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Abstract 
In this paper, we have introduced the compression of 

electrocardiogram (ECG) using a wavelet transformation. We will treat ECG 
as a signal and will implement a matched filter; and more precisely, the 
Wiener filter which is proportional to the signal itself. Also, we will use this 
filter to detect the positions of the heart beats. In this application, we will be 
using the white noise. However, the matched filter will not be proportional to 
the signal itself. Other results we have computed for this ECG signal are the 
mean difference of the heart beats and the heart rate. All these results are 
well–established diagnostic tools for cardiac diseases.  
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1. Introduction 
 The electrocardiogram (ECG) provides information about the heart. 
ECG is a biological signal which generally changes its physiological and 
statistical property with respect to time, tending to be a non-stationary signal. 
In studying such types of signals, wavelet transforms is very useful. The 
most striking waveform when considering the ECG is QRS wave complex 
which gives the R wave peak which is time–varying. In this paper, we will 
describe the detection of QRS complex using wavelet transform. This 
detector is reliable to QRS complex morphology and properties which 
changes with time and with the noise in the signal. 
 During a single cardiac cycle, there are different feature points 
known as the P wave, QRS complex, and the T wave. Specifically, QRS 
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wave is used to detect arrhythmias and identify problems in the regularity of 
the heart rate. It is complicated to detect the R wave which is the highest 
point of the QRS complex. This is because it is changing with time, 
corrupted with noise, and is subject to baseline wandering due to different 
patient conditions. Sometimes, in the ECG signal, QRS complexes may not 
always be the prominent waves because they change their structure with 
respect to time at different conditions. However, they may not always be the 
strongest signal sections in the ECG signal. Also, the ECG signal can be 
affected and degraded by other sources such as noise in a clinical 
environment like patient condition, baseline wandering due to respiration, 
patient movement, interference of the input power supply, contraction and 
twitching of the muscles, and the weak contact of the ECG electrodes. 

 
Figure 1. ECG Waveform and its Components 

 
 Therefore, it is determinative for the QRS detector to avoid the noise 
interference and correctly detect QRS complexes even when the ECG signal 
varies with respect to time. Also, the chances of getting human error are high 
if the ECG is monitored visually. It is a complicated task and it increases 
chances of losing important clinical related information. Therefore, lot of 
efforts has been made to avoid this problem by developing various analog 
and digitized systems for ECG analysis. Digitized systems have proved to be 
more efficient as compared to analog systems. This makes it possible to 
retrieve information rapidly for the storage of important data and techniques 
to present that data, which is prominent for clinical usage. Many approaches 
used or proposed in the past have been complicated and have used a great 
deal of time. Real time approaches on the other hand, can be used to monitor 
the R wave complexes and in determining the correct heart rate. 
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2. Wavelet Transform  
 A representation of functions with respect to wavelets is known as a 
wavelet transform. A continuous time signal is distributed into different scale 
components using a mathematical function called wavelet. The “mother 
wavelet” is a fixed length waveform which is scaled and thus translated into 
“daughter wavelets”. Wavelet transforms represents functions with 
discontinuities, sharp peaks, and it exhibits accuracy in the reconstruction of 
signals which are non-stationary, non-periodic, and finite in nature. Thus, it 
is advantageous over Fourier Transforms in such cases.   
 The discrete wavelet transform represent a digital signal with respect 
to time using various filtering techniques. Various cutoff frequencies as 
multiple scales are used to analyze the signal. Filters perform the functions in 
processing the signal. Scaling the filters in iterations produces wavelets. 
Scales are determined using the up and down sample method. The use of 
filter provides the information in the signal. Therefore, this uses the low and 
high pass filters over a digitized input signal. 

Let us consider a discrete signal s, corresponding to the ECG, and 
mixed with EMG (Electromyogram artifacts) noise n : nsx += ; NRnsx ∈,, .  
The procedure of de-noising contains two steps which can be described as 
follows:  
 The signal-noise mixture  decomposed in  wavelet 
domain; the wavelet coefficients  which is shrinked using wavelet domain 
filter ; the estimate of the signal is calculated by inverse wavelet 
transform of the shrinked wavelet coefficients 1ŷ ; and finally, the coefficients 
estimate 21ŷ  in 2W  wavelet domain is obtained: 

xWHWWy SH 1
1

1221ˆ −=          (1) 
 The wavelet coefficients of the signal-noise mixture in 2W  domain 

2y and their estimate 21ŷ obtained in (1) are used to design an optimal in 
MSE (Mean Square Error) sense Wiener Filter WFH  
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 Where j is the time position and k is scale position. The denoised 
signal is obtained by inverse wavelet transform of the filtered by WFH
wavelet coefficients 2ŷ : 

                                                                xWHWs WF 2
1

2ˆ −= .     (3) 
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 Here, WFH  is a diagonal matrix containing ),( kjHWF  in the main 
diagonal; and SHH is a diagonal matrix containing time – frequency 
dependent threshold. 
 
