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Abstract 
 The production of tchapalo (traditional beer) remains uncontrolled 
and artisanal. For the improvement of the product quality, we need to know 
more about the traditional process and beer characteristics. The fermentation 
process is one of the most critical steps, which determines the quality of the 
beer. In this study, artificial neural network, precisely multi layer perceptron 
was used for modeling batch fermentation process of sorghum wort. The 
artificial neural network showed its ability to predict the ph, temperature, 
substrate, biomass, carbon dioxide (CO2) and alcohol (ethanol) evolution 
during batch fermentation of sorghum wort. All the correlation coefficients 
between the observed and predicted values for the artificial neural network 
were higher than 0.96. Thus, artificial neural network can be used to 
determine fermentation deviations during production of tchapalo and also to 
monitor and improve its quality. 

 
Keywords: Batch fermentation, artificial neural network, modeling, 
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Introduction 

 Sorghum beer is a traditional alcoholic beverage produced and 
consumed in several african countries (Yao et al., 1995; Amané et al., 2005). 
The manufacture of this beer is handcrafted by traditional brewers using a 
number of raw materials that gives particular organoleptic characteristics. 
The sorghum, the clarifying, the traditional starter and the water constitute 
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the raw materials. Other sources of substrates like corn or millet can be used 
to substitute the sorghum (Kayode et al., 2005). This traditional beer has 
nutrient values (high starch proportions, protein, fat, vitamins and minerals) 
that improve the diet of consumers (Chistsika and Mudimbu, 1992). 
Therapeutic virtues such as laxative effects, antimalarial and anti 
hemorrhoidal were assigned to this beer. In addition, its relatively low price 
makes it accessible to all budgets (Enou, 1997).  

 In côte d'ivoire (Ivory Coast), the productions of this traditional 
sorghum beer by women need a stage of spontaneous lactic fermentation, 
followed by alcoholic one. The step of the alcoholic fermentation of the 
sorghum wort is done with traditional ferments generally selected from dried 
deposits of previous productions. This fermentation process lasts between 12 
and 18 hours and usually leads to a tchapalo whose alcohol rate varies 
between 3 and 6% (v/v) (amane et al., 2005; dje et al., 2008; aka et al., 
2008). Although the high amount of alcohol, the fermentation process still 
faces to many problems. Indeed, it takes place in deplorable hygienic 
conditions with the use of basic equipment and painful operations. The 
process is also, traditional and uncontrolled. Thus, beers produced have 
variable quality and vary from one production to another. In addition, they 
often have poor hygienic quality and cannot be stored for a relative long 
time. Therefore, huge losses of incomes are observed. 

 In order to provide solutions to problems encountered by these 
traditional brewers, several studies have been conducted. Earlier reports 
conducted by aka (2009) and n'guessan (2009) led to the selection of strains 
of lactic acid bacteria and yeast which could be used as starter cultures to 
accomplish respectively spontaneous lactic fermentation and alcoholic one. 
Those of Assidjo et al. (2009) concerned a hybrid neural network approach 
for batch fermentation simulation. These studies represent significant 
progress in controlling tchapalo production. However, in order to control 
tchapalo large-scale production, they should be complemented by predictive 
studies of the variability of physicochemical and microbiological parameters 
of batch fermentation. For this purpose, one of the most appropriate 
strategies for controlling these parameters is the use of artificial neural 
network. Indeed, the artificial neural network is a model (black-box) which 
proved to be non-linear universal approximators used to solve complex non-
linear phenomena such as fermentation (Assidjo et al., 2006; Kouamé, 
2010). This network concept is used for describing a particular type of model 
that emulates the human brain behavior.  

 The purpose of this work is to use the artificial neural network for 
modeling the batch fermentation process of the sorghum wort in real time, in 
order to control tchapalo large-scale production. It is expected that the 
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results obtained from the study will contribute in valorizing the traditional 
sorghum beer and serve as a guide for future research. 
 
