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Abstract  
 Technology mixed perspective, as a combination of two functions of 
‘Technology Selection’ and ‘Capacity Planning’, is not usually addressed in 
the research literature. Yet, the importance of integrated decisions at such 
strategic level is evident. The overall aim of this paper is to develop a 
framework for combined ‘technology selection’ and ‘capacity planning’ in 
manufacturing sector.  The approach will also incorporate the multi-
perspective concept of sustainability, while taking uncertainties into account.  
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Introduction 
 Today’s manufacturing systems face many challenges, amongst 
which are;  
a) To enable integrated decisions (e.g. technology selection and capacity 
planning)  
b) To achieve sustainable manufacturing  
c) To deal with dynamism and uncertainty about the environment  
 Isolated decision making within manufacturing systems, especially at 
the strategic levels leads to conflicts, inefficiency, or at the least it could 
produce a sub-optimal solution. For example, two types of decisions, namely 
technology selection and capacity planning to have some elements in 
common. But they have been addressed in the literature largely in an isolated 
way. Integrated strategic decisions provide a better result, while it generates 
a larger, more complex problem to solve.  
 On the other hand, manufacturing firms are working in an 
environment that is changing on a continuous manner. For instance, demand 
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for products is affected by many factors such as population, substitute 
products, price, competition, and so on. Such a complexity is a recipe for 
dynamism and uncertainty. 
 All the above mentioned challenges are addressed in this paper and 
provide solutions accordingly. This paper aims to propose a general 
architecture for technology selection and capacity planning simultaneously. 
 
Technology selection and capacity planning 
 There are two perspectives to the technology selection problem. a) A 
zero-one selection where a technology is either selected or rejected, b) A 
combined use of different technologies, or so-called ‘technology mix’, which 
allows the split of capacity among different technologies. 
 Technology mix perspective is not usually addressed in widely 
studied scenarios in recent years. For example, the study presented in (Van 
de Kaa, et al., 2014) aims to analyze the data to select one dominant 
technology out of five available alternatives. The authors use fuzzy Analytic 
Hierarchy Process method to achieve their aim. (Onar, et al., 2015) 
concentrates on the selection of the appropriate wind energy technology. The 
problem is constructed as a multi-expert multi-criteria decision making 
problem. At (Ren & Lutzen, 2015)VIKOR was used to evaluate and 
prioritize three alternative technologies out of which one technology is 
selected. The study by (Evans, 2013) aims to adopt an approach where both 
experts and non-experts can use historical decision information to support 
the evaluation and selection of an optimal manufacturing technology. This 
form of approach is based on the logic in which a decision maker would 
irrationally recall previous decisions to identify relationships with new 
problem cases. In all these types of studies, the problem is actually treated 
like a rather simple 0-1 decision type of scenario, where a technology is 
either selected or rejected. Just a fraction of these studies provide an 
approach with an aim to contribute to manufacturing sustainability. Yet in 
reality, more complex scenarios are happening. 
 In line with the inception of globalisation age, the emergence of 
global manufacturing corporations with several plants located around the 
world started off decades ago and is still on the rise. While some of the 
decisions in such a structure are made de-centrally, the importance of 
integrated decisions at some strategic levels, such as technology selection 
and capacity planning, is still evident. Such an integrated decision is 
supported by justifications in the areas of economies of scale and 
accumulated knowledge-base. 
 The driving force of these decisions is multi-faceted. Manufacturing 
technologies are subject to a continual improvement process, especially in 
the context of sustainable development. Technologies have a limited life-
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cycle and need to be replaced. Further, increasing demand for an existing 
product would require capacity expansion, while new product development 
could justify new technologies as well as capacity acquisition 
 In this paper, a model is developed with an integrated view to solve 
both problems ‘Technology Selection’ and ‘Capacity Planning’ 
simultaneously. The general scenario targeted in this research assumes that 
the firm’s management is going to make a decision on: 
 “How much of capacity from which technology to acquire?” 
 In order to meet demands and in accordance with a number of 
criteria. A technology mix would enable an appropriate level of trade-off 
amongst conflicting criteria, such as cost, quality, and emissions. Managers 
might face this type of decisions in various industries and in different stages 
of their business, either to establish a new plant, or to expand on existing 
facilities, or even to replace the old technologies. 
 Existing studies rarely look at this combined problem of ‘Technology 
Selection’ and ‘Capacity Planning’ in an integrated way. (Filomena, et al., 
2014) address technology selection and capacity investment under 
uncertainty for an electricity generation problem in a game theory-based 
competitive environment. The study focuses on cost evaluation against a 
portfolio of technologies and does not address multi-criteria nature of 
decisions or sustainability analysis. 
 
