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Abstract 
We have investigated the equations of motion for parametrized invariant Lagrangian systems.  

We applied the technique of separation of variables and the method of canonical 

transformations to solve the Hamilton-Jacobi equation. The quantization of parametrized 

invariant Lagrangian systems is investigated using the WKB approximation.

Keywords:  Parametrized Lagrangians, Hamilton-Jacobi, Quantization PACS 

numbers: 11.10.Ef 

Introduction 
Time plays a central and peculiar role in quantum mechanics. In the standard 

nonrelativistic quantum mechanics, one can describe the motion of a system by using the 

canonical variables which are functions of time only. Time is the sole observable assumed to 

have a direct physical significance; but it is not a dynamical variable itself. It is an absolute 

parameter treated differently from the other coordinates, which turn out to be operators in 

quantum mechanics. 

 It is well known that any standard Hamiltonian system can be transformed to a 

constrained system with a vanishing Hamiltonian by going to an arbitrary reparametrization of 

time, thereby introducing the original time coordinate as a new dynamical variable. 

 Parametrization invariance is a way that takes the time as an extra canonical variable of 

the system on the same footing as the position variable, and it is then easy to introduce a non-

canonical structure in the extended phase-space by including an invariant parameter through 

the action integral which will play the role of the time. Hence, the canonical transformation 

here is implemented in an extended phase space, where the time and its conjugate momentum 

are included [1-5]. 

 The usual way to study the parametrization invariance of a system is by using the Dirac 

method of canonical analysis [4,5]. Because not all the momenta are independent due to the 
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invariance under parametrizations, this approach requires that a constraint on the system be 

introduced. For a parametrized particle, this constraint is at the classical level the Hamilton-

Jacobi equation (HJE) and at the quantum level the Schrodinger equation. So the Dirac method 

associates to the symmetry of parametrizations the classical or quantum evolution equations. 

 Another powerful approach to study parametrization invariance of a system is by using 

the Hamilton-Jacobi (HJ) formalism for constrained systems [6-10], based on Caratheodory’s 

equivalent Lagrangians method [11]. This formalism does not differentiate between the first 

and second class constraints as in Dirac's method, we do not need any gauge fixing terms and 

the action provided by HJ is useful for the path integral quantization method of the constrained 

systems.  

 In this work, we want to generalize the above mentioned procedure to obtain the 

Hamilton-Jacobi equations for the reparametrized invariant Lagrangian systems and make use 

of its singularity to write the equations of motion as total differential equations in many 

variables. The interesting point of the procedure is that on the one hand we get the classical 

and quantum evolution equations for the reparametrized invariant systems and on the other 

hand we also obtain a classical action that can be quantized using the WKB approximation 

[12-15]. Another interesting property of the method is that it can be naturally extended to field 

theory. 

Basic Tools 
 This section is concerned with the theoretical framework for the HJ formalism and the 

WKB approximation of reparametrized Lagrangian systems. 

Hamilton–Jacobi Equation 
 The fundamental functional in the Lagrangian formalism is the action 
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Integrating the second term by parts, we obtain 

(2.2) 

The second term vanishes because the motion satisfies Lagrange's equations. In the first 

term, we set =0 and replace  with  because t1  adopts any value of t 

greater than t0 .  

Invoking the definition of momenta:  

i
i q
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∂
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we arrive at the equivalence .  

For an n dimensional system, this has the form  

i=1,2,…,n.    (2.3)  

Therefore a relationship between the action and momenta follows directly 

.      (2.4) 

 Another necessary result is produced by examining the total time derivative of the 

action. Directly from the definition of the action (2.1), we observe that 

. (2.5) 

 However, by viewing the action as a function of only coordinates and time, it is 

obvious, using (2.4), that 

.  (2.6) 

Comparing (2.5) and (2.6), we obtain  

    (2.7) 

where the Hamilton's function H is the Legendre transform of the Lagrangian with respect to 
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The momenta in eq.(2.7) can be replaced using eq.(2.4) to produce the first order partial 

differential equation called the HJE [16,17] 

0),,....,,,....,(
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+
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∂ t

q
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q
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t
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n
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 We now establish the connection between the complete integral of the (HJE) and 

solutions of Hamilton's equations. We use the function W(q,t;α) as the generating function for 

a canonical transformation from the original coordinates (p,q) to (α,β); therefore, our new 

position coordinates are (β1,β2,…,βn) and new momenta coordinates are (α1,α2,…,αn). With this 

generating function, the new Hamiltonian vanishes everywhere; thus, the transformed 

Hamilton's equations become 

0,0 == j
i βα   

and we solve for the position coordinates q as functions of t, α and β using the relationships 

. 