Materials and methods  
Experimental systems 

 The neural network modeling technique was employed in batch 
fermentation in which, the yeast consume glucose to produce alcohol and 
carbon dioxide (co2) (Assidjo et al., 2009). The fermentations were 
performed using a brunswick microferm fermentor (new brunswick scientific 
co inc., New Jersey, USA). Firstly, the wort was produced by crushing the 
malt into coarse flour that was then mixed with water (Amané, 2009). The 
resulting porridge like mash was heated to a selected temperature that 
permitted the malt enzymes to partially solubilize the ground malt. The 
resulting sugar-rich aqueous extract (wort), was separated from the solids 
and boiled. The wort was then clarified, cooled and poured in the vessel of 
the micro-fermentor for inoculation. Inoculated ferments were traditionally 
produced by female brewers that use it for a well-known local beer (tchapalo 
or dolo) making (Assidjo et al., 2009). This ferment is in fact a mixture of 
microorganisms containing different species (e.g. Saccharomyces cerevisiae, 
candida …). During the fermentation process (t=0 to 18 h), different 
parameters (ph, temperature, sugar rate (substrate), biomass, carbon dioxide 
and alcohol (ethanol)) were measured. The ph and temperature values of the 
sorghum wort (t = 0 to 18 hours of fermentation) were determined using a 
phmeter and a sterile thermometer (aspina 09654.40, france) incorporated 
directly into the brunswick microferm fermentor (New Brunswick scientific 
co inc., New Jersey, usa). The sugar rate (substrate) of sorghum wort was 
determined using a hand refractometer (mc 51295, france). Carbon dioxide 
(co2) content of sorghum wort is determined using a co2 gas analyzer 
incorporated into the micro-bioreactor. Alcohol rate (%) is determined after 
distillation and titration according to a method described by kouamé (2010). 
Biomass (microbial quantity) is quantified by the gravimetric method 
(Barbin, 2006). 

 Experimental values of these parameters obtained from the 
fermentation (t = 0 to 18 h) were used to build a representative scientific 
database. For the purpose of this study, 30 batches were performed. 

 
Neural network creating and training 

 The neural network used to monitor the batch fermentation process of 
the sorghum wort was multi layer perceptron with one or two hidden layers. 
The multi layer perceptron was chosen because it seems to be the easiest to 
use and able to model any continuous function (Hornik, 1989). The 
activation function employed in the hidden layers was sigmoid (tanh) 
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function while for outer layer linear function was used. The number of the 
hidden neuron was firstly varied from 1 to 10. Backpropagation technique 
was used to train the net and, weights and biases were determined using 
levenberg-marquardt algorithm. 

 The database was constituted from measurements of physicochemical 
and microbiological parameters (explanatory or relevant parameters) 
obtained during the thirty essays of batch fermentation. The input and output 
variables concerned ph, temperature, substrate (sugar rate), biomass, carbon 
dioxide and alcohol (ethanol). About of 284 records were collected after 
filtering out the records that contained missing or spurious data. A number of 
284 pairs of input/output data were computed. This data set was subdivided 
in 2 subsets training and validation (Kouamé, 2010). Before training process, 
data were all normalized in order that their values were in (-1, +1) range. 

 The optimal artificial neural network was that for which the lowest 
prediction error of the model was obtained. The prediction error was the 
mean square error (mse) defined as follows (Assidjo et al., 2009): 
 
 
                                                                                                                       (1) 
 

 With yc and ye the calculated and observed responses for i = 1, ..., n; 
n, the number of data. 

 Calculations for artificial neural network were implemented in matlab 
r2007b (Mathworks inc., Massachussets, USA). 
 