3. Applications of Wiener Filter  
 Traditional noise reduction is based on standard filter processing, 
either by low – pass filter or high – pass filter. Wiener filter is noise filtering 
approach used in this paper. Wiener filter is a well-developed class of 
optimal filters which uses the signal and noise characteristics that are 
available. Winer filter theory is based on the minimization of the differences 
between the filtered output and the desired output. However, Gaussian white 
noise is used as a general noise source and added to the ECG signal.     
 
3.1 Implementing a Wiener Filter in a Sine-wave 
 Let us numerically implement a Weiner filter to recover a sine-wave 
of the form ( ) sin(2 )f t t= . Here, we assumed that the frequency is 4 Hz, the 
function is sampled at 100 Hz, and the signal is corrupted by white Gaussian 
noise, 0.4σ = .  

Figure 2 shows the original signal, noisy signal, and reconstructed 
signal for the case of white Gaussian noise.  

 
Figure 2. The graphical representation of the original signal, noisy signal, and reconstructed 

signal for the case of white Gaussian noise, 0.4σ =  
 
 As seen, the filter recovers the original signal fairly well. Thus, the 
code outputs the fractional variance left in the residual signal: 
 Fractional variance of residuals is (white): 0.0737 
 Fractional variance of residuals is (colored): 0.2485 
 However, the graphical and numerical results came out using the 
script in MATLAB shown in Appendix 1. 
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 Furthermore, we re-implemented the Weiner reconstruction 
increasing the correlation length of the noise. Also, we used the colored 
noise and observed what happens to the reconstructed signal. The colored 
noise is represented by the following formulae:  

[ ] [ ] [ ] [ ]
1

1 1
3

w n w n w n
w n

− + + +
= . 

 
Figure 3. The graphical representation of the original signal, noisy signal, and reconstructed 

signal for the case of colored Gaussian noise 
 
 We can see that in case of white noise, the residual signal has a 
variance < 10% of the original signal showing that we have reconstructed the 
signal well in the presence of noise. In the case of the colored noise, we have 
a variance of ~ 25% in the residuals. This is because of the fact that as the 
noise correlation length increases, the difference in the covariance matrix of 
the signal and the noise reduces, and the filter is unable to separate one from 
the other. Thus, the reconstruction is clearly worse. If we increase the 
correlation length of the noise, then we would get worse reconstructions as 
expected.  
 
3.2 Implication of Wiener Filter in ECG 
 In this paragraph, we will see the implication of Wiener filter in a real 
wave. ECG is a time-domain recording of a human heart beat 
(electrocardiogram). In the previous problem, we only knew the correlation 
matrix of the signal. Here, we know the signal itself, and hence, we will 
implement a matched filter. Using this filter, we will detect the heart beats in 
the cardiogram and calculate the heart rate.  
 Furthermore, we will assume that the noise is white and that each 
sample has noise with the same variance. Hence, the noise covariance matrix 
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is diagonal with the same entry for each diagonal element. Consequently, the 
matched filter is proportional to the signal itself. To find the positions of the 
heart beats, we can use a matched filter that is simply given by a copy of the 
signal. Note that if the noise is not white, and/or if different samples have 
different noise levels, the matched filter will not be proportional to a copy of 
the signal itself. Hence, it will depend on the noise covariance matrix. 
 The matched filtered output is shown in the Figure 4. We do not scale 
the y axis to the right values, since it is inconsequential in determining the 
heart rate. (Note: we will not plot the observed ECG signal here) 

 
Figure 4.  Wiener filter in the ECG signal 

 
 The beats are detected at timed 0.3288, 0.93, 1.529, and 2.129. The 
mean difference between them is 0.6 seconds. This corresponds to a heart 
rate of ~ 100 beats per minute, which is within the normal heart rate range 
from 60 – 100 beats per minute. The numerical and graphical results are 
done using the script shown in Appendix 2 (code 2).  
 
