
European Scientific Journal  September 2014  /SPECIAL/ edition Vol.1   ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

457 

FINANCIAL EVALUATION OF LONG TERM 
INVESTMENTS: THE ROLE OF EXPLICIT PRODUCTION 

FUNCTIONS 
 
 
 

Juan Miguel Massot, PhD 
Escuela Superior de Guerra Naval, Universidad del Salvador, Argentina 

 
 

Abstract 
 In the practice of evaluation of investment projects, the technique of discounted cash 
flows applies on income with functions such as logistic or neoclassical functions, which tend 
to be adverse on remote-time flows. However, these functions are not necessarily 
representative of the long term pathway of projects which are part of portfolios closely 
related to innovation or events with long-run externalities, such as education or environment. 
This paper concludes that production functions with human capital and externalities may 
cause distant flows to take values other than zero and produce relevant alterations of 
investment decisions. 
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Introduction 
 This paper offers to reconsider an aspect of the methodology of investment projects 
and project portfolios financial evaluation, by using explicit production functions adequate to 
phenomena dominated, for instance, by innovation. 
 Investment project financial evaluation has been criticized for many reasons. Firstly, 
projects providing out-of-market goods (public or quasi-public goods) lead to certain 
problems such as the absence of selling prices which hinders the estimation of monetary 
benefit and, therefore, a return pathway which can be discounted. This promoted the 
evolution of non-corporate project evaluation methodologies, such as the cost-benefit 
method, cost-effectiveness method and multicriteria methodologies (Aliberti, 2012; Grassetti 
and García Fronti, 2012; Pacheco and Contreras, 2008). 
 Secondly, project financial evaluation has been criticized for being biased towards 
flows originated in the short run and, therefore, for affecting both projects organization and 
the composition of investment projects portfolios (Dumrauf, 2010; Aliberti, 2012; Grassetti 
and García Fronti, 2012). If investment projects or project portfolios have long-run and very 
long-run returns (for example those in the field of science and technology, health, education, 
institutional quality, environment), then they are excessively adverse on discounted returns of 
these projects, which may bring about suboptimal levels of investment in these sectors and 
affect long term growth and economic and social development (Smith and Parr, 2005 : 297; 
Hernández, 2005 : 159 and ss.; Romer, 2006 : 102 and ss.; Keifman, 2012). 
  Thirdly, financial evaluation models are rigid, in the sense that they assume the 
investment decision is made only once on the whole project at the time of evaluation, giving 
the decision maker a passive nature when facing the changes in context or during the progress 
of the project implementation. It is more reasonable to assume that the agent is able to make 
decisions about delaying the beginning of an investment, modifying the rhythm, increasing or 
reducing the amount of investment during the implementation period. This lack of flexibility 
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reduces its effectiveness as a methodology of evaluation, especially, in most complex and 
long term projects (Grassetti and García Fronti, 2012). 
 Finally, it is difficult to accept certain usual theoretical assumptions which underlie 
the financial evaluation models, such as the functions of logistic production or the 
neoclassical functions which usually support the flow of income in investment projects or 
projects portfolios related to innovation or to certain public goods such as public health, basic 
education and pollution, where internal and external economies of scale, externalities, or 
agglomeration economies may be found (Hernández, 2005 : 289 and ss.; Smith and Parr, 
2005:  229 and 234). 

In this context, this paper states that a simplified modelling yet more adequate of the 
production function supporting the income flow, allows for the application of the standard 
financial approach minimizing or even totally compensating for the bias in the short run, thus 
modifying the standard conclusions about expected results of the assessments based on 
financial models. 

 
Reconsideration of discounted cash flow methodology in investment projects: 
Basic evaluation model 

The approach begins with the standard criterion of investment project financial 
evaluation. In accordance with Branson’s presentation of the neoclassical investment model 
(Branson; 1989: 297 and ss.) capital accumulation may follow the maximization of a function 
of benefits (RN) as follows: 

𝑚𝑎𝑥𝑁𝑡,𝐾𝑡,𝑖𝑡�
1

(1 + 𝑟)𝑡 

𝛼

0

[𝑃𝑡  𝑦 (𝑁𝑡,𝐾𝑡) −𝑊𝑡𝑁𝑡 − 𝑃𝑡𝐼𝑖𝑡] (1) 

Here Nt is the amount of labour in the period t, Kt is capital in period t, it is investment 
in this period, r is interest rate, Ptis price, y is product, Wt is wage and Pt

Iis the price of capital 
goods. 