An important technique for the determination of complete integral for the HJE of the 

system is the method of separation of variables. Under certain conditions it is possible to 

separate the variables in the HJE, the solution can be then always reduced to quadrature. In 

practice, the Hamilton-Jacobi technique becomes a useful computational tool only when such a 

separation can be effected. HJE plays a good role and becomes beautiful treatment when it can 

be solved using separation of variables, which directly identifies constant of motion.  

 In general, a coordinate iq is said to be separable in the HJE when Hamilton's 

principal function S can be split into two additive parts, one of which depends only on the 

coordinate iq ; whereas the second is independent of iq , which means time dependent part. 

 In the cases to which we shall apply the method of separation of variables, the 

Hamiltonian will be time independent. Therefore the HJ equation (2.8) for this system will be 

in the following form: 
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)(),(),,( tfqWtqS += αα ,               (2.10) 

where the time-independent function W(q,α) is sometimes called Hamilton's characteristic 

function. 

            Differentiate Eq (2.10) with respect to time, we find 
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and using the Hamilton-Jacobi equation (2.9), then we have 
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The left hand sides of equation (2.11) depends on t, whereas the right hand side 

depends on q, so that each side equal to a constant independent of both q and t, the time t can 

be separated if the Hamiltonian does not depend on time explicitly. In that case, the time 

derivative t
S
∂
∂

  in the HJE must be a constant, usually denoted by (- α), giving the separated 

solution. Then we obtain 
t-)W(q,t),S(q, ααα = .              (2.12) 

Hamilton-Jacobi Treatment of Reparametrized Systems 
 In the cases of nonrelativistic and relativistic point-particle mechanics, generally 

covariant systems may be obtained by promoting t to a dynamical variable [18-20]. The idea 

behind this transformation is to treat symmetrically the time and the dynamical variables of the 

system. This is achieved by taking t as a function of an arbitrary parameter τ : t=t(τ),q=q(τ) 

(e.g., τ is the "proper time" in relativity theory). The arbitrariness of the label time τ is reflected 

in the invariance of the action under the time reparametrization. If S is the action integral, then 

τ
τ

d
d
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dt
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Thus, we can express the action integral with respect to τ in the same form as with 

respect to t. This shows that the equations of motion which follow from the action principle 

must be invariant under the transformation from t to τ. The equations of motion do not refer to 

any absolute time. We have, therefore, a special form of Hamiltonian theory; but this form is 

not really so special because, starting with any Hamiltonian, it is always permissible to take the 

time variable as an extra coordinate and bring the theory into a form in which the Hamiltonian 
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is equal to zero. The general rule for doing this is the following: we take t and put it equal to 

another dynamical coordinate q0. We set up a new Lagrangian: 
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∗L  involves one more degree of freedom than the original L.  
∗L  is not equal to L; but 

τdLdtL *= .                                                              (2.15) 

           Thus, the action is the same whether it refers to ∗L  and τ or to L and t. 

This special case of the Hamiltonian formalism, where the Hamiltonian 

00
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is what is needed for a relativistic theory, because in such a theory we do not want to have one 

particular time playing a special role. Instead, we want to have the possibility of various times 

τ which are all on the same footing. 

However, for reparametrized systems, the HJE takes the form 

0=+=′ ttt HpH ,                (2.17) 

p t  being the generalized momentum associated with t and Ht  of the originally noncovariant 

formulation.  

WKB Approximation of Reparametrized Lagrangians  
It is well known that the HJE for dynamical systems leads naturally to a semiclassical 

approximation; namely, WKB. The Schrödinger equation in one dimension for a single particle 

in a potential V (q) reads 

.     (2.18) 
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such an expansion is used in the WKB approximation where S is real to leading order; at this 

point we have not said anything about the reality of S, so the above equation is just a 

mathematical identity. Then we have 

.  (2.19) 

 If we assume that ,  which is the ‘classical limit’ in quantum mechanics, then we 

see that  

. 

