
European Scientific Journal June 2015 edition vol.11, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

28

CLEAN DIGITAL GARBAGE

Hong Zhou, PhD
Joseph Manthey, PhD

Ekaterina Lioutikova, PhD
University of Saint Joseph, West Hartford, Connecticut, USA

Abstract
 Along with the vast price drop in computer disk space per unit,
computer users have become less concerned with their disk space usage. This
contributes to the accumulation of digital garbage which represents the
unneeded files left behind in an information system. The accumulation of
large quantities of digital garbage can incur significant costs and can even
interfere the operations on current meaningful data. This article addresses
this issue of digital garbage by presenting an intelligent algorithm that
analyzes the age, file access time stamp, location environment, ownership,
and content correlation with other current files for a given file to compute a
clean-index (c-index) which determines the necessity of a file for removal.

Keywords: Digital garbage, disk space, c-index

Introduction
 Computer digital storage space is becoming cheaper and cheaper,
which contributes to the accumulation of digital data. From 1981 to 2014, the
cost of computer disk space per gigabyte has dropped nearly 10 million times
(A history of storage cost (update), 2014). It was roughly estimated that the
space cost per unit has been halved roughly every 14 months (A history of
storage cost, 2009), which is at a rate faster than the increasing pace of
computer computation power predicted by Moore’s law (Schaller, 1997).
Today, software developers and general computer users are much less
concerned about computer disk space. This creates an issue of disk space
waste because computer users are developing the habit of not deleting
unneeded files.
 In the era of “big data” when data accumulates exponentially, it is not
difficult to realize that obsolete data is accumulating at a faster and faster
speed. While large quantities of data brings many opportunities, it also
brings many challenges (Gantz & Reinsel, 2012). One challenge is how to
keep the data clean and free of garbage.

European Scientific Journal June 2015 edition vol.11, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

29

 “Digital garbage” represents the unneeded digital files in an
information system. When there is enough disk space to spare, the
drawbacks of digital garbage is not a serious issue. In fact, few organizations
or companies spend resources to systematically clean their digital garbage
because the gain is very limited compared to the resources to be spent on
cleaning. However, digital garbage will eventually become a serious issue
because of several reasons:
 Digital garbage accumulates fast and takes significant disk space
• Digital garbage interferes with the searching and processing of
meaningful data
• Digital garbage may create security issues since some garbage may
contain sensitive data
 Digital garbage is a more serious issue to those companies that are
outsourcing their data into cloud storage because these companies need to
pay for the storage. It can be foreseen that digital garbage will become an
issue in the future, and therefore how to remove digital garbage while
minimizing mistaken removals will be an important consideration.
 The cleaning of digital garbage can be best achieved by individual
users since each user understands the most about her/his files. In many
organizations users are requested to archive or clean their files periodically.
Unfortunately whether such requests are honored by users is uncertain.
Currently there are two primary approaches to clean unneeded files in an
information system.

User Dependent
 User dependent garbage removal is the most reliable, efficient and
accurate approach in digital garbage cleaning. For example, given a company
with 10,000 employees, if all users are active in cleaning their own files, the
mistakes happening in the cleaning process would be the minimum as each
user has the best knowledge of her/his own files. Such a process is very
efficient, too. The drawback of this approach comes from the fact that many
users won’t take the lead in cleaning their unwanted files. In addition, what if
a user leaves a company leaving behind a large number of files on a disk?

Administration Forced
 The administrative team who is in charge of an information system
can initiate the garbage cleaning process. The team can force users to clean
or archive files that are of certain number of years old. When a user does not
archive or clean certain files that need to be cleaned, the administration team
steps in and removes those files. There are several disadvantages associated
with this approach. The fundamental disadvantage is again that there are
users who are not aware of or do not pay attention to the file-cleaning

European Scientific Journal June 2015 edition vol.11, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

30

messages from the administrative team and therefore their wanted files may
be mistakenly deleted.
 The worst case scenario happens when a critical user leaves a
company leaving behind a large number of files. It is difficult to determine
what files of this user should be deleted because there might be very valuable
information in those files. This becomes even truer for companies that are
developing cutting-edge technologies where a critical user’s knowledge
might be left in those files which may or may not need to be accessed in a
later time. Over years, the number of such uncertain files can accumulate and
require significant disk space, increase the maintenance costs, and may even
interfere the operation of current files. In such a case, an algorithm that can
assess such files for removal becomes valuable.