In other words, the criterion is reduced to find the combination of production factors 
(labour, capital) and maximize the current value of said function of benefit over time, subject 
to certain restriction Kt+1= (1-δ) Kt + it , where δ represents the expected capital depreciation 
rate. 

Using Lagrange multipliers, the problem to be solved is the following: 

𝑚𝑎𝑥 𝐿 𝑁𝑡,𝐾𝑡,𝑖𝑡�
1

(1 + 𝑟)𝑡 

𝛼

0

[𝑃𝑡 𝑦 (𝑁𝑡,𝐾𝑡) −𝑊𝑡𝑁𝑡 − 𝑃𝑡𝐼𝑖𝑡]

+  �𝜆
𝛼

0

[𝑖𝑡 + (1 − 𝛿)𝐾𝑡 −  𝐾𝑡+1]   (2) 

The lagrangian derivative respect to N results in the fact that the business owner hires 
labour until the marginal product of labour is equal to real wage: 

𝑦𝑁(𝑁𝑡,𝐾𝑡) =  
𝑊𝑡

𝑃𝑡
  (3) 

This means that the business owner hires capital until his marginal product is equal to 
the cost of opportunity: 

𝑦𝐾 =  
𝛿 𝑃𝑡𝐼 + 𝑟𝑃𝑡−1𝐼 − (𝑃𝑡𝐼 −  𝑃𝑡−1𝐼 )

𝑃𝑡
    (4) 

The numerator on the right side of the equation is the cost of capital, Ct, equivalent to 
the implicit price of capital lease herein. The first component is depreciation, the second one 
is the interest paid for stock at the beginning of the period, and the last one is any capital gain 
between the beginning and the end of the period. 
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In the end, the marginal product of capital turns out to be: 

𝑦𝐾(𝑁𝑡,𝐾𝑡) =  
𝐶𝑡
𝑃𝑡
≡  𝑐𝑡    (5) 

Since it is an investment project, it is important to estimate the equilibrium capital 
stock, which is a function of the production volume Y, the cost of capital c and the price of 
product P: 

𝐾𝐸 =  𝐾𝐸(𝑌,𝐶,𝑃)  (6) 
Thus ∂KE/∂Y, ∂KE/∂P >0 , and ∂KE/∂C <0 
Within a neoclassical model such as the one presented, the Cobb-Douglas function 

may be adopted for the equilibrium capital stock function, which has the characteristic of 
generating constant returns to scale and diminishing returns to a factor. The resulting function 
is the following: 

𝑦 =  𝛼𝐾𝛼𝑁1−𝛼     (7) 
In practice, it turns out: 

𝐾𝐸 =  
𝛼𝑃𝑦
𝐶

=  
𝛼𝑦
𝐶
𝑃

(8) 

Where, KE is the stock of equilibrium capital of the project which increases as the 
value of production increases and it is reduced when the cost of capital use increases. 

Besides the importance of a “selling price” or the discount rate –aspects which are 
considered by other reviews to the financial approaches on project evaluation–, from 
equations (1), (7) and (8) we can infer the importance of the explicit production function 
whose accurate formulation determines the temporary pathway of returns. Equations (7) and 
(8) present the result of a Cobb-Douglas function which has particular conditions which adapt 
to the case under study. 

In order to see these differences, this paper resorts to four function models: logistic 
model and Bass model, both used in the innovation theory, and neoclassical model and 
human capital model, used in the economic growth theory. 
 
Logistic model 

 This type fulfils the conditions of logistic deterministic growth models based on 
technological diffusion models that take the time variable as the main determinant, such as 
Foster and Wild, 1999 (see Hernández, 2004: 272 – 274). In this model, a process of 
production growth is generated; it depends on historic time (t), a production maximum (ymax) 
and a diffusion or growth parameter (β). 

𝑦𝑡−1 =  𝛽 𝑦𝑡(𝑦𝑚𝑎𝑥 − 𝑦𝑡)    (9) 
If a period is accumulated, the difference between both periods will be: 

𝑦𝑡 − 𝑦𝑡−1 =  𝑦𝑡−1  𝛽  �1 − �
𝑦𝑡−1
𝑦𝑚𝑎𝑥

��   (10) 

The time necessary to reach ymax  depends on parameter β. When parameter β has a 
higher value, the curve grows, increasing the current value of income for equal values of 
interest rate r and variable y. 

