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Abstract 
 This paper investigates time series of soybean and corn, which are 
two important Brazilian commodities. Long-range dependence or persistence 
is a behavior seen on times series and currently there is an increasing interest 
regarding the application of long memory concepts in areas such as 
economics and finances. A very know type of long memory model is named 
ARFIMA (Auto Regressive Fractionally Integrated Moving Average) which 
derives from the ARIMA (Auto Regressive Integrated Moving Average) 
model. The present work aim to analyze soybeans and corn time series to 
compose the spot price and forecast future prices for the aforementioned 
commodities. In order to test the better model for prices prediction, the 
ARIMA and ARFIMA models were compared. The comparison between the 
two models has shown that for prices forecasting, ARFIMA model has 
higher efficiency then ARIMA models. 
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Introduction 
 Time series analysis can be applied to a variety range of scientific 
fields and can be related to different sorts of data, information or 
phenomenon being observed. This analysis has shown to be very useful for 
many problems and the effectiveness of the models depends on what it is 
being used for. Jaynes (1982) emphasizes that there is no conflict in between 
analyzes methods such as Maximum-Entropy, Bayesian, Schuster, 
Autoregressive models and others. The distinction among this models are the 
uses of it, where each one has its better field of application. 
 Box & Jenkins (1970) stated studies that led to the method known as 
ARIMA (Autoregressive Integrated Moving Average), this models as 
centered in the idea that time series is a natural stochastic process which can 
be represented by a mathematic model. 
 Within its concepts and applications, Autoregressive models can be 
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classified distinctly in some situations and can be presented as particular 
models, called: AR (Autoregressive) ARMA( Autoregressive and Moving 
Average), ARIMA (Auto Regressive Integrated Moving Average) and 
ARFIMA (Auto Regressive Fractionally Integrated Moving Average), as the 
case may be. 
 The applications of long memory processes were first introduced by 
Granger and Joyeux (1980) and later by Hosking (1981), and has become a 
successful tool for studies in areas such as hydrology, climatology, 
geophysics, economics and finances. 
 In this scope the agricultural commodities can be noted. According to 
Geman (2005), a commodity can be defined as a physical asset that presents 
standard features, with extensive trading in various locations, which can be 
transported and stored for a long period of time. 
 Marques et al (2006), states that the interesting of knowing future 
markets has increased, either applied on risks administrations, proper profits, 
or even to lead negotiations. Great progress has been made in understanding 
the links between government policy, interest rates, exchange rates, 
economic blocks, barriers to free trade and prices of the various commodities 
(agricultural, energy, gold and dollar). 
 In this work two Brazilian agricultural commodities are investigated, 
namely soybean and corn. The time series of prices for this commodities 
were obtained from CEPEA/USP (Center for Advanced Studies on Applied 
Economics/University of São Paulo). For the model development the time 
range for the spot price was from January 2009 to December 2013 and from 
January 2013 to December 2014 for the forecast process. The free software 
R was used to compose the ARIMA and ARFIMA model. The two models 
are tested to evaluate the reliability and effectiveness of the better model. 
 
ARIMA(p,d,q) models 
 As a time series presents its values collected sequentially over time, it 
is expected to present a serial correlation in time (WERNER e RIBEIRO, 
2003). This fact is reflected also as expected behavior of dependence 
between a current value and the previous values to this. 
 The models proposed by Box e Jenkins (1978) are widely known in 
sciences as ARIMA, which are mathematical models that intend to capture 
the autocorrelation behavior between the values of a time series and, once its 
behavior has been described, it is used to make predictions of future values 
in this series. If this correlation structure is well modeled, a good forecast 
can be provided (WERNER e RIBEIRO, 2003). 
 Fava (2000) presents that the ARIMA type models are the result of 
three distinct elements related to each other, which are the autoregressive 
component (AR), the moving averages component (MA), and the integration 
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component (I). The result from the model in may have three parts, or only a 
subset of them. The values for the components of the ARIMA model are 
formally represented in the literature by the letters p, q and d. The p value 
refers to the AR component of the model, while the parameter q is related to 
the level of MA component and finally the parameter d shows the number of 
integrations on the model. 
 Granger and Newbold (1986) report that most economic series shows 
to be non-stationary, as in general, its average and variance does not remain 
constant over time. 
 According to the work of Sartoris (2008), (yt) follows an ARIMA (p, 
d, q) where the letter (I) in the middle (and also the number d) refers to the 
integration order. That is, (yt) is integrated of order d, and its d-th difference 
follows a combined autoregressive process (order p) and moving average 
(order q). 
 Lima, Goes and Ulysses (2007) points out that the ADF test sets the 
entire differentiation level (d) of the time series model. 
 As the value of the parameter m is such that d = 0, the model is 
estimated as an ARMA (p, q), since there are no differentiation. If the series 
is not stationary, the difference will be applied as often as needed to acquire 
a stationary series, in this case, for example, d may assume values equal to 1 
or 2 or n, and in this case the model is estimated as an ARIMA (p , d, q). 
 
