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Abstract  
 Boolean functions with good cryptographic properties (high algebraic 
degree, balancedness, high order of correlation immunity and high 
nonlinearity) have an important significance in stream cipher (combiner 
model or filter model) since these functions allow to construct stream cipher 
resistant to various attacks. In this work the modified Tarannikov’s 
construction method is considered. This construction permits to obtain 
functions achieving all necessary criteria for being used in the pseudo-
random generators in stream ciphers. Thus, this allows constructing 
recursively the resilient function achieving Siegenthaler’s bound and Sarkar, 
et al.’s bound using a resilient function in a smaller number of variables. 
Finally, we used the modified Tarannikov’s construction for designing 
keystream generators for digital images encryption. 
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Introduction 
 Boolean functions are crucial cryptographic primitives in stream 
cipher and cryptography in general. In the case of stream cipher (the 
combiner model or filter model) the Boolean functions are required to have 
good cryptographic properties: high algebraic degree, balanced, high order 
correlation immunity, high nonlinearity, and high algebraic immunity degree 
to counter certain attacks (Berlekamp 1968) - (Armknecht 2004).   
 Unfortunately, during a research involving construction of Boolean 
functions in cryptography, we come immediately to the following problem: 
It is impossible for a Boolean function to satisfy simultaneously and 
optimally all criteria: high algebraic degree, balancedness, order correlation 
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immunity highest possible and high nonlinearity. This means a cryptographer 
to seek compromise.  
 Siegenthaler showed in (Siegenthaler 1984) that any n -variable 
Boolean function f used in a stream cipher can both have a high algebraic 
degree and high order correlations immunity, since its degree is upper 
bounded by tn − . If f is t -th order correlation immune function ( nt ≤≤0 ) 
has algebraic degree smaller than or equal to tn − . Moreover, if f is a t -
resilient function ( nt ≤≤0 ) it has algebraic degree smaller than or equal to 

1−− tn if 2−≤ nt  and equal to 1 if 1−= nt . 
 Sarkar and Maitra proved in (Sarkar 2000) divisibility bound on the 
Walsh transform values of an n-variable, t -th order correlation immune 
(resp. t -resilient) function, with 2−≤ nt : these values are divisible by 12 +t  
(resp. by 22 +t  ). This provides a nontrivial upper bound on the nonlinearity of 
resilient functions (and also of correlation immune functions, but non-
balanced functions present less cryptographic interest), independently 
obtained by Tarannikov (Tarannikov 2000) and by Zheng and Zhang (Zheng 
2001): the nonlinearity of any n-variable, t -resilient function is upper 
bounded by 11 22 +− − tn . Tarannikov proved that resilient functions achieving 
this bound must have degree 1−− tn  (that is, achieve Siegenthaler’s bound); 
thus, they achieve the best possible trade-offs between resiliency order, 
degree and nonlinearity. 
 In this paper, the modified Tarannikov’s construction method is 
introduced. This construction permits to increase the cryptographic 
parameters: algebraic degree, resiliency and nonlinearity and to define many 
more resilient functions where the degree, resiliency and nonlinearity 
achieved are high. Thus, to allow obtaining resilient functions achieving the 
best possible trade-offs between resiliency order, algebraic degree and 
nonlinearity (that is, achieving Siegenthaler’s and Sarkar, al.’s bounds). 
 
Preliminaries  
 In this section, few basic concepts and results are introduced. A 
Boolean function on n -variable may be viewed as a mapping from nF2 in to

2F . By ⊕  we denote the sum modulo 2. The Hamming weight )( fwt  of a 
Boolean function f  on nF2  is the size of its support{ }1)(;2 =∈ xfFx n .  
 By ),,,( Ndtn , we mean an n -variable function, t -resilient function 
having degree d  and nonlinearity N . In the above notation, we may replace 
some components by ( )−  if we do not want to specify it.   
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 An n -variable Boolean function f has a unique algebraic normal 

form (A.N.F): ++= ∑
=

n

i
iin xaaxxf

0
01 ),...,( nn

nji
jiji xxxaxxa ...... 21,...,2,1

1
, ++∑

≤≤ 

, 

where the coefficients 0a , ia , jia , ,.., na ,...,2,1 belong to 2F . 
 The Walsh transform of an n -variable Boolean function f defined by 

