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Abstract 

We consider a linear control system with the origin as target  and study  the behavior 
of the minimum norm control as time duration goes to infinity. 
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Introduction 

Consider the abstract control system   
                                                        y’ =Ay+Bu                                                                         
(3.1)                       
where  A generates a continuous semigroup in a Banach space X  and B is linear and 
bounded from a Banach space U to X.  This setting is very general and covers  most 
systems encountered in applications: distributed control systems, point control systems, 
neutral functional differential equations. 
The solution of equation (3.1), which satisfies the initial condition y(0)=x,  is given by  
                                                 y(t,s,u)= S(t)x + ∫0t S(t-s) Bu(s) ds. 

 

Here S(t) is the linear semigroup generated  by A. The minimum energy (norm 
control) to bring x  to zero in time t is  denoted  by  E(t,x). 

Suppose that the system (3.1) is null-controllable on some time interval t,  i.e.,  for 
each x in X  there exists  u(.)  such that y(t, x, u)=0.  Obviously, if a state x  can be steered to 
zero in some time, then it can be steered to zero in any larger time and it is expected that, as 
the time grows, the control energy needed to transfer x  to zero to become smaller. In this 
paper, we study the behavior of the minimum energy to transfer x  to zero when the 
transferable time  tends to infinity.. 
 The reverse case, of fast controls (when t is small), was treated in the finite 
dimensional setting in [10] for L2 -controls and in [11] for Lp -controls, with p in the interval 
(1, ∞) and there were given asymptotics of the minimum norm control as t tends to zero. In 
infinite dimensional case, this problem was studied in [12] for coupled systems of partial 
differential equations. 
 In [13], for large t, there are given estimates for the control cost,  for an abstract 
parabolic equations of form (3.1) (A being a generator of a contraction semigroup) in Hilbert 
spaces, with L2 -controls. 
 In [8], W. Krabs considered a control systems described by an abstract wave equation 
of the form y” =Ay +u in a Hilbert space and studied the null controllability for every positive 
time with L∞-controls. He showed that for every positive t,  the null controllability is possible 
by a minimum norm control  which is unique on [0, t] and satisfies a bang-bang principle. 
Moreover, he proved that the norm control tends to zero when t tends to infinity. Similar 
results have been proved in [7] for L2 -controls. We mention also the paper of S. Ivanov [6] 
where it is studied the rate for the minimal energy  to tend to 0 as t tends to infinity, for 
second order control systems with L2 and L1 -controls. The constrained null contollability of 
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the system (3.1) was proved in [2] for contaction semigroups.  Estimates  for  fast controls 

were also obtained in [3] in the finite dimensional setting as well as  in some infinite 
dimensional cases. 
 For any positive t, let us define the operator V(t)  by 

 V(t)u = ∫0t S(t-s) Bu(s) ds,   
which, clearly, is bounded and  linear. Then, the null controllability of the control system (3.1) 
on t means that 
range S(t) ⊆  range V(t). (3.2) 

Denoting  by B(r) the closed ball centered at zero with radius r in a Banach space, by 
the open mapping theorem, inclusion (3.2) is equivalent to the following one: 
 
S(t)B(r(t)) ⊆     V(t)B(1), (3.3) 
for some constant r(t). This equivalence  still holds  in the case when V(t) is only a closed  and 
densely defined operator. This allows to consider also boundary control systems. 
 Define the reachable set at time t, denoted by R(t), as the set of all points x such that 
there exists  a control u in B(1) with y(t,x,u)=0. The reachable set in free time is the union  of 
all R(t) for   
positive  t and is denoted by R. 
 
Definition The control system (3.1) is said to be admissible null-controllable if all points of  
X can be transferred to zero in finite time with controls in B(1), i.e., R=X. 

In this paper we study estimates of the sets R(t) for t large and in particular we study 
cases when R=X.  As a matter of fact, R is the domain of the minimal time function. Recall 
that,  the minimal time corresponding to x is the infimum of the times taken to transfer x to 
zero with admissible controls. Of course, here the set of  admissible controls is a ball with the 
center  in zero. 

Supposing that system (3.1) is null-controllable on any time t in [0,T0], we provide 
here  remarkable subsets of R(t) for any t≥T0   and we get estimates of the minimum energy. 
Moreover, if we know a continuous function r(t) on [0, T0]  satisfying (3.3)  for every t, we 
extend continuously this function on the whole interval [0, ∞)  preserving condition (3.3) and 
having a good growth rate. Further, if the semigroup has a linear growth (in particular, if it is 
uniformly bounded), then this new function r(t) has the property that tends to infinity when t 
tends to infinity. Consequently, the control system is admissible null-controllable in this 
situation. Now we give the main results of this paper. 
 
Results 
Theorem 

Suppose that there exist T0  and a function r defined on [0, T0], with r(0)=0 such  that 
(3.3) holds for any t in [0, T0]. Then, it can be extended on  [T0 , ∞) by 
r(t)=(r(T0)/|S(q)|)∑1/|S(T0)|k +r(q),   k=0,1, .. n-1 (4.1) 
for t=q+nT0 with q in  (0, T0],   which satisfies (3.3) for every t in [T0, ∞). 