Statistical methods  
Correlation coefficient (r) 

The correlation coefficient (r) is usually used to evaluate the 
performance of neural models. It is obtained by linear regression between the 
experimental and the predicted values from the network. When the absolute 
value of the correlation coefficient (r) between the experimental values and 
those predicted by the system approaches zero (0), the degree of binding is 
small. Its formulation is obtained as follows: 

 
 

                                                                                                           (2) 
 
 

With ye and yc the experimental and calculated values, ey  and cy  the 
means of experimental and calculated values respectively and n the number 
of variables. 
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Analysis of variance (anova) 
 Analysis of variance (anova) was used in addition to the mean square 

error (mse). It verifies the different architectural behaviors of artificial neural 
networks when they appear to be identical or confused considering the 
performance criteria. It involves two hypotheses (ho null and alternative 
hypothesis h1) (Feinberg, 1996; Assidjo et al., 1998). The choice of neural 
architectures is based on the coefficient calculated f1 (Fisher coefficient) 
which is compared to a threshold value played back (f) in the table of fisher 
(fisher test, p <0.05). If the calculated value is less than the value played 
back from the table, the hypothesis ho is saved. 
 
Testing the least significant difference (lsd) 

 When the analyses of variance (anova) revealed significant 
differences, another method is needed to detect among the means, those that 
are equivalent. It is possible to use the least significant difference method 
(lsd). This method was used to determine differences between the 
architectural behaviors of artificial neural networks. The least significant 
difference was defined as follows (Feinberg, 1996): 

t
n
VLSD r ×

×
=

2

                                                                  (3) 
With t the student coefficient, n the number of runs and vr the residual 

variance. 
 

Results 
Topology of artificial neural network 

 The number of the hidden neuron was varied from 1 to 10 and the 
comparisons between the performance of the different topologies were 
assessed. The regression line obtained from this comparison is characterized 
by its correlation coefficients (r). Table 1 presents the correlation coefficients 
of physicochemical and microbiological parameters depending on the 
number of neurons in hidden layer during the training and validation subsets. 
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Table 1: correlation coefficients of physicochemical and microbiological parameters 
depending on the number of neurons in hidden layer during the training and validation 

subsets 
Nodes in 
hidden layer 

Correlation coefficients (training) 
Ph Temperature Substrate Biomass Co2 Alcohol 

1 0.051 0.608 0.857 0.515 0.961 0.865 
2 0.913 0.628 0.940 0.734 0.983 0.866 
3 0.958 0.899 0.981 0.836 0.982 0.959 
4 0.996 0.981 0.987 0.964 0.984 0.961 
5 0.998 0.981 0.988 0.970 0.992 0.978 
6 0.999 0.984 0.993 0.979 0.997 0.978 
7 0.998 0.982 0.991 0.972 0.996 0.981 
8 0.998 0.984 0.993 0.978 0.996 0.983 
9 0.998 0.990 0.993 0.976 0.995 0.986 
10 0.998 0.990 0.994 0.977 0.997 0.986 
 Correlation coefficients (validation) 
1 0.045 0.575 0.863 0.493 0.957 0.8 9 
2 0.909 0.601 0.941 0.721 0.981 0.862 
3 0.951 0.877 0.981 0.830 0.980 0.957 
4 0.996 0.978 0.986 0.974 0.982 0.961 
5 0.998 0.974 0.987 0.978 0.990 0.968 
6 0.998 0.986 0.993 0.987 0.996 0.970 
7 0.998 0.976 0.994 0.972 0.996 0.963 
8 0.998 0.978 0.993 0.978 0.995 0.957 
9 0.997 0.981 0.993 0.977 0.995 0.908 
10 0.998 0.979 0.994 0.972 0.996 0.956 

Underlined values correspond to the higher correlation coefficients (r) 
 
 Analysis of this table shows that correlation coefficients (r) values 

ranged from 0.045 to 0.999 for all responses. It was also observed that best 
correlation coefficients (r) values were obtained with 6 neurons in the hidden 
layer concerning training and validation phases. In addition, correlation 
coefficients (r) values are in all cases higher than 0.95 (very close to 1) when 
number of neurons in the hidden layer is superior or equal to 4. The network 
which can be retained, taking account all responses to predict fermentation 
parameters assessed is 6-6-6. 

 The ability of networks with two hidden layers was checked. For this 
purpose, the number of the hidden neuron (x) was varied from 1 to 10 and 
the best neural architectures were retained. Figure 1 shows the evolution of 
the mean square errors (mse) of these neural architectures. As shown in this 
figure, two parts can be distinguished while considering the number of 
neurons in the hidden layer. The first part of the curve showed that the mean 
squared error (mse) decreased widely across an initial value (0.492 to 0.544) 
to a limit one (0.034 to 0.110) until the fourth neuron in the hidden layer. 
The second part showed a stable evolution of the mean square error (mse) 
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around the limit values whatever the number of neurons in hidden layer. 
These curves seem confounded.  