∑
∈

⋅⊕−=
nFx

xuxfuWf
2

)()1()( , nFu 2∈∀                                                               (2.1)                                                                                                                                                                             

where nn uxuxux ...... 11 ++= denotes the usual scalar product of vectors u
and x . 
 The algebraic degree, ( )fdeg , of a Boolean function f  is the 
number of variables in the highest order term with non zero coefficient. If the 
algebraic degree of f is smaller than or equal to one then f is called affine 
function. An affine function with a constant term equal to zero is called a 
linear function. 
 A Boolean function f on nF2 is balanced if )1()( ⊕= fwtfwt . In 
other words, f  is balanced if and only if 12)( −= nfwt . Correlation 
immune functions and resilient functions are two important classes of 
Boolean functions. Xiao and Massey (Xiao 88) provided a spectral 
characterization of correlation immunity. A function f  is t -th order 
correlation immune if and only if its Walsh transform satisfies: 0)( =uWf , 
for tuwt ≤≤ )(1 , where )(uwt denotes the Hamming weight of u, and 
function f  is balanced if moreover 0)0( =Wf , ,2

nFu∈∀   tuwt ≤≤ )(0 . A 
balanced t -th order correlation immune function is called t -resilient. 
 The Boolean functions used in a nonlinear combiner must have high 
correlation immunity. If the combiner function is not correlation immune 
then the attacker can find correlations between the keystream and the 
contents of one of the LFSRs. This allows the attacker to mount a divide and 
conquer attack in which internal state of each LFSR is recovered 
independently of the other LFSRs. 
 Nonlinearity of a Boolean function f  measures the distance of the 
Boolean function from the set of all affine functions. The nonlinearity Nf of 
an n -variable Boolean function f , can be written as 

          )(max
2
12

2

1 uWfNf
nFu

n

∈

− −= .                                                                (2.2) 
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 It is upper bounded by 
1

21 22
−− −

n
n  (we shall call this bound the 

universal bound), due to Parseval’s relation  ∑
∈

=
nFu

nuWf
2

22 2)( .                               

(2.3) 
 Boolean functions used in stream ciphers must have high 
nonlinearity. A high nonlinearity weakens the correlation between the input 
and output and prevents the attacker from using linear approximations of the 
function. 
 The algebraic immunity )( fAIn of a Boolean function f is the 
smaller degree of non null function g such that 0* =gf or 0*)1( =⊕ gf . 
In other words, the minimum value of d  such that f or f⊕1 admits an 
annihilator of degree d . It has been proven in (Meier 2003) that the algebraic 
immunity of any n-variable Boolean function is upper bounded by [ ]2

n . 
Hence, if the degree is greater than [ ]2

n , the best possible algebraic immunity 
is [ ]2

n . 
Proposition 1: (Dalai 2006) Let f be a functions on n  variables with an 
algebraic immunity dfAIn =)( . Let l be an affine function with any of the 
following properties: 

1. l is a function on nxx ,...,1  
2. l is a function on nxx ,...,1  and some other variables.  
3. l is a function on variable other than nxx ,...,1  . Let lf ⊕  be a 
function on r  variable. Then 1)(1 +≤⊕≤− dlfAId r  for case 1and 
2, and 1)( +≤⊕≤ dlfAId r  for case 3. 