The above result says that a function r(t) satisfying (3.3) on some interval [0, T0] can be 
extended on the whole interval [0, ∞)  again satisfying (3.3).  Moreover, we are interested in 
getting a continuous (eventually, strictly increasing) function satisfying (3.3) on [T0, ∞). To 
this end, recall that, considering a suitable norm on X,  for some ω we have  |S(t)| ≤ exp(ωt) for 
any t≥0. Let us define the function r(t) on [T0, ∞) by  r(t)= (r(T0)(∑ exp (-ω kT0-ωq) + r(q)),   
k=0,1, .. n-1,    t= q+nT0 with q in  (0, T0].  It is clear that if r(t) is continbuous on [0, T0], then 
its continuation defined as above is also  continuous for any t> T0,  and satisfies the inclusion 
(3.3).                                                          
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In particular, if  S(t) is  a semigroup of  contraction, we get 
Corollary  

Suppose that |S(t)| ≤ 1 for any t ≥ 0. Suppose further that there exist T0 >0 and a 
continuous and strictly increasing function r(t) defined on [0, T0],  with r(0)=0, which satisfies 
(3.3) on [0, T0].  Then, the extension r(t)  defined  on [T0, ∞) by   
r(t)= nr(T0)+ r(q)   
for  t=nT0+q, q in (0, T0],  is continuous and strictly increasing too and satisfies (3.3) on  [T0, 
∞). Moreover,   r(t) tends to infinity when t tends to infinity. 
 

A similar result can be obtained in case S(t) has linear growth, i.e.  |S(t)| ≤  c(t+1) for 
any t≥0 and some constant c > 0.  In this case define  r(t)=(1/c)( r(T0)∑1/(kT0+q+1)+r(q)),   
k=0,1, .. n-1, for t=q+nT0    with q in  (0, T0].  

  
Examples 
In this section we give examples of functions r(t) satisfying (3.3). 
 
Example 1 In the finite dimensional setting, when X = Rn,  in [3, Theorem 2.2], it is provided 
the function r(t) of the form: 
 
                                                 r(t)= c min{tn, t}/sup{|S(s)|; s in  [0,t]},   
where c is a positive constant  and k is an integer such that the well known Kalmann condition 
is satisfied: 
span{BU, ABU, An-1BU}=X.  
It is clear that r(t)  is strictly increasing with r(0)=0. In the case when the semigroup is 
uniformly bounded, then r(t) tends to infinity when t tends to infinity and, for each x of X,  
E(t,x)  tends to zero for t large. 

 

Example 2 Consider the case of reflexive X, U=X and B is the identity operator.  

It is known that the corresponding control system is null-controllable on every  t >0 
with controls from L∞ (see, e.g., [14]). More exactly, we have that the ball B((1/ω) (1-exp(-
ωt))) is a subset of R(t). Therefore,  in the case when ω is not zero,  we have r(t)= (1/ωM) (1-
exp(-ωt)). If ω is positive then r(t) tends to 1/ω when t tends to infinity. Therefore, the open 
ball centered in zero and having the radius  1/ω is a subset of R. Take now the case  when ω = 
0. It is easy to see that r(t) = t is a good function  that satisfies  (3.3). Moreover, if ω is not 
strictly positive, then r(t) tends to infinity when t tends to infinity, so we have controllability 
with vanishing energy and R=X. 
Example 3   This example refers to the heat equation on a bounded domain (with boundary 
of class C2 ) with homogeneous Dirichlet boundary conditions, in which the control is 
distributed internally on an open subset.  

 

The considered partial differential equation can be rewritten as an ordinary differential 
equation in L2 of the form (3.1).  In the L∞-control,  in [5, Proposition 3.2] it is proved that 
there exists C>0 such that (3.3) holds with r(t)=exp(-C(1+1/t+t)), for any positive t. Clearly, r 
tends to zero when t tends to zero. This function increases on [0,1] and is decreasing 

A finite dimensional example of a  continuous semigroup with linear growth, which is not 
uniformly bounded, is given by S(t)=[-2t+1   –t; 4t   2t+1], with t nonnegative,  generated by    
A=[-2   –1; 4   2].  It is easy to see that the norm of S(t) is not less or equal to M, for any 
nonnegative t and any positive M, but satisfies |S(t)x|≤ c (5t+1) |x| for any x in R2 and any 
nonnegative t. 
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otherwise, tending to zero when t tends to infinity. Then, by Theorem 4.1, we provide a better 
function fot t greater than 1 with the property that it tends to infinity when t tends to infinity. 
Moreover, we get that E(t,x)  tends to zero for t large and for any x  in L2.  Consider now the 
L2 – control case. In this situation, again  in [5, Proposition 3.2] it is proved that there exists 
C>0 such that (3.3) holds with r(t)=exp(-C(1+1/t)), for any positive t. Clearly, r tends to zero 
when t tends to zero. This function increases on [0,1] and is decreasing otherwise, tending to 
exp (-C) when t tends to infinity. Theorem 4.1 provides a better function fot t greater than 1 
with the property that it tends to infinity when t tends to infinity. 

We recall that the semigroup generated by the Laplace operator subject to Dirichlet 
boundary conditions  in L2 has M=1 and ω<0. 
  We mention   finally  that throughout we supposed that |S(t)| > 0 for each t>0; the case 
when S(t0) = 0 for some t0  is not of interest  for the problem studied here. 
 
Conclusion 

The behavior of the minimum energy for large time does not depend on the control 
operator. It depends on the state operator under the basic assumption that the system is null 
controllable at some time. In the case when the control system is null controllable for every 
t>0, then the minimal time function is continuous in zero. Moreover, the reachable set R is 
open and the minimal time function is locally uniformly continuous on R. We end this paper 
pointing out that the results can be extended to systems with  boundary controls, both for 
parabolic and hyperbolic type.  In this situation the operator B is not necessarily bounded  but 
there are no differences in reasoning (see [15] for a good reference). 
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