Focus is placed on the time variable (t) and the growth parameter β. The model does 
not depend on economic variables such as capital stock or human capital, as explained in the 
equation (1). In the model, ymax is exogenously determined, as well as the value of β. 

The incorporation of production functions according to a deterministic process based 
on variable (t), on an exogenously adopted parameter β and on variable ymax arising from 
market research (determination by demand) or from engineering studies (determination by 
technological restriction or rigidity, or determination by offer) are common both in literature 
and in the practice of investment project evaluation. Besides the simplicity of the calculation, 
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the pathways are not objected by the management of the investment project evaluation, which 
tends to accept the existence of product cycles as a central component of the theoretical and 
empirical corpus. 

Finally, the temporal pathway of the production of a logistic model corresponds quite 
well with that of the neoclassical production functions previously discussed, even when, as 
previously mentioned, one of them has its centerpiece in economic variables such as capital 
and labour, and the other one, only in the time variable. Therefore, according to the context 
and objectives of the investment project analysis (amounts involved, available information, 
uncertainty about certain variables, technical ability of the team of evaluators to perform a 
prospective study, among other factors), the selection of different functions may lead to 
equivalent results and, depending on the value of the parameters, to similar decisions based 
on more complex quantitative methods. 
 
Bass Model 

The Bass model belongs to the family of S-Curve or sigmoidal models widely used in 
the analysis of the economic evaluation of innovation projects. It is basically supported by the 
product cycle theory with four stages (introduction, growth, maturity and decline) which is 
reduced to three stages (invention, innovation, and standardization; decline is not included), 
once adapted to technology. Even when its mathematical presentation varies if compared to 
the logistic model previously stated, in a broad sense there is no difference. The model, which 
combines an innovation model and an imitation model, counts on the existence of a 
maximum quantity of sales and two parameters, coefficient of innovation (or market 
penetration) and coefficient of imitation. The quantity increases inasmuch as the former is 
higher and diminishes inasmuch as the latter is higher. 

According to Smith and Parr (2005: 214) the production equation of the period is the 
following:  

𝑦𝑡 = 𝑦𝑡−1 + �𝑔 + �𝑞 ∗ �
𝑦𝑡−1
𝑦𝑚𝑎𝑥

� ∗ (𝑦𝑚𝑎𝑥 − 𝑦𝑡−1)�� (11) 

Where g is the coefficient of innovation and q is the coefficient of imitation, having a 
range of variation between 0 and 1 for both parameters. 

As well as in the logistic model, parameters are exogenously determined (by market 
researches, engineering studies, etc.) therefore the function is not associated to the production 
functions depending on economic variables, as it commonly happens in microeconomics. 
Again, depending on the context, it is a very useful function and, in the practice, it is widely 
used in empirical works on introduction of new goods in the market (Smith and Parr, 2005: 
234). 

A feature that should be highlighted again is that, neither the Bass model nor the 
logistic model, assume a decline in production as from a certain date, which does occur in the 
model of the product cycle. Likewise, as it will observed later on, said maximum level of 
production may grow at a positive rate if the parameter Ymax is transformed into a function 
that depends on time or on any other variable, for example, economic or demographic 
variables. 

The effects of a maximum level of production differ substantively in the case under 
study, if such level is stable or if it grows at a certain rate over the time span relevant to the 
analysis. In the first case, whenever the production stabilizes, sooner or later its present value 
will be close to zero; in the second case, this is not necessarily true, since it depends on the 
difference between the growth rate in the steady state and the discount rate; besides, for the 
same discount rate, the value of the product which turns to be zero at the time of evaluation is 
located ahead in time for any growth rate higher than zero. 
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As it can be clearly seen, these observations are actually relevant for the purpose of 
this paper, since they imply a change of a key variable such as the maximum production in 
the long run. 

In short, both logistic and Bass models may be explicit models of the income 
function, which may be the relevant economical-technological context; this may strongly 
affect the evaluation of a project. This will ultimately depend upon the specific parameters 
adopted for modelling and more specifically if Ymaxis a parameter or a function growing over 
time or over other (economic, demographic, etc.) variables. 
 
Neoclassical model with exogenous technological progress 

 The work by Robert Solow (1956, 1957) on the theory of growth, commonly called 
neoclassical growth model or model with exogenous technological progress, sets forth a 
growth of product per capita equation compatible with the function expressed in equation (1). 