 
Tarannikov’s Construction 
 In (Tarannikov 2000), Tarannikov has proposed an important 
construction of resilient functions. Let 1g  and 2g  be two Boolean functions 
on nF2  such that σ== 21 NgNg , besides 1g  depends on the variables ix   and 

jx  linearly and 2g  depends on a pair of the variables ),( ji xx quasi-linearly. 
Consider the function 

( ) ( ) 11212111221 ),...,(),...,(1),...,( ++++++ ⊕⊕⊕⊕+= nnnnnnnn xxxgxxxxgxxxxg on
2

2
+nF . Then, we have: 

1. If 1g  and 2g  are t -resilient, then g  is (t+1) – resilient. Moreover, g  
depends on the variables 1+nx   and 2+nx quasi-linearly.  
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2. σ22 += nNg  
• If 1g  and 2g achieve the maximum possible nonlinearity 

11 22 +− − tn , then the nonlinearity 21 22 ++ − tn  of g  is the best possible;  
 
Modification of Tarannikov’s Construction: 
 We will propose a modification of Tarannikov’s construction. Let us 
first present the construction. 
Construction 1: Let tn, be positive integers such that nt  . Let g

),,,( Ngdtn . Let gxxf nn ⊕⊕= ++ 12  and *
2 gxxh nn ⊕⊕= + be two 2+n -

variable functions, where ( ) =++− 21121
* ,,,...,, nnn xxxxxg

( )21121 ,,...,, ++− ⊕ nnn xxxxxg  is the function generated from g by replacing the 
variable nx  by  ( )12 ++ ⊕ nn xx . We construct a function G  in 4+n variables 
in the following way, ( ) ( ) 334341 +++++ ⊕⊕⊕⊕⊕= nnnnn xhxxfxxG  . Then 
the following important result is obtained. 
Lemma 1: LetG  be a function of 4+n  variables as described in 
Construction 1. Then G is (t+3) – resilient with nonlinearity

NgNG n 82 2 += + . Moreover, G depends on the variables 3+nx   and 4+nx
quasilinearly. If g achieves a maximal possible nonlinearity 11 22 +− − tn , then 
nonlinearity 43 22 ++ −= tnNG  of G  is the best possible and

( ) ( )gG deg1deg += . 
Proof: 
By lemma 4.2 and 4.4 of (Tarannikov 2000) the functions f  and h  are t+2-
resilient functions on 2

2
+nF , α=== NgNhNf 4 . Moreover, the function f

depends on the variables 21, ++ nn xx linearly,  and the function h depends on 
the variables 21, ++ nn xx  quasilinearly. 

( ) ( ) )deg(degdeg ghf == . 
By lemma 5.1 of (Tarannikov 2000) the functionG is a t+3-resilient function 
on 4

2
+nF  with nonlinearity NgNgNG nnn 8242222 222 +=×+=+= +++ α . 

Moreover, G depends on the variables 3+nx   and 4+nx quasi-linearly. If g
achieves a maximal possible nonlinearity 11 22 +− − tn , then. We have 

( ) 431122 22228282 +++−++ −=−+=+= tntnnn NgNG  is the best possible 
nonlinearity ofG . 
The construction 1 can be applied iteratively. 
Construction 2: Let 0G be the initial function of n  variables and kG the 
constructed function after k -th iteration. Let us denote by *

kG  the function 
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generated from kG by replacing the variable knx 4+  by ( )1424 ++++ ⊕ knkn xx . Let 

kknknk Gxxf ⊕⊕= +++++ 14241  and *
4241 kknknk Gxxh ⊕⊕= ++++ . Then the 

constructed function at 1+k -th step, ( ) ( ) 3413444134441 1 +++++++++++++ ⊕⊕⊕⊕⊕= knkknknkknknk xhxxfxxG . 
We have following results. 
Proposition 2: For 0k , ( ) kkkk HGFGFG ⊕⊕⊕= *

001  where ( ) kFk =deg  
and ( ) 1deg += kH k . 
Proof: 