Sustainability perspective 
 Manufacturing plays a key role in the realisation of sustainable 
development. Manufacturing systems make a significant contribution in 
creating wealth, jobs, as well as pollution. Thus the concepts of ‘sustainable 
manufacturing’ and ‘sustainable technologies’ are key in achieving 
sustainable development. When it comes to sustainable technologies, 
however, there is another very important dimension to consider, namely 
‘Technical’ aspects and specifications. In fact, the major global challenges 
that the manufacturing sector is facing today need to be addressed in the 
multifaceted context of economy, society, environment and technology 
(ESET) (Jovane et al., 2008). 
 Figure1 illustrates a conceptual model of manufacturing 
performances from these four dimensions. 
 One major aspect of this research is to observe the ‘Sustainability’ of 
manufacturing systems in the course of technology selection. The proposed 
methodology should drive the selection of more sustainable technologies. 
This objective can be achieved through an optimization algorithm in which 
sustainability criteria are involved along with other selection criteria. In the 
next section, a discussion of selection criteria is presented. 
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Figure 1 Technologies for sustainability (Westkamper, 2007) 

 
Technology selection criteria 
 Inspired by the fundamentals of sustainability theory in the context of 
manufacturing, our approach to the problem ‘technology selection and 
capacity planning’ considers three criteria, namely 
a) Environmental (e.g. Emissions) 
b) Economic 
c) Technical (e.g. quality) 
 These three criteria are largely in conflicting positions. 
Environmentally friendly technologies are usually expensive, because they 
may require advanced components to reduce the scale of emissions. Similar 
argument is true with quality and cost criteria. This gives rise to the multi-
criteria decision making challenge. 
 It is assumed that there exist regulations on controlling the 
environmental emissions for industries, making them keep their emissions 
generation at a certain level. This restriction is treated as a constraint in the 
proposed model. 
 Modelling the economic aspect of the problem is more complicated. 
The cost structure includes both capital and operational elements, latter of 
which should be considered over a time horizon. Thus, a total life-cycle 
costing method is proposed. The concept of ‘Time Value of Money’ is 
addressed through a discounted cash-flow method that is ‘Present Value 
(PV)’ analysis. Further, the effect of inflation rates is considered, making the 
proposed model more realistic. Figure 2 presents this research’s triangular 
perspective to sustainable manufacturing. 
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Modelling uncertainties 
 Every decision faces some uncertainties, the level of which becomes 
intensive where the decision has a long prospect in the future. It is assumed 
that the decision-making is happening in a time window through which the 
new circumstances might occur, e.g. prices change or criteria priorities are 
shifted, on the basis of which it requires the decision to be revised or 
adapted. Some of these uncertainties are taken into account in this research, 
which in turn introduce a great deal of complexity into the model. 

 
 
 
 

 
 

 
 
 
 
 
 
 

 
 

Figure 2 A triangular perspective to ‘Technology Selection and Capacity Planning’ 
 
 Dealing with uncertainty constitutes one of the biggest challenges in 
an optimisation approach. Very few studies take uncertainty into account and 
use a set of methods called ‘Non-Deterministic or Stochastic’ in general. On 
the other hand, the mainstream literature tends to assume that all data are 
certain and use the methods called ‘Deterministic’. Non-deterministic 
models have to deal with a much larger set of data, which require high level 
of computational resources. Some methods use approximations to reduce the 
problem into a manageable size. 
 
