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Abstract 

Aim of Investigation: Birkhoff integral of functions taking values in a Banach space plays an 

important role in the modern theory of integration (see [1],[4]). Therefore, it is with great 

interest the study of the existence of Birkhoff integral for the class of functions with values in 

a quasy – Banach space, and the properties of the Birkoff integral’s in this case. The other 

aim of this paper is analysis of validity of some of the known theorems for integration theory, 

at of Birkoff integral’s case. 

Conclusions: The extension of the meaning of the Birkhoff integral, for functions with values 

in quasy – Banach space, together with the meanings of Aumann and Bochner integrals, 

allows us to see the class of functions with values in quasy -Banach spaces with a lot of 

interest in terms of integration. 
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Introduction 
Recalling the construction of Fréchet integral, consider the function f : ∑→R, where 

∑ is an σ-algebra of measurable sets and R is the real number system. Let be A∈∑ and ∆ a 

partition of A composed of finite or countable amount sets Ai (the measures of them are 

µ(Ai)). We build on this partition amount of upper and lower integral respectively as follows: 

I*(f,∆) = ( )sup ( )A f xi x Ai i
µ∑ ∈      and   I*(f,∆) = ( ) inf ( )A f xi x Ai i

µ∑ ∈  

assuming that both series converge unconditionally. It is clear that, for every two partitions ∆ 

and ∆’ is true inequality I*(f,∆)≤ I*(f,∆).Therefore there is a number x such that I*(f,∆)≤x≤ 

I*(f,∆) and, if this number is only then f(x) is Fréchet integrable and number x is integral of 

function f. Birkhoff integral obtained from Fréchet integral making two changes: The system 

of real numbers R is replaced with a quasy-Banach space Ɓ, and sets of the upper and lower 
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integrals are defined respectively as the smallest closed and convex set containing sums 

( ) ( )A f xi ii
µ∑ where xi∈Ai, assuming again the unconditional convergence of all series. 

Terminology and preliminaries 

If Ɓ is a vector space and θ is its origin, then we have properties: 

a) ∀ B1,B2⊂Ɓ,     B1+B2 = B2+B1                              

b) ∀ B1,B2,B3⊂Ɓ,   B1+(B2+B3) = (B1+B2)+B3              

c) ∀ b∈R and ∀ B1,B2⊂Ɓ, b(B1+B2) = bB1+bB2  

d) ∀ b1,b2∈R and ∀B⊂Ɓ, b1(b2B) = b1b2B 

e) ∀ B⊂Ɓ, 1⋅B = B 

f)    ∀ B⊂Ɓ ,B +θ = B and 0⋅B = 0. 

Therefore, if we define as the space ‘Vectoroid’ the system that satisfies the conditions 

a)-f) can state that: All non empty subset of Ɓ are elements of a ‘Vectoroid’ space.  

• Easily seen that: Every convex subset B⊂Ɓ is convex hull of themselves. 

• Admit that: The subset B⊂Ɓ is convex if and only if (m1+m2)B = m1B+m2B for every 

m1,m2≥0. 

Proof 
 Let be B a convex set. Take an element m1x + m2y where x, y∈B.  

Since B is a convex set then m1x + m2y= 1 2( )1 2
1 2 1 2

m m
m m x y

m m m m

 
 + + =
 + + 

(m1+m2)z 

where z = 1 2

1 2 1 2

m m
x y

m m m m
+

+ +
∈B. Thus m1B+m2B⊂ (m1+m2)B. 

 The other inclusion is immediate from the properties of the scalar multiplication of 

vectors. 

Conversely, if we take x, y∈B and 0≤m1≤1, m2=1-m1 then m1x+m2y∈m1B+m2B=(m1+m2)B= 

B. 

• Based on d property, we can assert that: 

Theorem 1 
For every subset B∈Ɓ, Co(mB) = mCo(B) and Co(A+B) = Co(A) + Co(B). 

So, the correspondence B→Co(B) is homeomorphism. 
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The Results 
Quasy-norm and diameter of convex hull 

Now onwards, Ɓ space is quasy-normed. So, every bounded subset B of Ɓ, we can 

put them into correspondence the size ||B||=sup{||β||: β∈B}. It’s clear that: 

Proposition 2 
 Correspondence B→||B|| defined above is a quasy-norm. 

 Well we have specified the quasy-norm of an subset of Ɓ. 

• We also B associate to a ‘diameter’ with ρ(B)=||B-B||≤2K||B||. 

 Observed that ||B||≤||Co(B)|| and ρ(B)≤2Kρ(Co(B)). 