Intelligent Digital Garbage Cleaning Algorithm
 The ideal scenario is to have an automatic process that can delete
unneeded files accurately without any mistakes. To achieve 100% accuracy
alone by the algorithm might not be feasible, but a sophisticated algorithm
can certainly help achieve the desired effect. This article presents an
intelligent algorithm that can automatically remove unneeded disk files
based on a clean-index (c-index).
 The c-index takes into consideration the following factors of a file:

1) age;
2) time passed since last access time stamp;
3) location;
4) owner;
5) content correlation between a file with other files.

 It is straightforward to understand why the age and the time passed
since last access time stamp of a file are two critical factors in determining
the necessity for removal. For example, a rule can be set up such that a file
that is 20 years old or more should be deleted, or a file that has not been
accessed in the past 10 years can be removed. Basically, the age and time
lapse are positively correlated with the need for removal.

Location Factor
 If a file has not been accessed for a long time while it resides in an
environment where the data access traffic is heavy, should this file be
removed based on the rules of age and access time stamp? Though there is
no study about how likely similar files are stored together, it has been a
common practice for professional computer users to store related files
together. Thus, the location factor has two folds of meaning:

European Scientific Journal June 2015 edition vol.11, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

31

• If the neighboring files or parent directory has been accessed, this
given file may have valuable information and therefore its
removal likelihood is decreased.

• If the neighboring files or parent directory has not been accessed,
this given file may be losing its value and therefore its removal
likelihood is increased.

Owner Factor
 In some cases, the owner of a file is critical and the ownership
determines if a file needs to be kept forever. For example, some files of a
CEO of a company may need to be kept for a long time. Hence, the
importance of the owner in an organization or company is negatively
correlated with the need for removal.

Content Correlation
 This is a sophisticated factor in this algorithm. This factor is used to
minimize the wrongly removal of meaningful files when such files are
determined to be removable by other factors. A scenario can help explain
this factor.
 Suppose file A is determined to be removable by other factors. The
analysis found out that A has information or data related to lung cancer that
is the current working topic of the company. Clearly, there are many
currently active files that are addressing lung cancer, though none of them is
referencing file A. In this case, the algorithm has to make a decision if it is
possible for file A to be referenced or accessed since its content is relevant to
a current topic in this company. Generally speaking, if the content of an old
file has strong correlation with current topics, its need for removal decreases.

The Algorithm
 The c-index is computed as the following:

c-index = (k1(age - L1) + k2(lapse - L2) + k3 * LF + k4 * CC) * OF,
where
 age = the age of a file since its creation
 lapse = the time passed since the last access to the file
 LF = location factor
 CC = content correlation
 OF = owner factor

L1 = age limit. A file’s age must be over L1 to be considered
removable
 L2 = lapse limit. Time passed since last access must be over L2 for a

file to be considered removable
 k1 = the weight coefficient for age in the computation of c-index

European Scientific Journal June 2015 edition vol.11, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

32

k2 = the weight coefficient for lapse in c-index computation
k3 = the weight coefficient for LF in the computation of c-index
k4 = the weight coefficient for CC in the computation of c-index

 The c-index is a measure of the necessity to remove a given file. The
larger the c-index, the greater the need for a given file to be removed. Thus,
both k1 and k2 are positive numbers. The location factor represents the
location importance of a file, which means LF >= 0. Correspondingly, k3 < 0.
Similar to LF, CC >= 0, and therefore k4 <0.
 The value of owner factor is between 0 and 1 (or between 0 and a
number larger than 1), with 0 representing the highest importance of the
owner. When OF = 0, c-index = 0, which means that the file cannot be
removed at all.