Types of uncertainties 
 There are three types of uncertainties that are addressed in this 
research, as follows:  
 Uncertainty factors with virtually no control over: Perhaps the most 
important uncontrollable factor associated with this type of uncertainty is;  
a) Demand  
 This factor has a key role in capacity planning decisions. It is, 
however, assumed that there exists some information about future demand 
based on historical records or other types of sources such as expert opinions. 



European Scientific Journal June 2016 edition vol.12, No.18  ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

84 

 Uncertainty factors with some level of flexibility: The other 
possibility is that although some of the parameters used in the model are 
beyond the user’s control, they might still be influenced by the user’s power, 
e.g. through negotiations, or give the decision maker a certain level of 
flexibility with the parameter value. Here are the most important ones that 
fall into this category:  
a) Purchasing price of the technology  
b) Regulatory limits  
 Controllable parameters: In addition, the technology selection and 
capacity planning problem are characterised by some parameters within the 
decision maker’s control that could have impacts on the final results. 
Therefore, it is important to identify the sensitivity of the model results to the 
deviations on these parameters. Some of these parameters are:  
a) Criteria weights  
b) Rate of return (rr)  
c) Budget limit  

 
Proposed framework 
 A framework consisting of ten major steps in four modules is 
proposed (figure 4). The framework puts an emphasis on facilitation of 
communication with users; hence ‘Solution Structuring’ is developed to 
facilitate problem solution representation.  

 
Figure 4 General architecture of an integrated optimisation approach to technology selection 

and capacity planning 
 
 Module ‘Optimisation for Sustainable Manufacturing’ addresses the 
optimisation of technology selection and capacity planning decisions in an 
integrated model. It also takes the multi-criteria aspect of sustainability in the 
model developed. 
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 ‘Sensitivity Analysis’ module is designed to deal with the uncertainty 
associated with the model through scenario generations and model re-
optimisations. 
 As a part of the ‘Solution Structuring’ module, the results, which 
constitute a large number of solution sets, are then processed using Machine 
Learning techniques and translated into two solution formats, namely a) 
decision trees, and b) interactive slider diagram. 
 The next sections describe the general functionalities of the above 
four modules as well as some algorithms developed. 
 
Optimization for sustainable analysis 
 System analysis and design for achieving sustainability is a 
challenging task. Multi-objective decision making is fundamental to the 
solution approach. Analytical methods are adopted to conduct optimization 
of the design task. 
 This module consists of four steps, namely a) PV life cycle economic 
evaluation, b) cost optimization, c) normalization, and d) multi-criteria 
optimization, as described in the next sections.  

 
PV Life-Cycle economic evaluation 
 Economic evaluation of design alternatives has always played a 
major role in decision making. Various levels of detail and evaluation 
methods have been used before. Due to historical and ever increasingly vital 
importance of the cost factor, this research attempts to present a highly 
detailed economic evaluation algorithm based on ‘Present Value (PV)’ 
method. 
 Technology investments are characterized by both initial capital 
spending and annual running costs. The real value of money is changed 
throughout time, due to the effects of ‘Inflation’ and ‘Market Return’. PV 
method transforms all annual costs into their equivalent present values in a 
way that can be treated in the model similar to the initial capital part of an 
investment. Then various investments are evaluated based on their total 
equivalent present value. The details of the PV modelling in this research are 
described in the next sections: 
 