 Anova test was done considering values from 5 to 10 neurons in 
hidden layer. The results are presented in table 2. 

 
Figure 1: Evolution of the mean square error (mse) of different neural architectures  

 
Table 2: Analysis of variance of the mse from different neural architectures 

Source of variation 
Degree of 

freedom 
Sum of 

square 
Variance F1 Probability F 

Residual 3 0.001 0.000 25.05 
 

0.000 
 2.96 Model 20 0.000 0.000 

Total 23 0.001  
F1: coefficient calculated 

F: value played back in the table of fisher 
 

 As shown in this table, the calculated value of fisher coefficient 
(25.05) was higher than the tabulated (2.96) one. It was observed a 
significant difference (p<0.05) between behavior of the architectures.  

 A post-hoc test (fisher least significant difference lsd) was performed 
to determine between topologies those that have same performance. The 
results are presented in table 3.  
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Table 3: Test of the least significant difference of the mse from different neural architectures 
Serie i Serie j Mean difference (i-j) Probability  
1 2 0.003 0.118 
 3 0.006 0.005 
  4 -0.011 0.000 
2 1 -0.003 0.118 
 3 0.003 0.147 
  4 -0.014 0.000 
3 1 -0.006 0.005 
 2 -0.003 0.147 
  4 -0.018 0.000 
4 1 0.011 0.000 
 2 0.014 0.000 
  3 0.018 0.000 
 

Mean difference is significant at p ≤ 0.05 
1: 6-x-6; 2: 6-6-x-6; 3: 6-9-x-6; 4: 6-3-x-6 

 
 It was observed that the behavior of neural architecture 6-3-x-6 
differed significantly (p< 0.05) from the other ones. As shown in this table, 
the neural architectures 6-9-x-6 and 6-6-x-6 are equivalent and differ from 
the neural architecture 6-x-6. 

The correlation coefficients (r) of the fermentation parameters for two 
hidden layers during the training and validation phases are presented in table 
4. The results showed that the neural architecture 6-6-10-6 has the best 
correlation coefficients in the both phases (training and validation). This 
neural architecture has correlation coefficients (r) more close to the value 
one (1). Its topology includes 6 neurons in the input layer, 6 neurons in the 
first hidden layer, 10 neurons in the second hidden layer and 6 neurons in the 
output layer.  

 Table 4: Correlation coefficients of physicochemical and microbiological parameters 
depending on the number of neurons in two hidden layers during the training and 

validation phases 
Network 
topology 

Correlation coefficients (training) 
Ph Temperature Substrate Biomass Co2 Alcohol 

6-3-3-6 0.991 0.847 0.986 0.817 0.985 0.962 
6-3-6-6 0.996 0.978 0.985 0.970 0.989 0.978 
6-6-3-6 0.958 0.908 0.981 0.845 0.983 0.967 
6-6-6-6 0.997 0.989 0.992 0.978 0.994 0.985 
6-6-10-6 0.998 0.995 0.994 0.998 0.997 0.996 
6-9-3-6 0.897 0.881 0.864 0.983 0.971 0.922 
6-9-6-6 0.992 0.993 0.984 0.995 0.988 0.994 
6-9-10-6 0.995 0.994 0.987 0.985 0.992 0.988 
 Correlation coefficients (validation) 
6-3-3-6 0.991 0.803 0.982 0.818 0.984 0.960 
6-3-6-6 0.997 0.976 0.980 0.983 0.987 0.968 



European Scientific Journal January 2015 edition vol.11, No.3 ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