 The basic equation for the total product is as follows: 
𝑄 ≡ 𝑌 = 𝐹 (𝐾, 𝐿)  (12) 

 Where total production is function of the capital stock and the applied labour. The 
production function is regarded as an homogeneous function of degree 1, with constant 
returns to scale, and decreasing returns to a factor, which makes it compatible with the Cobb-
Douglas function, as shown in equations (7) and (8). Hence, implicit function (12) of total 
production turns out to be: 

𝑌 = 𝐴 𝐾𝛼 𝐿1−𝛼   (13) 
 Where A is total productivity of the factors, and α is both the partial elasticity of 

production to capital, as well as the proportion of the use of this factor in the production. 
 In per capita terms, it translates as:  

𝑦 = 𝑎 𝑘𝛼  (14) 
 Where a is the total productivity of the per capita factors, and k is the per capita 

capital. 
 Deriving the per capita production from the per capita capital, it results in: 

𝑦𝑘 = 𝑎 𝛼𝑘1−𝛼  (15) 
𝑦𝑘𝑘 = 𝑎 𝛼 (𝛼 − 1)𝑘𝛼−2  (16) 

 As the first derivative (15) is positive, and the second (16) is negative, the function 
grows at a decreasing rate; that is to say, capital productivity grows yet it does so at a 
decreasing rate. 

 When comparing the results obtained in the neoclassical model and in the logistic 
model, both functions show growing trends but at a decreasing growth rate. The neoclassical 
model also allows one to know the growth rate of total production as well as the per capital 
production. 

 The labour accumulation function is: 
𝐿𝑡 =  𝐿0𝑒𝑛𝑡  (17) 

 Where n is the labour accumulation rate over time. Conversely, capital accumulation 
function is as follows: 

𝑑𝐾
𝑑𝑡

≡  𝐼𝑡 =  𝑆𝑡 = 𝑠𝑌𝑡  (18) 
 Where It is investment, and St, saving. Writing the equation (18), it results in: 

�̇� =  
𝑠𝑦
𝑘
− 𝑛 =  

𝑠 𝑓(𝑘)
𝑘

− 𝑛   (19) 
 From this equation it turns out that per capita capital accumulation over time is the 

function of saving rate s, and labour growth rate n. 
 Using this model it can be obtained the per capita capital level in the steady-state, k*, 

by equalising equation (18) to zero, which results in the equality below: 
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𝑠 𝑓(𝑘∗)
𝑘∗

= 𝑛   (20) 
 Such equality can be rewritten as a function, and thus obtain the per capita production 
function in the steady-state 𝑦∗: 

𝑦∗ = 𝑓 (𝑘∗) =  
𝑛
𝑠
𝑘∗   (21) 

 In the model with no technological progress, total production, capital, and labour 
increase in the long run at the same n rate, which is the labour growth rate. Hence, in the 
steady-state, per capita production growth comes to a halt when the situation shown in (21) 
occurs.  

 The introduction of the exogenous technological progress, which modifies labour 
efficiency and, consequently augments its productivity in the long run, changes the steady 
state condition previously mentioned. Exogenous technological progress is carried out by 
introducing the variable effective labour per capita, that is to say, labour which is modified by 
technological progress and which augments its efficiency: 

𝐸𝑡 =  𝐿𝑡𝑒𝜆𝑡 =  𝐿0𝑒𝑛𝑡𝑒𝜆𝑡 =  𝐿0𝑒(𝜆+𝑛)𝑡(22) 
 Here λ is the growth rate of the effective labour per capita.  
 Once technological progress is introduced in this manner, the result is that growth of 

the total variables in the long run will be: 
�̇� =  �̇� = 𝑛 + 𝜆  (23) 

 And, consequently, growth of per capita production in the long run is equal to λ. 
 The model can be widened if capital depreciation is taken into account, in a 

magnitude equal to δ K, which reduces the growth rate shown in (22) to n+λ –δ. 
 Assuming the production function associated to an investment project has a formula 

as the one expressed between equations (12) to (23), and that n,  λ and δ are constant, then if r 
> n+λ-δ, it is possible to find a current flow value compatible with what is pointed out in the 
literature of financial evaluation of projects. If this is the case, then, there would be an 
economic model for the flow function compatible with most literature and praxis in the 
financial project evaluation field. 

