 
backtrackable(P) = df  {s | s∈(αP∪ {back} )* & (∀ s1<=s) clean(s1)∈P}, where  
P is WTP & back ∉αP, 
clean(s) =s, if s  {back}=<>,  
clean(s) = clean(s1 s2)  if s= (s1<a, back> s2) & a ∉{back, √}. 
clean(s) = clean(s1)  if s= < back> s1 
Definition 2 (derivative). 
       back∉αP& 
       backtrackable(P) =recover(P,P), where 
      (recover(P,Q))0 = P0 ∪ {back} & 
                                            Q, if x=back 
      (recover(P,Q))/<x>= │                                     
                                            recover(P/x, recover(P,Q)), if x ≠ back   
         The last definition can be adequately implemented in the form of a recursively defined 
function or procedure.                                          
 
Definition of ‘coroutine’ 
         The trace based definition of ‘coroutine’ seems to be too complicated. So here we will 
only consider a derivative style of definition: 
(P is WTP) & (Q is WTP) & (αP ∪ αQ ) ∩ {off, on} = ∅ & 
(coroutine (P,Q)) 0 = P0 ∪ {off} & 
                               coroutine1 (Q,P), if x=off  
coroutine (P,Q) = |  
                                coroutine (P/<x>,Q), if x ≠off ,   
where 
 
(coroutine1(Q, P)) 0 = Q0 ∪ {on} & 
                                  coroutine (P,Q), if x= on  
coroutine1(Q, P) = |  
                                  coroutine 1 (Q/<x>,P), if x ≠ on 
 
The properties of commonly used operations     
        A study of process properties is one of the main problems of a formal approach to 
software development. A study of the respective properties of the task to be performed 
enables the selection of the most reasonable and efficient development path. Formulation and 
proof of these properties helps to avoid making unfavorable decisions, which is very 
important especially in the initial stages of software development. Study of properties is based 
on a mathematical model which allows secure, unambiguous, precise and stable process 
specification. Here we present an example of property analysis of the commonly used 
‘resettable’ operation using CSP facilities. We will consider the following properties: 
(1) if P is a process then resettable(P) is a process; 
(2) s∈P & s  {√} =<>  => (resettable(P)/s)0 = (P/s) 0 ∪ {reset} 
(3) s <reset>∈ resettable(P) => resettable(P)/s <reset> = resettable(P); 
(4) s∈P & s  {√} =<>  => resettable(P)/s= start(P/s, P); 
(5) s∈ resettable(P) => resettable(P)/s= resettable(P)/rest(s) 
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        We omit the proofs of the above mentioned properties. Similar properties could be 
presented for other commonly used operations. 
 
Conclusion 
         This paper presents an approach to the creation of mathematical models for software 
systems, giving the example of a menu - select interaction using CSP facilities. The model can 
be used for specification, proof of process properties and implementation. The implementation 
of the model was carried out on the basis of LISP language and has been approved in a series 
of applications. We do not consider these implementations here as we hope to present them in 
the next paper. CSP theory permits the creation of models for a variety of software systems 
and is especially appropriate for those that are based on an event-driven 
programming paradigm. This paradigm is widely used in the majority of object–oriented 
programming systems. The evolution of the object-oriented programming technique has 
caused the appearance of the new CSP-OZ theory (Fischer, 1997, Enikeev, Benduma.2011), 
which is based on a combination CSP and object-oriented specification language Object-Z 
(Duke, 1995). This new theory provides a specification of the behavior of communicating 
processes and in addition to CSP permits the description of object-oriented models.  
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