83 

6-6-3-6 0.950 0.878 0.976 0.843 0.982 0.957 
6-6-6-6 0.997 0.979 0.988 0.976 0.992 0.935 
6-6-10-6 0.998 0.989 0.998 0.980 0.997 0.986 
6-9-3-6 0.950 0.869 0.973 0.857 0.980 0.960 
6-9-6-6 0.992 0.984 0.987 0.982 0.994 0.904 
6-9-10-6 0.992 0.983 0.991 0.974 0.996 0.945 

Underlined values correspond to the higher correlation coefficients (r) 
 
Simulation by artificial neural network 

 The topology 6-6-10-6 is used to predict the values of the 
physicochemical and microbiological parameters. The validity of the model 
obtained is highlighted by figure 2, 3, 4, 5, 6 and 7, respectively for ph, 
temperature, substrate, carbon dioxide, biomass and alcohol evolution. The 
global analysis showed that the predicted values were close to the 
experimental ones. 

 
Figure 2: comparison between the evolution of experimental (exp) and predicted (cal) ph 

values during the time of batch fermentation 
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Figure 3: Comparison between the evolution of experimental (exp) and predicted (cal) 

temperature values during the time of batch fermentation 
 

 
Figure 4: Comparison between the evolution of experimental (exp) and predicted (cal) co2 

values during the time of batch fermentation  
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Figure 5: Comparison between the evolution of experimental (exp) and predicted (cal) 

substrate values during the time of batch fermentation 
 

 
Figure 6: Comparison of experimental (exp) and predicted (cal) biomass evolution during 

the time of batch fermentation 
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Figure 7: Comparison of experimental (exp) and predicted (cal) alcohol evolution during 

the time of batch fermentation  
 
 The regression line between the observed values and those predicted 

by the artificial neuron network topology 6-6-10-6 and the determination 
coefficients (r2) are presented in figure 8, 9, 10, 11, 12 and 13, for ph, 
temperature, biomass, substrate, co2, and alcohol respectively. It was 
observed that the determination coefficients varied from 0.950 to 0.992. All 
the determination coefficients recorded were above the value of 0.950. 

 
Figure 8: Regression curve between predicted and observed values for ph 
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Figure 9: Regression curve between predicted and observed values for temperature 

 

 
Figure 10: Regression curve between predicted and observed values for biomass 
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Figure 11: Figure 8: regression curve between predicted and observed values for substrate 

 

 
Figure 12: Regression curve between predicted and observed values for CO2 
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Figures 13: Regression curve between predicted and observed values for alcohol 

 
Discussion 

 The prediction capability of artificial neural network depends on its 
topology. In this work, a multi layer perceptron was used. It is composed by 
three kinds of layers: 

• One input layer (6 neurons); 
• One output layer (6 neurons);  
• One or two hidden layers whose neurons number must be 

determined. 
 If it is easier to find out the number of neurons in the input and output 
layers, it is not the case for hidden layer (Assidjo et al., 2006). However, an 
appropriate topology may be found by performing network pruning or 
network growing (Kadhir et al., 2000). Starting with a sufficiently big 
topology, the neural network is pruned by eliminating the links containing 
insignificant weights using a weight elimination method, e.g., the optimal 
brain damage (obd) method developed by Le Cun et al. (1990). 
Alternatively, starting with a small architecture, the network is grown until 
reaching a size, which gives a good prediction model. This last methodology 
was used in the present study varying neurons from 1 to 10 firstly and 
increasing the number of hidden layer from 1 to 2. During this step, the 
neural model obtained is simulated to find out the calculated values of the 
physicochemical and microbiological parameters. These calculated values 
are compared with experimental values. The regression line obtained from 
this comparison is characterized by its correlation coefficients (r). For this 
purpose, the topology 6-6-6, whose correlation coefficients were all close to 
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1 while considering the training and validation phases, seems to be the best. 
Indeed, the best artificial neural network is a compromise between the 
correlation coefficients obtained during training and those obtained during 
validation phases (Chaoui et al., 2000; Chevret, 2007). Thus, the network 
which can be retained, taking account all responses to predict fermentation 
parameters assessed, is 6-6-6 (i.e., 6 neurons in the input layer, 6 neurons in 
the hidden layer and 6 neurons in the output layer). 