Cost structure  
 Two major cost categories for each technology investment are 
defined in this research: 
a. Capital costs (cc): Mainly includes ‘purchase cost’ of one unit of 
technology.  
b. Running costs (rc): Includes five sub-categories, namely; i) 
materials, ii) labour, iii) energy, iv) rework, and v) maintenance. These cost 
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items need to be discounted over the life of the technology (e.g. 20 years) 
and transformed into present value. The running cost formulae is presented 
below:  
𝑴𝑻𝒊𝒋=[𝒙𝒊𝒋 ×𝒎𝒕𝒊𝒋×(𝟏+𝒓𝒘𝒊𝒋)] ∀ 𝒊,𝒋 
𝑳𝒊𝒋=[𝒙𝒊𝒋 ×𝒍𝒊𝒋×(𝟏+𝒓𝒘𝒊𝒋)] ∀ 𝒊,𝒋 
𝑬𝒊𝒋=[𝒙𝒊𝒋 ×𝒆𝒊𝒋×(𝟏+𝒓𝒘𝒊𝒋)] ∀ 𝒊,𝒋 
𝑴𝑨𝒊𝒋=𝒚𝒊𝒋×𝒎𝒂𝒊𝒋 ∀ 𝒊,𝒋 
Where  
𝑴𝑻𝒊𝒋 = cost of materials per one year production by technology 𝑗 for 
operation 𝑖,  
𝒎𝒕𝒊𝒋 = cost of materials per unit of product produced by technology 𝑗 for 
operation 𝑖,  
𝑳𝒊𝒋 = cost of labour per one year production by technology 𝑗 for operation 𝑖,  
𝒍𝒊𝒋 = cost of labour per unit of product produced by technology 𝑗 for 
operation 𝑖,  
𝑬𝒊𝒋 = cost of energy per one year production by technology 𝑗 for operation 𝑖,  
𝒆𝒊𝒋 = cost of energy per unit of product produced by technology 𝑗 for 
operation 𝑖,  
𝑴𝑨𝒊𝒋 = cost of maintenance per one year production by technology 𝑗 for 
operation 𝑖,  
𝒎𝒂𝒊𝒋 = cost of maintenance per unit of technology 𝑗 for operation 𝑖,  
𝒓𝒘𝒊𝒋 = percentage of rework associated with technology 𝑗 for operation 𝑖,  
𝒙𝒊𝒋 = capacity volume required for technology 𝑗 of operation 𝑖;  
𝒚𝒊𝒋 = Number of units required for technology 𝑗 of operation 𝑖; 
 
The effect of inflation  
 In the real world, where price inflations exist, the expenses will rise 
from one year to the next at the rate known as ‘Inflation Rate’. In a simple 
word, a cost item 𝑐 will rise to 𝑐(1+𝑟𝑖) next year, where 𝑟𝑖 represents the rate 
of inflation. Therefore, the annual running costs will actually rise in real term 
in the form of a geometric series (Table 1). Furthermore, the inflation rates 
actually vary with regards to different cost items, namely materials, labor, 
energy, and maintenance. In this paper, the effect of inflation for each cost 
item is taken into account using different inflation rates. 

Table-1 Geometric series representing the effect of inflation 
Year 1 2 3 … t 
Cost rc rc rc … rc 

Inflated Cost rc x (1+ri) rc x (1+ri)2 rc x (1+ri)3  rc x (1+ri)t 

 
The effect of market return  
 Market return is a profit on an investment, also called return on 
investment (ROI). It is a measure of investment performance. The effect of 
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market return is involved when dealing with cash flows over time. Market 
return is represented by the Rate of Return (rr) in a sense that every pound 
invested at time zero should grow over time at a rate rr when used in a 
business. In other words, every pound spent at time one would be worth 
1/(1+rr) at time zero. The equivalence value of running costs at time zero 
when considering the effect of market return can be shown in Table 2.  

Table 2 the effect of market returne on investment rate on annual running costs 
Year 1 2 3 … t 
Cost rc rc rc ... rc 

Equivalent 
Cost at year 0 

(effect of 
market return) 

𝒓𝒄/(𝟏+𝒓𝒓)  
 

𝒓𝒄/(𝟏+𝒓𝒓)2 

 
 

𝒓𝒄/(𝟏+𝒓𝒓)3  
  𝒓𝒄/(𝟏+𝒓𝒓)t 

 

 
Present Value (PV) model 
 The PV model of annual running cost 𝑟𝑐 when considering the 
combined effects of inflation and market return can be shown in the form of 
a new geometric series as follows: 

𝒓𝒄 (𝟏 + 𝒓𝒊)
(𝟏 + 𝒓𝒓)