Computation of LF
 Computation of LF needs some additional explanation. Since the file
structure is hierarchical in all the computer operating systems, LF of a file
(for example, file A) is affected by files that are either 1) in the parent
directory of A; 2) in the same directory of A; and 3) in the sub-directory
below A. This is illustrated in Figure 1.
 A simple way to compute LF can be:
𝐿𝐹 = ∑𝑓, where f is a file that has been accessed recently. This means that
LF is simply the number of the files in the user’s home directory that have
been accessed recently.

Figure 1. The LF of file A is determined by the file access stamps of file D which is in A’s
parent directory, file B which is in the same directory of A, and file C which is in the sub

directory to where A resides.

European Scientific Journal June 2015 edition vol.11, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

33

 A more sophisticated approach to LF computation might take into
consideration of the distance between file A and other actively-accessed
files. Using Figure 1 as one example where file B is in the same directory as
A, while C and D reside in another directory directly above or below A. We
can then simply compute LF as LF = (B) + 0.5 * (C) + 0.5 * (D). In this
equation, a file inside a directory one level up or down is counted as only
half compared to a file residing in the same directory as A.
 Since there might be many files surrounding file A, the computation
of LF for A might seem to be expensive. However, a tree approach can make
the computation more efficient. For example, suppose that we are using the
equation 𝐿𝐹 = ∑𝑓 for LF computation. By using a tree approach, the LF
values for all files inside the user’s home directory can be computed in one
traverse of the tree. This means that we do not compute LF for a single file
alone. Instead, we compute the LF values for all files inside a user home
directory. This can greatly reduce the time cost on LF computation.

Determination of Coefficients Ks
 The c-index is determined by many factors in this proposed
algorithm. The computation of LF, OF, CC, and the determination of L1 and
L2 all require simulation and tests. The values of k1, k2, k3, and k4 are also
unknown. The computation of c-index requires that we first determine the
values of these 9 parameters.
 The parameters of the algorithm can be represented as a vector of size
9. Once we have several information systems for use as a testing
environment, we can use either pattern searching or another machine
learning approach to approximate the best value ranges for the nine
parameters. This process can be simplified if we assume that OF is a Boolean
variable with a value of either 0 or 1. This leaves only 8 parameters to be
determined. Furthermore, the values of CC and LF can be counter-adjusted
by k4 and k3. Therefore, once the computational algorithms for CC and LF
are finalized, what matters are the values of k4 and k3. Thus, the vector size is
reduced to 6.
 The values of L1 and L2 are usually system dependent, i.e. different
organizations or companies that are applying this intelligent algorithm may
have different values for L1 and L2. So, in the simulation and testing phase,
we may need to find the best set of k1, k2, k3, and k4 for different L1 and L2
values. Generally speaking, L1 and L2 should be between 0 and 10, and are
likely integers. Thus, the most critical parameters needing to be determined
are k1, k2, k3, and k4.

European Scientific Journal June 2015 edition vol.11, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

34

Conclusion
 This article presents an intelligent digital garbage cleaning algorithm
which is based on the computation of c-index for each file. The value of c-
index positively correlates with the need for removal. Even though such an
algorithm may have no business place in today’s information system
environment where disk space is cheap enough to endure large amounts of
digital garbage, such an algorithm may find its application in the near future
when digital garbage accumulates to a degree such that it interferes with
system performance or presents security concerns. Based on the design
presented in this article, our future work will focus on the development of a
software package that implements this algorithm. To help implement this
algorithm, we hope to conduct several experiments to study how each file
factor affects the need for removal of a file. This can help determine the
coefficients k1, k2, k3, and k4, and improve the computation of LF. In
addition, the authors would like to point out that what is presented in this
article is just a preliminary design subject to improvements or modifications
based on our further research discoveries.

References:
A history of storage cost (update). (2014, 3 9). Retrieved from
http://www.mkomo.com/cost-per-gigabyte-update
A history of storage cost. (2009, 9 8). Retrieved from
http://www.mkomo.com/cost-per-gigabyte
Gantz, J., & Reinsel, D. (2012). The Digital Universe in 2020: big data,
bigger digital shadows, and biggest growth in the far east. In IDC iView:
IDC Analyze the Future.
Schaller, R. R. (1997). Moore's law: past, present and future. IEEE
Spectrum, 52-59.