Limits, closure and unconditional summation of elements 

Let be B a quasy-Banach space. It is known that (see [4]),Ɓ space can be seen like a 

topological vector space and so, it makes sense to talk about closing of sets on it.  

Unlike the case of normed space, here we can only guarantee that  

( )
1 1

r r
B Co Bi ii i

≤∑ ∑
= =

, where Bi are arbitrary subset of Ɓ. In a particular case, when Bi are 

closed and convex sets, for example in case of set with an element, we can write 

( )
1 1

r r
B Co Bi ii i

=∑ ∑
= =

. 

Definition 3 

A countable set Z⊂Ɓ with elements  ξ1, ξ2,…,( which need not be distinct) is called 

unconditionally summable to ξ if and only if every arrangement α of all the elements of Z 

gives a series Z(α):ξα(1)+ ξα(2)+… convergent to ξ.The series Z(α) are unconditionally 

convergent to ξ, under these conditions. 

• The unconditionally convergent series of Ɓ are the elements of a vector space L. 

Let B(Z) denote the set of the partial sums of the elements of Z. By the quasy-norm 

||Z|| of Z we mean ||B(Z)||.Since B(Z+Z’)⊂B(Z)+B(Z’) and B(cZ) =cB(Z),we see that 

the L space is quasy-normed. 

Now, we shall prove that L space is complete by this quasy-norm. 

Theorem 4 
The unconditionally convergent series of Ɓ are the elements of a second quasy-

Banach space. 
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Proof 
Let Z1,Z2,Z3,…be any sequence of unconditionally convergent series of elements of 

Ɓ, such that to any ε>0 corresponds N as large as, that m, n>N imply ||Zm-Zn||<
K
ε   (a Cauchy 

sequence on L space). 

 It is clear that terms k
iξ of the  Zk are uniformly convergent Cauchy sequences, with 

limits iξ . 

Let Z denote the formal series ...1 2 3ξ ξ ξ+ + + .The proof is complete if Z is 

unconditionally convergent and lim 0Z Znn − =→∞ .But to any ε>0 corresponds N as large 

as, that if m, n>N, then ||Zm-Zn||<
K
ε . So, we can find M as large as, that if M < k(l) <… < 

k(r), then  ( )1

r N
k i Ki

εξ <∑
=

 (the latter is provided by Zn series convergence). 

Follows that, under the same hypotheses, 

 

lim 2( ) ( ) ( )1 1 1

r r rn NK Knk i k i k i Ki i i
εξ ξ ξ ε= ≤ + <∑ ∑ ∑→∞= = =

. 

 So that, E must be unconditionally convergent. 

 Remember that in [4] is shown that: if xn sequence tends to x then limn→∝||xn|| ≤ K||x||. 

 But now, if we take any j(1)<j(2)<…<j(s),then for n>N, 

lim lim 2 '( ) ( ) ( )1 1

s snZ Z K Knn n j i j i j ii i
ξ ξ ξ ε ε− = − ≤ < =∑ ∑→∞ →∞ = =

. 

 Hence, the proof is completing. 

Unconditional summation of subset on Ɓ 
Suppose similarly θ is an aggregate of countable subsets B1,B2,…of Ɓ.θ will be called 

unconditionally summable to a given subset B if and only if every series ...1 2 3β β β+ + +

(βi∈Bi) is unconditionally convergent, and B is the locus of the sums of such series. We shall 

abbreviate this by writing B Bii
=∑ . 

 In order that θ be unconditionally summable it is necessary as well as sufficient that to 

any ε>0 correspond N so large that N<k(1)<k(2)<…<k(r) implies ||Bk(1)+…+Bk(r)||<ε.For 

otherwise we could form an infinite series of elements from a sequence of such sets of 
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subsets which was not unconditionally convergent no matter how the gaps between the 

different terms were filled in by elements from the remaining of θ. 

 Same as in the case of normed space (see [2]) shown that: 

Theorem 5 
 If  B Bii

=∑  and the aggregate  ( )Co Bi  is unconditionally summable then 

( ) ( )Co B Co Bii
⊂∑   and ( ) ( ) ( )Co B Co B Co Bi ii i

= =∑ ∑ . 

Admissible domains and Completely additive set functions. 

We shall define as an admissible domain any σ -algebra Σ  of measurable sets. 

 The integration will be defined relative to the σ-algebra Σ. It is natural that we should 

define a (single-valued) "set function" as a function F assigning to each set σ of Σ a single 

"value" F(σ) in Ɓ. 

 F is called completely additive if and only if the hypothesis that σ is the sum of finite 

or countable disjoint sets σi of Σ implies the conclusion that the values F(σi) are 

unconditionally summable to F(σ). 