 ,
𝒓𝒄 (𝟏 + 𝒓𝒊)𝟐

(𝟏 + 𝒓𝒓)𝟐
 ,
𝒓𝒄 (𝟏 + 𝒓𝒊)𝟑

(𝟏 + 𝒓𝒓)𝟑
 , … 

Or  
𝒓𝒄×𝒅𝒓 , 𝒓𝒄×𝒅𝒓𝟐 , 𝒓𝒄×𝒅𝒓𝟑 ,… 
 Where  𝑑𝑟(= (1+𝑟𝑖)

(1+𝑟𝑟)
)  represents the combined discounting effects of 

both inflation rate and return on investment.  
 The summation of the series terms, which represents the equivalent 
present value of all running costs of the technology 𝑗 for operation 𝑖, is 
calculated using the following formulae: 

𝑹𝒖𝒏𝒏𝒊𝒏𝒈 𝑪𝒐𝒔𝒕 𝑷𝒓𝒆𝒔𝒆𝒏𝒕 𝑽𝒂𝒍𝒖𝒆 = 𝒓𝒄𝒊𝒋 × 𝒅𝒓 × (
𝟏 − 𝒅𝒓𝒕𝒊𝒋
𝟏 − 𝒅𝒓

) 
 Where 𝑡𝑖𝑗 refers to the life period of the technology 𝑗 for operation 𝑖. 
Finally, the total PV of each technology investment, including both capital 
and running costs, can be calculated as follows: 

𝑷𝑽𝒊𝒋 = 𝒄𝒄𝒊𝒋 + [𝑴𝑻𝒊𝒋 × 𝒅𝒓 × �
𝟏 − 𝒅𝒓𝒕𝒊𝒋
𝟏 − 𝒅𝒓

� + [𝑳𝒊𝒋 × 𝒅𝒓 × �
𝟏 − 𝒅𝒓𝒕𝒊𝒋
𝟏 − 𝒅𝒓

� + [𝑬𝒊𝒋

× 𝒅𝒓 × �
𝟏 − 𝒅𝒓𝒕𝒊𝒋
𝟏 − 𝒅𝒓

� + [𝑴𝑨𝒊𝒋 × 𝒅𝒓 × �
𝟏 − 𝒅𝒓𝒕𝒊𝒋
𝟏 − 𝒅𝒓

�] 

 
Cost Optimization 
 This part of the proposed framework is particularly responsible for 
finding the total cost goal for the purpose of normalization as described later 
in the next section. The cost optimization model is similar to the main model 
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assuming there is only one criterion to consider, namely cost. A Linear 
Programming (LP) model is developed to solve this problem.  

 
Normalization 
 One of the first steps in a multi-criteria approach is to normalize the 
effects of various criteria. In normalization, impact potentials and resource 
consumptions are expressed on a common scale by relating them to a 
common reference, to enable a comparable assessment across impact 
categories (Wenzel, et al., 2001) .All potential impacts are converted into the 
same units to facilitate a systematic comparison. To compare different 
impact potentials, an evaluation should be based on the seriousness of the 
impact, which is assessed by a set of weighting factors. 
All the three criteria mentioned earlier in section 4 require normalization 
transformations in order to enable a comparable evaluation of the various 
scenarios. Common normalization algorithms convert various scales into a 
unique scale for all the criteria scores. ‘Normalization algorithm by 
comparison with the best value’ method is adopted in this research. This 
method can be formulated in two ways, as presented below, assuming that 
the criterion is to be minimized. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 
=
1 −
𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒−𝑀𝑖𝑛.  𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑣𝑎𝑙𝑢𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 

𝑀𝑖𝑛.  𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑣𝑎𝑙𝑢𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠
  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 =
𝑀𝑖𝑛.  𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑣𝑎𝑙𝑢𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒
 

 The first formula was, however, preferred in this research due to the 
fact that the second one turned the linear model into a non-linear one, which 
compromises on the efficiency and effectiveness of the solution. 
 Normalization algorithm requires a target (or best) value for each 
criterion. In the current research, the best criteria value across different 
technologies for a specific operation is used as the target value for 
normalization calculations. The normalized transformation of the best value 
is set to ‘1’ based on the above formula. 
 There are, however, some complications involving the technology 
mix nature of the problem. Technology mix makes both optimisation and 
normalisation algorithms more complicated, because the number of 
alternatives is numerous. Each alternative could involve a mixed use of 
several technologies per operation. Under such circumstances, calculations in 
normalisation algorithms are carried out per each technology mix rather than 
per each individual technology. 