4. Conclusion 
It is well known that modern clinical systems require the storage, processing, 
and transmission of large quantities of ECG signals. ECG signals are 
collected both over long periods of time and at high resolution. This creates 
substantial volumes of data for storage and transmission. Data compression 
seeks to reduce the number of bits of information required to store or 
transmit digitized ECG signals without significant loss in signal quality.  
The wavelet decomposition splits the analyzing signal into average and detail 
coefficients using finite impulse response digital filters. In this paper, we 
implemented a Wiener filter to the ECG signal to detect the heart beats and 
determine the correct heart rate. As discussed in the introductory part of this 
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study, it is a hard task which provides a cleaner image as the consequence of 
these transformations. 
Wavelet technique is the obvious choice for ECG signal compression 
because it is localized, and has a non-stationary property of the wavelets to 
see through signals at different resolutions.  
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Appendix 
1) 
function Code3() 
close all; clear all; clc 
dt = 1/100; % Sampling rate 
t = [0:dt:(200-1)*dt]'; % Time vector 
sig = sin(2*pi*4*t); % Signal 
noise = 0.4*randn(size(sig)); % White noise 
signoise = sig+noise; % sig+ noise 
% Construct the signal covariance matrix 
sig2 = xcorr(sig,sig); 
Csig = zeros(200,200); 
for a=1:200 
    for b = 1:200 
        Csig(a,b) = sig2(200-(a-b)); 
    end 
end 
Cnoise = (0.4^2)*eye(200); % Noise covariance for white noise 
F = inv(Csig+Cnoise)*Csig; % Weiner filter for white noise case 
figure(1); 
plot(t,signoise,'k.'); hold on; 
plot(t,F*signoise,'b','linewidth',2); 
plot(t,sig,'r','linewidth',2); 
hold off 
xlabel('Time in seconds','fontsize',14); 
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ylabel('Signal in linear units','fontsize',14); 
set(gca,'fontsize',14); legend('sig+noise','filtered sig','sig'); 
print('no_corr.png','-dpng','-r200'); 
% 
Ncor = 3; % Correlation length = 2*Ncor+1 
noise1 = noise; % new colored noise vector (initialize memory) 
Cnoise1 = Cnoise; % New colored noise covariance matrix (initialize memory) 
% Construct the colored noise and its covariance matrix 
for icor = -Ncor:Ncor 
    if(icor~=0) 
        noise1 = noise1+circshift(noise,icor)/sqrt(2*Ncor+1); 
        Cnoise1 = Cnoise1+diag(0.4^2*(Ncor+1)/(2*Ncor+1).*ones(200-abs(icor),1),icor); 
        if(icor>0) 
            Cnoise1 = Cnoise1+diag(0.4^2*(Ncor+1)/(2*Ncor+1).*ones(abs(icor),1),200-icor); 
        else 
            Cnoise1 = Cnoise1+diag(0.4^2*(Ncor+1)/(2*Ncor+1).*ones(abs(icor),1),-200-icor); 
        end 
    end 
end 
signoise1 = sig+noise1; % Sig + colored noise 
F1 = inv(Csig+Cnoise1)*Csig; % New weiner filter 
figure(2); % plot results for colored noise case 
plot(t,signoise1,'k.'); hold on; 
plot(t,F1*signoise1,'b','linewidth',2); 
plot(t,sig,'r','linewidth',2); 
hold off 
xlabel('Time in seconds','fontsize',14); 
ylabel('Signal in linear units','fontsize',14); 
set(gca,'fontsize',14); legend('sig+noise','filtered sig','sig'); 
print(sprintf('corr_%d.png',Ncor),'-dpng','-r200'); 
end 
 
2) Code 2 
function Code2() 
close all;  
clear all;  
clc 
l=load ('heart_beat.mat'); 
npts_filt = length(l.beat_profile); % Num of points in the matched filter 
npts_sig = length(l.ecg); % Num of points in the ECG 
dt = 1/l.fs; % Sampling interval 
time = 0:dt:(npts_sig+npts_filt-1)*dt; 
filt_sig = xcorr(l.beat_profile,l.ecg); 
filt_sig = filt_sig(1:npts_sig+npts_filt); 
figure(1); 
plot(time, filt_sig); 
xlabel('Time in seconds','fontsize',14); 
ylabel('Filter response in linear units','fontsize',14); 
end 
  