 Unlike the logistic model (2.2.1.) and Bass model (2.2.2.), in the neoclassical model, 
function depends on economic variables. The major relative difficulty of the latter is that it 
can only be used in cases where information allows for correct mathematical modelling of the 
flow. For this reason, in the other cases, the former models are chosen, since they are 
enriched by data derived from market research (demand) and from experts in technology 
(offer conditions).  

 A variant of the presented case is that of a growth model with exogenous 
technological progress but with growing returns within a range of capital accumulation. 
Provided such modifications were made, production could become even more similar to the 
functions which are more usual in the product cycle theory, since it would be made up of 
three phases. The first one, in which it would grow at increasing rates; the second, in which it 
would grow but at decreasing rates; and the final phase, in which the product would finally 
decline. 

 In this case, production function f(k) has two intersections with function [(n+δ)/s] k, 
where the former is unstable (k**) and the latter is stable (k*). In the former, capital 
productivity per each additional factor unit is higher than [(n+δ)/s] k, which is the reason 
why it is decided to keep increasing production. In the latter, the opposite happens, thus 
reaching the steady-state. 

 The variant introduced in the production function helps understand the possible 
implications of increasing returns to scale. Nonetheless, the restriction imposed by the very 
product cycle theory (ykk is in the second negative phase), necessarily leads to the steady-state 
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k*, which does not alter substantially the before mentioned conclusions, unless the production 
range relevant to the project being analysed falls below k*. 

 In this final case, there is an efficiency problem which, although it exceeds the aim of 
this paper, must be considered as a marginal factor in cases of private project evaluation 
(unless there are marginal benefits of increasing production in the future, provided the other 
conditions remain invariable). In non-private cases, such as the ones shown, they are included 
in some of the observations to be made as a consequence of the following model. 

 
Human capital model 

 The above explained concept regarding the production function in Solow’s model but 
with increasing returns for a given function range –which matches the product cycle theory– 
allows for speculation on what might happen if phase I of the cycle (increasing returns) were 
always true, i.e. that neither phase II or III existed where the law of decreasing returns were 
present. 

 If as it does happen in production dominated by innovation, production functions 
introduced to the fund flow of the projects included in an investment project portfolio were 
characterized, for example, by externalities, human capital as a production factor, clustering 
effects, and learning by doing, then the production function should adapt to possess such 
characteristics. 

 Based on an ad hoc adaptation of the contributions by Jones and Manuelli (1992) and 
by Lucas (1988), the production function proposed is the one below: 

𝑌 = 𝐴𝐻� + 𝐵 𝐾1−𝛼𝐿𝛼    (24) 
 Where Y is the product,  𝐻� is the applied human capital, K is the physical capital, and 

L is the workforce. Accumulation functions of production factors L and K match equations 
(17) and (19), and applied human capital increases according to the following function: 

ℎ̇ =  𝛾 (∅ 𝑢 ℎ ) −  𝛿ℎ ℎ  (25) 
 Where ∅ is the efficiency of human capital, u is the fraction of time of the people in 

charge of accumulating human capital (the rest is meant for working), δh is the depreciation 
of human capital, and γ is the degree of the portfolio internalization of the trickle down 
effects of each project. Human capital is accumulated based on the amount of time devoted to 
that task, but subject to correction due to its efficiency and to the depreciation it undergoes. 

 This model is especially interesting to project portfolios which encompass 
externalities, clustering effects, and learning by doing generated in the system as a 
consequence of its organization as such. These effects of the portfolio organisation are shown 
by parameter γ, which shows the degree of appropriation that the projects have regarding the 
effects generated by the whole group of the portfolio projects. The trickle down effects 
generated towards the inside of the very system and which are derived from the main 
production factor applied to innovation, which is the human capital, will depend on the 
quality of the coordination of activities over time and space. 

 A production function like (24) may grow indefinitely over time, depending on the 
values taken by the parameters. In order for all the relevant range to be h ̇>0, in equation (25) 
the first term must be higher than the second one, which forces all γ, ∅, u to be positive and 
that ( γ ∅ u ) > δh. Provided this condition is met, human capital accumulation per capita as 
defined herein will not come to a halt for all the range of relevant time. 