Normalised environmental impact measure:  
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 It is calculated based on the following formulae, as presented above. 

𝑁𝐸𝑖 = 1 −
∑ (𝑒𝑖𝑗 ×𝑗 𝑥𝑖𝑗) −𝑀𝑖𝑛𝑗(𝑒𝑖𝑗) × 𝐷𝑖

𝑀𝑖𝑛𝑗(𝑒𝑖𝑗) × 𝐷𝑖
                     ∀ 𝑖 

 Where 𝑁𝐸𝑖 denotes the normalised environmental impact value 
associated with operation 𝑖 (𝑁𝐸𝑖∈{0,1} with 1 being the least environmental 
impact), 𝑒𝑖𝑗 denotes raw environmental impact value associated with 
technology 𝑗 for operation 𝑖, 𝑥𝑖𝑗 denotes the capacity acquisition of 
technology 𝑗 for operation 𝑖, and 𝐷𝑖 denotes the level of demand for 
operation 𝑖. It is important to note that the environmental impacts of 
technologies are compared for each operation rather than across all 
operations. Therefore, 𝑀𝑖𝑛𝑗 (𝑒𝑖𝑗) is referred to the minimum environmental 
impact value across technologies available for operation 𝑗. 
 
Normalised technical measure 
 Assuming that technical scores are allocated in a way that best 
scenario will get a lower score, the normalised score, similar to the 
environmental measure, is calculated based on the following formulae: 
𝑁𝑇𝑖 = 1 −

∑ (𝑡𝑖𝑗×𝑗 𝑥𝑖𝑗)−𝑀𝑖𝑛𝑗(𝑡𝑖𝑗)×𝐷𝑖
𝑀𝑖𝑛𝑗(𝑡𝑖𝑗)×𝐷𝑖

                     ∀ 𝑖 

  Where 𝑁𝑇𝑖 denotes the normalised technical (quality) value 
associated with operation 𝑖 (𝑁𝑇𝑖∈{0,1} with 1 being the highest technical 
index), and 𝑡𝑖𝑗 denotes raw technical value -such as quality rejection rate - 
associated with technology 𝑗 for operation 𝑖. It is important to note that 𝑡𝑖𝑗 
represents a variable that is to be minimised. 
 
Normalised economic measure  
 As for the economic measure, the best value cannot be obtained as 
straightforward as it was with the other two criteria. This is due to the fact 
that the cost structure of each technology is more complicated and consists of 
several elements, as described earlier in section 6.1.1. Therefore the 
minimum total cost value needs to be obtained. This is carried out using an 
auxiliary model called ‘Cost Optimisation’, as discussed earlier in 6.1.2. The 
cost optimisation is carried out through a separate mathematical model that 
finds the minimum total cost across all the operations. Therefore, the 
normalised economic score is calculated based on the following formulae; 

𝑁𝐶 = 1 −
𝑡𝑐 − 𝑡𝑐 ∗
𝑡𝑐 ∗

 
 Where 𝑁𝐶 refers to the normalized economic value (𝑁𝐶≤1 with 1 
being the lowest total cost), 𝑡𝑐 refers to the total cost associated with each 
technology combination scenario across all operations, and 𝑡𝑐* refers to the 
minimum total cost across all operations. 
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Multi-Criteria optimization 
 This element of the research framework is responsible for the actual 
multi-criteria optimization of technology selection and capacity planning for 
a sustainable manufacturing. The problem addressed in this research is 
characterized by a number of complexities, namely: 
• The ‘technology mix’ approach to the problem. This makes 
optimization algorithms more complicated compared to the situation where 
there are only two states; ‘selection’ or ‘no selection’. Instead, a numerous 
number of combinatorial scenarios need to be considered in this research. 
• The model is to work under uncertainty. Problem-solving approaches 
under uncertainty face a huge complication, dealing with uncertain data.  
• Multi-criteria nature of sustainability perspective, where different 
types of criteria (both quantitative and qualitative) are taken into account. 
 The main approach used in this framework is ‘Mathematical 
Programming’, which is a general term for a suit of methods. More 
specifically, a Goal Mixed Integer/Linear Programming method is used, 
where Goal Programming model is responsible for multi-criteria 
optimisation and the Mixed Integer/Linear Programming model deals with 
an integrated optimisation of technology selection and capacity planning. 
Further details about the Multi-Criteria Optimisation module can be found in 
future publications. 
 