 Moreover, the ability of networks with two hidden layers was 
checked. The aim is to check another network with a second hidden layer, 
which presents a better performance than a single hidden layer (6-6-6). The 
best neural architecture that leads to a good neural prediction model can be 
determined by the mean square error (mse) which is the discrepancy between 
predicted and observed values. For this purpose, the stable evolution of the 
mean square error (mse) around the limit values whatever the number of 
neurons in hidden layer seems to reveal that the different neural architectures 
assessed have the same behavior. Indeed, the curves seem confounded. It is 
therefore necessary to check out if there are equal or not. To answer this 
question, analysis of variance method is needed. Anova test was done 
considering values from 5 to 10 neurons in hidden layer. The results showed 
that there was a significant difference (p<0.05) between behavior of the 
architectures. A post-hoc test (fisher least significant difference lsd) revealed 
that the behavior of neural architecture 6-3-x-6 differed significantly from 
the other ones and presented the relatively highest mse values. For these 
reason, it does not give interesting results. Moreover, the neural architecture 
6-x-6 presents the mse values relatively higher than those of the neural 
architectures 6-6-x-6 and 6-9-x-6. Thus, the neural architectures with two 
hidden layers (6-6-x-6 and 6-9-x-6) present a better performance than a 
single hidden layer (6-x-6). Taking into account mse values, it is very 
difficult to determine the most efficient neural architecture between 6-6-x-6 
and 6-9-x-6. It is therefore necessary to examine the coefficient correlations 
(r) in addition to mse. It is well known that more higher is r value, more 
adequate is the network (Assidjo et al., 2009).  

 The analysis of correlation coefficients (r) of the fermentation 
parameters for a second hidden layer during the training and validation 
showed clearly that the neural architecture 6-6-10-6 was the best. This 
network obtained (6-6-10-6) is used to predict the values of the 
physicochemical and microbiological parameters. This step is performed 
with the data not used during training and validation phases. The global 
analysis of prediction depicted points out the good ability of artificial neural 
network for prediction. Indeed, all parameters evolution (i.e. Ph, 
temperature, substrate, carbon dioxide, biomass and alcohol) are reasonably 
well predicted. The artificial neural network models obtained give values 



European Scientific Journal January 2015 edition vol.11, No.3 ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

91 

close to the observed ones, whatever the physicochemical and 
microbiological parameters. In addition, the high determination coefficients 
(r2) recorded between the observed values and those predicted by the 
artificial neuron network topology 6-6-10-6, indicate a good accuracy of 
prediction. Indeed, according to Thompson et al. (1979) and feinberg (1996), 
more higher is determination coefficient (r2) value, more adequate is the 
ability of the network model to properly explain the phenomena. Therefore, 
the values predicted by the artificial neuron network topology 6-6-10-6 are 
enough reliable to approximate the batch fermentation process of the 
sorghum wort. It is a clear indication that the models permit a quite good 
control of the fermentation process. These results are in agreement with 
those of Assidjo et al. (2006) in the case of modeling the process of brewing 
beer on industrial scale by the artificial neuron network topology 4-4-4. In 
addition, Pramanik et al. (2004) have successfully used the artificial neural 
network for predicting of cell mass and ethanol concentration in batch 
fermentation using saccharomyces cerevisiae yeast. This confirms once 
again the ability of artificial neural networks to approximate the dynamic 
processes such as fermentations. Thus, it clearly appears that the neural 
network used in this study is very suitable to simulate the batch fermentation 
studied. 
 
Conclusion 

 The artificial neural network, precisely the multi layer perceptron 
used in this present study has shown its ability to predict the evolution of 
wort ph, temperature, substrate, carbon dioxide rate, biomass (micro-
organisms quantity) and alcohol during time. The high determination 
coefficients (r2) between simulated values and observed ones indicate the 
suitability of artificial neural network for modeling dynamic phenomena. A 
properly designed artificial neural network for the retained architecture (6-6-
10-6) has shown its ability to simulate accurately the batch fermentation 
studied. It can therefore, be used for controlling the tchapalo production at 
industrial scale.  
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