 In the case being studied, for equal values of parameters ∅ , u, and δh, higher levels of 
γ appropriation involve higher growth rates. At the limit, when the model tends to 0, it 
resembles the neoclassical model; when the model tends to 1, the role of non-decreasing 
returns from human capital is at its highest expression. Ultimately, the values the latter rate 
might hold are key in the premise of this approach, and as it can be observed in graph 3, they 
are not trivial in the growth pathway. 
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 Finally, the second part of the right term of the equation (24) is to be analysed. Even 
though applied human capital (𝐻�) is not subject to the decreasing returns, to a factor as in the 
neoclassical function, term B K(1-α) Lα is indeed subject to it, as it was shown in the 
neoclassical model (2.2.3.) 
 From previous paragraphs it can be deducted that the production function with human 
capital (24) can display various pathways depending on the parameters adopted by the 
accumulation of 𝐻� and its participation in the total product, given that the rest of the function 
grows at a decreasing rate, thus affecting maximization of benefit associated to the financial 
evaluation criterion of a project. 
 
Comparison of the four models 

 In this title the maximization problem associated with the financial evaluation of 
projects but applied to the four types of production functions given above is taken up; i.e. 
logistic models, Bass, neoclassical and human capital.  

 Since going back to equation (1): 

𝑚𝑎𝑥𝑁𝑡,𝐾𝑡,𝑖𝑡�
1

(1 + 𝑟)𝑡 

𝛼

0

[𝑃𝑡  𝑦 (𝑁𝑡,𝐾𝑡) −𝑊𝑡𝑁𝑡 − 𝑃𝑡𝐼𝑖𝑡] (1) 

 Production function may adopt various functional forms, which translates into four 
maximisation problems: 

a. Logistic model: 

𝑚𝑎𝑥𝑁𝑡,𝐾𝑡,𝑖𝑡�
1

(1 + 𝑟)𝑡 

𝛼

0

�𝑃𝑡𝑦𝑡−1 �1 +  𝛽 �1 −
𝑦𝑡−1
𝑦𝑚𝑎𝑥

�� −𝑊𝑡𝑁𝑡 − 𝑃𝑡𝐼𝑖𝑡 �     (26) 

b. Bass model: 

𝑚𝑎𝑥𝑁𝑡,𝐾𝑡,𝑖𝑡�
1

(1 + 𝑟)𝑡 

𝛼

0

�𝑃𝑡𝑦𝑡−1 � 𝑔 + �𝑞 ∗ �
𝑦𝑡−1
𝑦𝑚𝑎𝑥

� ∗ (𝑌𝑚𝑎𝑥 − 𝑌𝑡−1)�� −𝑊𝑡𝑁𝑡

− 𝑃𝑡𝐼𝑖𝑡 �     (27) 

c. Neoclassical model: 

𝑚𝑎𝑥𝐿𝑡,𝐾𝑡,𝑖𝑡�
1

(1 + 𝑟)𝑡 

𝛼

0

{𝑃𝑡[𝐴 𝐾𝛼 𝐿1−𝛼] −𝑊𝑡𝑁𝑡 − 𝑃𝑡𝐼𝑖𝑡 }    (28) 

d. Human capital model: 

𝑚𝑎𝑥𝐿𝑡,𝐾𝑡,𝐻𝑡,����𝑖𝑡�
1

(1 + 𝑟)𝑡 

𝛼

0

{𝑃𝑡[𝐴𝐻� + 𝐵 𝐾1−𝛼𝐿𝛼] −𝑊𝑡𝑁𝑡 − 𝑃𝑡𝐼𝑖𝑡 }    (29) 

 Provided all projects have the same factor (𝑊𝑡𝑁𝑡 − 𝑃𝑡𝐼𝑖𝑡  ) regarding costs, and Pt 
remains invariable over time, then the relevance of the flows which are more distant from the 
evaluation moment will depend on the ratio between the interest rate r of the discount factor, 
and the evolution over time of total productivity of each function. 

 In other words, if production growth depends on accumulation of production factors 
(capital, labour and applied human capital, as the case may be), it will be critical for the flow 
evaluation the ratio between total productivity of factors over time of each specific 
production function and the interest rate. While in equations (26), (27) and (28) productivity 
grows at a decreasing rate, in equation (29), the growth rate depends on the values taken by 
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the parameters, which can show non-decreasing growth rates over time, or for a relevant 
period of time. This means that, depending on the organisation of productive units, the 
increase in human capital stock, and that of the productive fabric which uses it, there could 
exist a growing production pathway over time, without it necessarily being subject to the 
decreasing returns to all factors. 