( ) ( ) 31341341 1 +++++ ⊕⊕⊕⊕⊕= nnnnn xhxxfxxG  
( ) ( ) ( )( )
( )( ) 3234

1234
*
034034 11

++++

++++++++

⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕⊕=

nnnnn

nnnnnnnn

xxxxx
xxxxGxxGxx  

( ) ( )( ) ( ) 321121
*
0101 11 ++++ ⊕⊕⊕⊕⊕⊕⊕⊕= nnnnn xxxFxxFGFGF  

( ) 1
*
01011 HGFGF ⊕⊕⊕=  

where 1F  and 1H are 1 and 2 degree polynomials respectively. 
 Let us assume that this is true for some 1≥i , i.e., 

( ) iiii HGFGFG ⊕⊕⊕= *
001 , where iF is a i-degree polynomial and iH is a 

i+1-degree polynomial. We have 
( )( )

( )( ) 34
*

4243444

142434441 1

+++++++++

+++++++++

⊕⊕⊕⊕

⊕⊕⊕⊕⊕=

iniinininin

iinininini

xGxxxx
GxxxxG

 

( ) ( ) ( )( )
( )( ) 344243444

14243444
*

34443444 11

+++++++++

++++++++++++++++

⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕⊕⊕=

ininininin

ininininiininiinin

xxxxx
xxxxGxxGxx

 
( )( ) ( )( )
( )( ) ( )( ) 34424344414243444

**
0

*
0

*
3444

*
003444

1
)1()1(1

+++++++++++++++++

++++++++

⊕⊕⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

ininininininininin

iiiininiiiinin

xxxxxxxxx
HGFGFxxHGFGFxx

Where *
iF  and *

iH  are generated by replacing the variable inx 4+  by
( )1424 ++++ ⊕ inin xx  in iF  and iH   respectively. Thus, 

( )
( ) ( )
( ) ( )( )
( )( ) 344243444

14243444
*

3444

3444
*
03444

*
3444

03444
*

34441

1
1)()(

)()(1

+++++++++

++++++++++++

++++++++++++

+++++++++

⊕⊕⊕
⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕=

ininininin

ininininiinin

iininininiininii

ininiininiii

xxxxx
xxxxHxx

HxxGxxFxxFF
GxxFxxFFG

 
This implies 

( ) 1
*
01011 1 ++++ ⊕⊕⊕= iiii HGFGFG , where  1+iF  and 1+iH are i+1 and i+2 

degree polynomials respectively. 
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Proposition 3: Let g be a n-variable function with an algebraic immunity
dgAIn =)( . LetG  be a function on 4+n  variables a described by 

construction 1. If f  and h  have one of the following properties: 
1.  dhAIfAI nn == ++ )()( 22  
2. 1)()( 22 +== ++ dhAIfAI nn  
3. )()( 22 hAIfAI nn ++ ≠  

Then 3)(1 4 +≤≤− + dGAId n  for case 1, 3)(4 +≤≤ + dGAId n  for case 2 
and 3. Proof: 
 First we prove the upper bound. Letϕ  be a non null function with 
lowest degree such that 0* =ϕg or ( ) 0*1 =⊕ ϕg . Let nxg *βα ⊕=
where βα , are functions on 1−n variable, free from the variable nx . 
According to proposition 2, we get ( ) 1

*
111 HgFgFG ⊕⊕⊕= where 1F  and 

1H are degree 1 and degree 2 polynomials respectively. So, 
( ) ( )( ) ( )( )2111

*
11 **11 ++ ⊕⊕⊕⊕⊕=⊕⊕ nnn xxFxFgFgF βαβα  

( ) ( )211211 **** ++++ ⊕⊕⊕=⊕⊕⊕⊕= nnnnnnn xxxFgxxxFx βββα . 
If 0* =ϕg , then ( ) ( ) =⊕⊕⊕⊕ ++ 211 1*1** nnn xxxHG ϕ  
( )( ) ( ) ( ) =⊕⊕⊕⊕⊕⊕⊕ ++ 2111