ARFIMA(p,d,q) models 
 According to Franco e Reisen (2007), ARIMA (p,d,q) in many cases 
is classified as a general process called fractional differentiation when a non-
integer value for the parameter d (degree of difference) is adopted. In these 
cases, new way of modeling is created and which can bring great benefits to 
the study of various fields, such as engineering, economics, chemistry, 
physics, etc. These models are known as ARFIMA. 
 The ARFIMA models can be described as a generalization of the 
ARIMA model, being responsible for capture and shaping processes with 
long serial dependence, which are popularly called long-term memory 
processes (Souza et al. 2010). 
 Franco e Reisen (2007) has also shown that the most important 
feature of ARFIMA model is the long dependence also named as long 
memory, found to d values in the range of 0.0 to 0.5. Another very important 
feature of the model is the small outbuilding, or short memory, which infers 
to d values between -0.5 and 0.0. 
 Regarding to ARFIMA model, Lima, Gois and Ulysses (2007) stated 
that, formally, the entire differentiation assumption of ARIMA model is 
arbitrary. Thus it can be said that it is possible to carry out modeling a 
temporal series considering that d can assume non-integral values. 
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 Lima, Goes and Ulysses (2007) further describes that the fractional 
difference parameter d on ARFIMA, can be estimated by semi-parametric 
procedure proposed by Geweke and Hudack-Porter (1983). 
 In addition Lima, the fractional differentiation can be performed 
using binomial expansion of the form proposed by Diebold and Rudebusch 
(1989): 
 
Estimation, verification and prediction 
 To obtain an ARIMA/ARFIMA model is required to identify the 
value for the coefficients θP and φp. The autocorrelation function (ACF) and 
the partial autocorrelation function (PACF) are responsible for explicit which 
class of model the time series has, in other words, through the behavior of 
ACF and PACF functions is possible to identify the parameter AR(p) and 
MA(q) for the model. This functions are merely the correlation in between a 
present value and its past values. 
 The correlation between a current value Yt in the time series Y and its 
previous, named Yt-1, is known as the autocorrelation of the series. In the 
same sense if the value of Yt -1 correlates with its past value Yt-2, it is 
expected that Yt also has a correlation with Yt-2. The resulting correlation in 
between Yt and Yt-1 is called frequently as lag 1, and following the same idea 
the correlation between Yt and Yt-2 is called lag 2. Generalizing, the 
correlation between Yt and Yt-n is the lag n of the time series. 
 The relationship in between a lag n and its next lag n+1, is such that 
lag n+1 should be exactly the squared value of lag n. This implies that the 
correlation of a lag n propagates throughout the higher-order lags. 
 An appropriate model should behavior in a way that the residuals of 
ACF and PACF has no statistical significant values implying that the values 
of the residuals does not influence in any value of the model. Another 
evaluation taken to the final model refers to its Bayesian information 
criterion value (BIC). Another way of evaluating the efficiency of a 
prediction model is looking through its errors values. 
 Once the specific values of parameter are known, through the 
observation of ACF and PACF behavior, the forecast for the ARIMA and 
ARFIMA model can be taken and the coefficients for the models can be 
calculated. The results should lead to a linear equations composed by lags of 
dependent values and forecast error. In a general way, the process consists on 
prediction a desired number of ahead observations that are taken considering 
the past values of the time series. 
 
ARIMA and ARFIMA prediction and comparison 
 The ACF and PACF plots are obtained from the original time series, 
and then evaluated about its stationarity. For the cases where the original 
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series is not stationary, the first difference is taken. After differencing, the 
series is analyzed again and if it is still non-stationary, the second difference 
is taken, and so on. 
 Figure 1 and 2 show the ARIMA and ARFIMA model for soybean, 
as well as the confidence interval for each model. A comparison between 
these two models is taken in order to evaluate the best option for a future 
prediction for each commodity. Table 1 to 3 shows the evaluation BIC 
values and the errors calculates to each model. 
a- 
 
 
 
 
 
 
 
 
 
 
 
b- 
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Figure 1. Soybean commodity: (a) ARIMA, (b) ARFIMA, (c) Comparison 
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Figure 2. Soybean commodity: (a) ARIMA, (b) ARFIMA, (c) Comparison 
Table 1. BIC values - ARIMA 

 
COMMODITY PAPER SIZE BIC 

   
SOYBEAN STL+ARIMA(3,2,4) 1888,31 

   
CORN STL+ARIMA(2,1,0) -1185,048 

   
 

Table 2. BIC values -ARFIMA 
 

COMMODITY PAPER SIZE BIC VALUES 
   

SOYBEAN STL+ARFIMA(0,0.5,5) 3061,716 
   

CORN STL+ARFIMA(0,0.5,5) 3137,638 
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Table3. Results and comparison of methods 
Commo      ARIMA      ARFIMA     

dity                     
  (p,d,   E  MA ACF MA (p,d,  E   MA  ACF MAS   
  

q) 
    

E 1 SE q) 
   

 E  1 E 
  

           
                     

Soybean (3,2,  8,37  2,35 0,97 8,13 (0,0.5  8,149  2,28  0,97 7,909   
 4)  64  25 56 92 ,5)  6  59  51 1   
                  

Corn  (2,1,   8,68  1,10 0,97 9,01 (0,0.5  13,44   1,60  0,98 13,09   
  0)   00  79 97 39 ,5)  29   95  46 46   
                     

 
Conclusion 
 Fractionally integrated processes motivated an increasing interest on 
the application in economics and finance. One important characteristic of 
fractionally integrated processes is to allow more flexibility than the extreme 
assumption of a unit root. The real advantage of fractional models may well 
be in terms of representing relationships between variables and the testing of 
forms of fractional cointegration. In this work, the ARIMA and ARFIMA 
models were applied in agricultural commodities using the R software for 
spot price composition and future price prediction. The results show that the 
ARFIMA has a better performance overall for the future prices forecasting 
when compared with ARIMA model. 
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