Lemma 6 
 If F is completely additive, then the set of the F(σ) (σ∈Σ) has a finite upper bound. 

 Otherwise we could choose σ1,σ2,σ3,....  by induction so as to satisfy ||F(σ1)||>1, 

||F(σi+1)||≥3||F(σi)|| and the series of the F(σi-σi(σ1+...+σi-1)) could not be unconditionally 

summable. 

 The (finite) least upper bound to ||F(σi)|| will be called the quasy-norm of F denoted 

by ||F||. 

Theorem 7 
 The completely additive set functions of ϑ to Ɓ are a quasy-Banach space Ƒ(σ,Ɓ). 

 Every property of Banach space is obvious except completeness. But since, the Fn (σ) 

are a uniformly convergent Cauchy sequence, it is obvious that they tend uniformly to a limit 

set function F. 

 It remains to prove that F is completely additive. But for each choice of 

σ=σ1+σ2+σ3...,this is a corollary of Theorem 4.This completes the proof of Theorem 7. 

Admissible point functions.  

 By a "function" (more precisely, point function) T of an admissible domain ϑ to a 

quasy-Banach space Ɓ we shall mean from now on a rule assigning to each point p of ϑ one 
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or more "images" in Ɓ. More generally, if σ is any subset in ϑ, we shall use T(σ) to denote 

the subset of the images of the points of σ. 

 This defines the admissible functions as elements of a "vectoroid" space, which 

becomes a vector space if we restrict ourselves to single-valued functions. 

Definition 8 
 A function T is called "summable" under the decomposition ∆ of ϑ if and only if each 

T(σi) is bounded, and the aggregate of the µ(σi) T (σi) is unconditionally summable. 

Definition 9 
 If T is summable under ∆, then the set 

( ) ( ) ( )I T Co Ti ii
µ σ σ ≡ ∑ ∆  

 

is called the "integral range" of T relative to ∆. 

 Let be two partitions ∆ and ∆1 and ∆∆1 its cutting partition. Consider those functions 

T which are summable under the cutting  partition. (in the case when the function T is a 

single-valued function enough that to be summable under the decomposition ∆ and ∆1). 

 Observed that: 

( ) ( ) ( )
1 1

I T I T I T⊂∆∆ ∆ ∆  

 Therefore any two integral ranges of T overlap.  

The integrable functions and their integrals 
Definition 10 
 A function T will be called integrable if and only if the inferior limit of the diameters 

of its integral ranges is zero. 

Theorem 11 
 If T is integrable, then the intersection of the integral ranges of T is a single element 

I(T) of Ɓ. 

 We can choose a set of integral ranges ( )
1

I T∆ ,
2
( )I T∆ ,

3
( )I T∆ ,…of diameters <1,<

1
2

,< 1
4

,…. Since these are closed and overlap, their intersection is a point. But since every 

integral range of T is closed and overlaps every ( )I T
K∆

, this point is contained in every 

integral range of T. 

Definition 12 
 The I(T) of Theorem 11 is called the integral of T over ϑ. 
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Theorem 13 
 If T is integrable then for every ε >0 corresponds a decomposition ∆ under which the 

aggregate µ(σi) T (σi) is unconditionally summable and has a diameter <ε. 

 By definition ( )( )
2

I T
K
ερ <∆ (where K is constant of quasy-norm). 

 Therefore ( )( ) ( ) 2 ( ) ( ) 2 ( )T K Co T K I Ti i i ii i
ρ µ σ σ ρ µ σ σ ρ ε    ≤ ≤ <∑ ∑     ∆    

. 

 In our case, cannot always say, as in the case of functions with values in Banach 

spaces that, the function corresponding I(T,σ), for T integrable function on ϑ and σ∈Σ, is 

completely additive, but we can define that: 

Definition 14 
 Quasy-norm of a integrable function call the number sup ( , )T I T σσ= ∈Σ ,which 

may be finite or +∞. 

Theorem 15 
 If ∆ is any decomposition of ϑ, function T is integrable over every set σi of 

composition of ∆, and the aggregate of the J(T, σi) is unconditionally summable, then T is 

integrable over ϑ and J(T) = ( , )I T ii
σ∑ . 

 Decompose each σi by a decomposition ∆i ,under which 

( , ) ( , )
(2 )

I T I Ti i ii K
εσ σ− <∆ .Then the corresponding decomposition of ϑ will be 

summable, and its integrated range will be within a sphere of radius ε of ( , )I T ii
σ∑ . 

Theorem 16 
 If T and U are integrable functions, and m is a real number, then mT and T+U are 

integrable, T(mT)=mI(T), and I(T+U)=I(T)+I(U). 