 Likewise, if in equations (26) and (27) ymaxis a growing function over time –
depending either on the time variable, or on any other variables, such as economic or 
demographic ones–, both the logistic and Bass models tend to resemble the human capital 
model regarding the evolution over time the net flow may have. 

 From what has been pointed out, it can then be deducted that in equation (29) as well 
as in both equations (26) and (27), provided the maximum production level increases for all 
the relevant range, if the growth rate of the function in the long run were to be higher than the 
applied discount rate, ceteris paribus, the current value of the future flows will never be zero, 
and, thus, even under the implementation of the discounted flow method, flows from each 
period will contribute –positively or negatively– to establishing the current value of the 
project at issue. 

 However, as it has been previously mentioned, if in the long run (∂Pt)⁄(∂ t) < 0, then 
there is a more complex ratio which involves the interest rate, and the growth of both the 
product and the price in the long run. Assuming that the rest of the elements in the function 
remain constant, the fundamental comparison is between the net flow growth over time (∂RNt 
⁄ ∂t) and r. When (∂RNt ⁄ ∂ t) < r, there will come a moment in time as from which the current 
value of the flows to come will tend to zero. Otherwise, subsequent flows will still keep 
economic relevance at the time of decision making. 

 
Numeric simulation of the presented production function models 

 In this section, comparative results of numeric simulations of the four models 
previously presented are shown. Results refer to the growth rate between periods for a total of 
30 periods of total income. Results of three logistic model cases, and results of three Bass 
model cases corresponding to various values of their parameters are simulated, as well as 
results of a neoclassical model case, and two human capital model cases with different 
parameter values. For the simulation purposes, the price is supposed to be constant and equal 
to 1. 

 The variation rate between periods in percentage of the total income provides a first 
look to the question treated in this paper, that is to say, whether the time pathway of the 
discounted flow may not be zero after a certain number of periods. If the function grows at a 
decreasing rate, or even if it does not grow at all, or falls as from a given period, the desired 
scenario cannot be met. Consequently, the fact that the function grows at a non-decreasing 
rate, or if it does, that it is at a slightly decreasing rate, must then be a necessary condition, 
though still not sufficient enough, to solve the problem. In other words, the growth pathway 
of total income is a necessary condition but still not sufficient enough for the current value of 
the distant flows to be different from zero, given that in order for the necessary and sufficient 
condition to be met, it is necessary to know exactly the time pathway of the total cost and the 
discount factor to be applied. In this case, as it was initially pointed out, the aim of this paper 
is focused on the condition of the total income pathway as being conditio sine qua non (or 
necessary condition). 

 The (arbitrary) parameters of each of the functions are the following: 
 Logistic function L 1: β =0.78 
 Logistic function L 2: β = 0.88 
 Logistic function L 3: β = 0.93 
 Bass function B 1: g=0.005 and p = 0.8 
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. Bass function B 1: g= 0.05 and p = 0.5 
 Bass function B 3: g= 0.5 and p = 0.3 
 Neoclassical function NC: Lo =120; K0= 120; n= 0.03; s=0.20; α=0.5 
 Human capital function HK 1: H0 = 120; other neoclassical parameters when 

appropriate, γ= 0.9; ∅ = 0.5 ; u =0.3 ; δ=0.01; and A=0.5 and B= (1-A) 
 Human capital function HK 1:  H0  = 120; other neoclassical parameters when 

appropriate, γ= 0.5; ∅ = 0.5 ; u =0.3   ; δ=0.01; and A=0.5 and B= (1-A) 
 Even though they are arbitrary, the selected parameters provide the growth pathways 
of the total income corresponding to each production function, and thus the growth rates 
between periods for each model. Growth rates can be seen in chart 1. 
 As it can be observed, total income in logistic functions and in Bass model increase at 
high rates in the first sections, yet once maturity of the productive cycle is reached, growth 
rates tend to zero. By contrast, in the neoclassical model, total income grows at a decreasing 
rate all along the selected range (30 periods). In human capital models, which differ between 
themselves depending on their level of appropriation (high and low), even though growth 
rates differ at certain levels, in both cases, rates do not decrease significantly all over the 
range. 