Sensitivity Analysis  
 Decisions are made in a highly uncertain environment. This means 
that the results might not be valid by the time the decisions are to be 
implemented. Also, the decision-making might be happening in a time 
window through which the new circumstances might occur, on the basis of 
which it requires the decision to be revised or adapted. There are several 
ways to deal with uncertainty. A related field is sensitivity analysis. With 
sensitivity analysis one can ascertain the impact of the uncertainty with 
respect to the parameters’ values on the quality of the optimum solution. 
Uncertainty analysis and sensitivity analysis are essential parts of analyses 
for complex systems. 
 The proposed approach to high variability situations in this research 
is to predict possible scenarios in advance and pre-plan for each. The focus 
of this research is on sampling-based sensitivity analysis, which is an 
effective and widely used approach (Helton, 2008). 
 There is a very important property of the Linear Programming (LP) 
models that is called ‘Duality’. Knowledge of the duality provides interesting 
economic and sensitivity analysis insights to the problem. The optimization 
model developed in this research is, however, essentially of a mixed 
Integer/Linear Programming type, which does not allow the applicability of 
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duality. Therefore, a controlled re-optimization approach was adopted where 
the original model is re-optimized for a set of sampled input data. Each re-
optimization episode is characterized by one set of input data against one set 
of output results. The re - optimization module uses the same method as used 
in the original optimization step. A software tool is designed to control the 
re-optimization process in an efficient way. Further details on this module 
are presented in future publications.  
 
Solution structuring 
 Sensitivity analysis module provides rich pieces of knowledge for 
decision makers in a form of scenario-solution pairs in the scale of hundreds 
or perhaps thousands. Such a massive knowledge, however, needs to be 
structured in an abstract way, yet scientifically sound to represent the 
knowledge originally generated. 
 This research adopts ‘Machine Learning’ approach to the solution 
structuring stage of the framework. More specifically, two types of 
knowledge structuring are suggested, including: 

I. Decision tree 
II.  Interactive slider diagram 

 These representation schemes provide decision-maker with a variety 
of methods to structure the solution set. Decision tree is a widely-used and 
effective knowledge representation scheme. ‘Machine Learning’ in general 
and a combination of ‘Clustering’ and ‘Classification’ algorithms are applied 
in this research to generate the best decision tree. 
 
Conclusion 
 In this paper, a model is developed with an integrated view to solve 
two problems ‘Technology Selection’ and ‘Capacity Planning’ 
simultaneously. A ‘technology mix’ decision is allowed, which enables an 
appropriate level of trade-off amongst conflicting criteria, such as cost, 
quality, and emissions. A framework consisting of nine major steps in three 
modules is proposed, namely a) Multi-Criteria Optimisation, b) Sensitivity 
Analysis, and c) Solution Structuring.  
 One major aspect of this research is to observe the ‘Sustainability’ of 
manufacturing systems in the course of technology selection. The proposed 
methodology should drive the selection of more sustainable technologies. 
This objective is achieved through an optimisation algorithm in which 
sustainability criteria are involved along with other selection criteria. Three 
criteria are considered, including a) Environmental (e.g. Emissions), b) 
Economic, and c) Technical (e.g. quality). 
 In summary, the main characteristics of the proposed framework are: 
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1. An integration of technology selection and capacity planning 
functions.  
2. Tackling uncertainty  
3. Addressing multi-operation problems  
4. Considering the effects of inflation and market return  
5. Total life-cycle economic evaluation  
6. Sustainability perspectives  
7. Decision tree-based solution structuring  
8. Technological constraints (incompatible technologies)  
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