Proof 
 The conclusions about mT are evident, since if ρ(I∆(T))<ε, then I∆(mT) = 

( ) ( )Co m Ti ii
µ σ σ ∑ 

 
 = ( ) ( )mCo Ti ii

µ σ σ ∑ 
 

 = mI∆(T) and so ρ(I∆(mT)) = ρ(mI∆(T)) = ||m 

I∆(T)-m I∆(T)|| = |m|ρ(I∆(T)) < mε. 
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 Let see the function T+U=V. Since T and U are Birkhoff  integrable, then for every 

ε>0 there are decompositions  ∆ and ∆1 such that ( )( )I Tρ ε∆ <  dhe ( )
1

I Uρ ε
 

< ∆ 
. So 

(see[2]), ( ) ( ) ( )
1 1

I V I T I U⊂ +∆∆ ∆ ∆ which is of diameter less than 2Kε. 

 Equalities I(mT)=mI(T) dhe I(T+U)=I(T)+I(U) immediately derived from the 

properties of convexity and closing of sets. 

Corollary 
 For every two integrable functions T and U we can write:||mT||=|m|⋅||T|| dhe ||T+U|| 

≤K (||T|| +||U||). 

Proof 
 First,||I(mT,σ)||=||mI(T,σ)||=|m|⋅||I(T,σ)||≤|m|⋅||T|| and thus ||mT||≤|m|⋅||T||. 

 On the other hand |m|⋅||I(T,σ)||=||I(mT,σ)||≤||mT||. 

 For m ≠0,we have ||I(T,σ)||≤ 1
m

||mT|| and thus ||T||≤ 1
m

|mT|| which is equivalent to 

|m|⋅||T||≤||mT||. 

 If m =0 then mT = 0∈Ɓ and so ||mT||=0, therefore |m|⋅||T||=0=||mT||.Thus the equality 

||mT||= |m|⋅||T|| is true. 

 Since, for every two integrable functions T and U we have I(V)=I(U)+I(V) (where 

V=T+U),  then I(V,σ) =I(T,σ) +I(V,σ). So that, for every σ∈ϑ, || I(V,σ)||≤K(||I(T,σ)|| 

+||I(V,σ)||)≤K(||T|| +||U||) and thus ||V||≤K(||T||+||U||). 

 Let be α:β→α(β) any linear transformation of quasy-Banach Ɓ into the quasy-

Banach space U. 

Theorem 17 
 If T is any integrable function of ϑ to Ɓ then, (i) the function U(p) = α(T(p)) is 

integrable    (ii) I(U)= α(I(T)). 

Proof 
 If T is summable under a decomposition ∆ of ϑ, then so is U, and 

I∆(U)=αI(I∆(T)).This is true by definition of U for single terms µ(σi)U(σi). Since α is additive 

for finite sums, if we pass in limit, take the result I(U) = α(I(T)). (Because during passing in 

limit the ratio 
( ) ( ')

'
α β α β

β β
−
−

 is bounded). 
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The point (i) is clear, because integrable functions class is stable under multiplication 

with scalar and the sum of functions, while α is known that is linear. This completes the 

proof. 

 It is of interest be observed that is true a famous theorem on the Lebesgue integral 

case. 

Theorem 18 
 If Tn is a Birkhoff integrable functions sequence of ϑ to Ɓ, µ(ϑ) is finite and sequence 

Tn is uniformly convergent to the integrable function T then I(T)= lim ( )I Tnn→∞ . 

Proof 
 Since Tn is a uniformly convergent sequence to a integrable function T then, there is a 

number n large enough such that, for every point p and for every ∆ to have ||T(p)-Tn(p)||<

3 ( )K
ε
µ ϑ

. 

 On the other hand, the functions Tn are integrable and so, there is a number n large 

enough such that ||I∆(Tn)-I(Tn)||<
3K
ε . 

 From the quasy-norm’s property we can write: 

||I(Tn)-I(T)|| ≤ K (||I∆(Tn)-I(Tn)|| + ||I∆(Tn)-I(T)||) ≤ K[||I∆(Tn)-I(Tn)|| + K (||I∆(Tn)-I∆(T)|| + 

||I∆(T)-I(T)||)]. 

 Since ||T(p)-Tn(p)||< 
3 ( )K

ε
µ ϑ

 derives that ( )sup ( ) ( ) ( )
3

T p T pni i i Ki
εµ σ − <∑  

because the remain term of convergent series tends to zero of space. 

 So ||I(Tn)-I(T)|| tends to zero and I(T)= lim ( )I Tnn→∞ .  
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