           More general as          

(2.20) 

which is just the HJE. Thus we see that in the classical limit, ,  the Schrodinger 

equation is just the HJE when the dynamical coordinates and momenta are turned into their 

corresponding operators : 

(2.21) 

 

 

In the classical limit ,  the condition (2.17) implies that 

.  (2.22) 

Examples 
In this section, we illustrate the canonical methods for treating some particular cases of 

reparametrized Lagrangian systems, the application of the methods is straightforward. Of 

course the canonical methods provide the description of motion in phase space, which is the 

basis for further insights and generalizations. 
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Nonrelativistic Reparametrized Particle System  
We start by considering a nonrelativistic particle moving in one-dimensional space 

with dynamical variables x and with t denoting the ordinary physical time parameter. The 

action for this simplest model may be written as 

dtxVxmLdtS ∫∫ 





 −== )(
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1 2 ,      (3 .1)  

where m is the mass of the particle,  dtdxx =  is its velocity and V(x)  is the potential. 

In the action (3.1) t is an absolute parameter, taking t to be a function of local time τ , t 

= t(τ ) , then eq.(3.1) reduces to 
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 Substituting the value of x  from eq.(3.3) into equation (3.4), then we have 
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 The corresponding HJE of eq.(3.5), is 
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 Using the separation of variables technique we can write 
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Equations (3.9) and (3.10) can be sloved for x and p x  in terms of t and α. 

 Applying now the operator tH ′  in  eq . (3 .5)  as  an  opera tor  on the wave equation 
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 In the semiclassical limit 0→ ,  Eq . (3 .12)  is identically zero, that is 

0' ≡ψtH .          (3.13) 

 So the corresponding quantum-mechanical operator annihilates the wave function, 

which is precisely the Schrödinger equation.  

Relativistic Reparametrized Particle System 
 Using the physical coordinates x ( t ) ,  the relativistic particle action reads 

dt
dt
dxcmcLdtS ∫∫ 
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2 ,       (3.14) 

where m is the mass of the particle, and c is the speed of the light. Introducing an arbitrary 

paramertrization x(τ) ,  t ( τ )  of the trajectory, the action requires the reparametrization 

invariant form  
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 In fact eq.(3.19) may be written as 

0=+=′ ttt HpH ,         (3.20) 

and eq.(3.18) can be solved for x   
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 Then eq.(3.20) reduces to 
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 It is obvious to note that ∗
0H  is identically zero: 

.        (3.23) 

 In details we have 

=0.      (3.24) 

 The corresponding HJE for Eq.(3.22) is 
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 Making use the separation of variables techniques we can write 
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 With the aim of Eq.(3.25), Eq.(3.26) can be solved for W(x,α) as     
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 Now the equations of motion for x  and p x  can be obtained by using the canonical 
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 Following the previous procedure for the quantization of the system. With  

( ) 
































−+−= ∫ dxcm

c
titx 22

2

2

exp, ααψ


.         (3.31) 

 

0 0t xH p t p x L∗ ∗= + − ≡ 

2 2 2 2 2 2

2 2 2 2 2 2

( ) ( )
o

mc c t x mc c t xH
c t x c t x

∗ − − −
= +

− −

  

  



European Scientific Journal    December edition vol.8, No.30    ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

125 
 

 The result of the operation ψtH ′  reads    
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 In the semiclassical limit 0→ ,  this implies that 

( ) 0, ≡′ txHtψ          (3.33) 

which is just the conventional time-dependent Schrödinger equation as required. 

 

Conclusion 
 The Hamilton-Jcobi partial differential equations for reparametrized Lagrangian 

systems are discussed using the canonical method. It has been shown that any standard 

Hamiltonian system can be transformed into a constrained system with vanishing Hamiltonian 

by going to an arbitrary reparametrization of time. In doing so, the time variable is treated on 

the same level as the other dynamical variables. Thus, we have an extended phase space that 

includes a new coordinate, the time, whose conjugate momentum represents the total energy of 

the system. 

 Due to the reparametrization invariance, the quantity tH ′  vanishes for any solution, 

0=+=′ ttt HpH . So the corresponding quantum-mechanical operator annihilates the wave 

function 0=′ψtH , which is precisely the Schrödinger equation, ψψ
tH

t
i ′=

∂
∂

 .  

 Further, the Hamilton-Jacobi function S  is determined in configuration space in the 

same manner as for regular systems. Finding S  enables us to get the solutions of the equations 

of motion. These solutions are obtained in terms of the time and the coordinates that 

correspond to dependent momenta. 

 The success of this work has been demonstrated for two applications. The first is an 

illustrative example in one-dimensional dynamics that describes the concept of nonrelativistic 

parametrized dynamics. It has been shown that the quantization procedure applied to the initial 

mechanical system, after promoting the time to become a dynamical variable, yields the 

correct equation for the wave function, which is just the conventional time-dependent 
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Schrödinger equation. The second application is quantization of the motion of a relativistic 

parametrized particle system.  
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