Chart 1Growth rate between periods of the total income per function type 

 
Source: Own estimates 

  
 It can then be concluded that, even if the cost function and the discount factor are not 

considered, in logistic models, Bass model, and the neoclassical model, the current value of 
the more distant flows over time tend to zero. By contrast, in the human capital functions 
herein presented, since income grows constantly depending on the cost functions and the 

L1 L2 L3 B1 B2 B3 NC HK1 HK2
1
2 78% 88% 93% 90% 55% 80% 15% 12% 9%
3 78% 88% 93% 90% 53% 58% 13% 12% 8%
4 78% 88% 93% 90% 52% 48% 12% 11% 8%
5 78% 87% 92% 89% 51% 42% 11% 11% 8%
6 77% 87% 92% 89% 51% 38% 10% 11% 8%
7 77% 86% 91% 88% 50% 36% 10% 11% 8%
8 76% 84% 88% 86% 50% 34% 9% 11% 8%
9 74% 81% 84% 82% 49% 33% 9% 11% 8%
10 71% 75% 77% 76% 49% 32% 8% 11% 7%
11 65% 66% 64% 65% 48% 31% 8% 11% 7%
12 57% 51% 46% 49% 47% 30% 8% 11% 7%
13 45% 32% 24% 29% 46% 30% 7% 11% 7%
14 30% 14% 8% 11% 44% 29% 7% 10% 7%
15 16% 4% 1% 2% 41% 28% 7% 10% 7%
16 6% 1% 0% 0% 37% 28% 7% 10% 7%
17 2% 0% 0% 0% 32% 27% 6% 10% 7%
18 0% 0% 0% 0% 26% 26% 6% 10% 7%
19 0% 0% 0% 0% 20% 24% 6% 10% 7%
20 0% 0% 0% 0% 14% 23% 6% 10% 7%
21 0% 0% 0% 0% 9% 21% 6% 10% 7%
22 0% 0% 0% 0% 5% 19% 6% 10% 7%
23 0% 0% 0% 0% 3% 17% 5% 11% 7%
24 0% 0% 0% 0% 2% 15% 5% 11% 7%
25 0% 0% 0% 0% 1% 13% 5% 11% 7%
26 0% 0% 0% 0% 0% 10% 5% 11% 7%
27 0% 0% 0% 0% 0% 8% 5% 11% 7%
28 0% 0% 0% 0% 0% 7% 5% 11% 7%
29 0% 0% 0% 0% 0% 5% 5% 11% 7%
30 0% 0% 0% 0% 0% 4% 5% 11% 7%
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discount factor, the current value of the net flows distant in time will not be necessarily 
irrelevant.  

 Just as a mere pedagogical or illustrative example of what has been mentioned, 
assuming the case of a constant price equal to 1, with cost functions in which costs are a fixed 
proportion of the total income (not a usual case in economic theory or praxis, yet useful for 
pedagogical purposes), a comparison between growth rate of total income (10-11% and 7% in 
the chart cases) and the interest rate of the discount factor is required. If the interest rate were 
of 6%, the net flows are relevant for all the selected range. In other words, unlike the other 
models in which –depending on the case– after periods 10 and 15, the current flow values 
tend to zero, human capital models still have non-trivial values and different from zero.  

 Consequently, probability that the flows distant in time are different from zero is 
higher in the case of production functions with human capital than in the functions 
traditionally used in the economic and financial evaluation of investment projects. Therefore, 
it is relevant to appropriately set out such function at the time of exploring, both theoretically 
and empirically, the importance of distant flows in time, which are as usual in investments in 
scientific and technology facilities, as in other phenomena closely related to human capital 
(basic education, primary healthcare, etc.) or as in environment-related matters. 
 
Conclusion 

 Explicit production functions that cover the phenomenon of growth derived from 
accumulation of human capital, externalities, the effects of learning, among other questions 
treated within the modern theory of economic growth, not only represent more appropriately 
the function applicable to intensive investments in technological innovation, but also avoid 
the short-term bias affecting all types of flows generated in the very long run and that exceeds 
the above mentioned cases. 

 Therefore, what has been concluded regarding the growth pathways resulting from 
appropriate explicit functions, would allow for: 

a) Making the returns distant in time become relevant, for example, those occurring after 
twelve or fifteen years; 

b) Appropriately dealing with the growth of net flows of the investment projects 
belonging to project portfolios that generate externalities among projects and market 
imperfections, such as the ones dominated by innovation; 

c) Taking into account the impact on future generations of certain phenomena, such as the 
formation of scientific and technological systems, human capital (education, health, etc.), 
environment damage/recovery, among other issues, which would provide for a more accurate 
interpretation of results in the long run. 
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