*
11 1*1**1 nnn xxxHHgFgF ϕ

( )( ) ( ) ( ) 01*1*** 2111211 =⊕⊕⊕⊕⊕⊕⊕⊕ ++++ nnnnnn xxxHHxxxFg ϕβ . 
If ( ) 0*1 =⊕ ϕg , then ( ) ( ) ( ) 01*1**1 211 =⊕⊕⊕⊕⊕ ++ nnn xxxHG ϕ . 
Hence, 12)(4 ++≤+ dGAIn .  
 Now we prove the lower bound. Let

( )2112121 ,,...,, ++−+ ⊕⊕= nnnn xxxxxgxh , according to proposition 1 case 1, we 
have 1)(1 11 +≤≤− + dhAId n . According to proposition 1 case 3, we have

1)(2 +≤≤ + dfAId n  and 1)(2 +≤≤ + dhAId n .  
 If dhAIfAI nn == ++ )()( 22 . Following proposition 2 of 
(Belmeguenai 2009) case 2 and following proposition 1 case 1 we have

1)(4 −≥+ dGAIn . 
 If 1)()( 22 +== ++ dhAIfAI nn . Following proposition 2 of 
(Belmeguenai 2009) case 2 and following proposition 1 case 1 we have

dGAIn ≥+ )(4 . 
 If )()( 22 hAIfAI nn ++ ≠ . Following proposition 2 of (Belmeguenai 
2009)  case 1 and following proposition 1 case 1 we have dGAIn ≥+ )(4 . 
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 In the following theorem, we present the lower and upper bound on 
algebraic immunity of kG in terms of the algebraic immunity of 0G . 
Theorem 1: Let 0G be the initial function of n  variables and kG the 
constructed function after k -th iteration described by construction 2. Then: 

( ) ( ) ( ) 21 040 ++≤≤− + kGAIGAIGAI nkknn . 
Proof: 
Following proposition 3 we have ( ) ( ) 104 −≥+ GAIGAI nkkn . 
LetΦ  be a non null function with lowest degree d  such that 0*0 =ΦG  or 
( ) 0*1 0 =Φ⊕G . Let nxG *0 Ζ⊕Υ= where ΖΥ, are functions on 1−n
variable, free from the variable nx . According the proposition 2, we get the 
function ( ) kkkk HGFGFG ⊕⊕⊕= *

001  where kF  and kH are degree k  and 
degree 1+k  polynomials respectively. So, 
( ) ( )( ) ( )( )21

*
00 **11 ++ ⊕Ζ⊕Υ⊕Ζ⊕Υ⊕=⊕⊕ nnknkkk xxFxFGFGF  

( ) ( )21021 **** ++++ ⊕⊕Ζ⊕=⊕⊕Ζ⊕Ζ⊕Υ= nnnknnnkn xxxFGxxxFx . 
If 0*0 =ΦG , then ( ) ( ) =⊕⊕⊕⊕Φ ++ 211*1** nnnkk xxxHG  
( )( ) ( ) ( ) =⊕⊕⊕⊕Φ⊕⊕⊕ ++ 21

*
00 1*1**1 nnnkkkk xxxHHGFGF

( )( ) ( ) ( ) 01*1*** 21210 =⊕⊕⊕⊕Φ⊕⊕⊕Ζ⊕ ++++ nnnkknnnk xxxHHxxxFG
. 
If ( ) 0*1 0 =Φ⊕G , then ( ) ( ) ( ) 01*1**1 21 =⊕⊕⊕⊕Φ⊕ ++ nnnkk xxxHG . 
Hence, 2)(4 ++≤+ kdGAI kn .  
Improved Resilient Functions used in Previous Keystream Generators: 
Example 1: Let us consider an  ( )47 22,4,3,8 −  initial function 

( )( )
12434168

58673242434178685850

xxxxxxxx
xxxxxxxxxxxxxxxxxxxG

⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕⊕⊕=

, 

this function is optimized considering order of resiliency, nonlinear, 
algebraic degree. The constructed functions 321 ,, GGG and 4G are 
respectively an ( )711 22,5,6,12 − , ( )1015 22,6,9,16 − , ( )1319 22,7,12,20 −  and 
( )1623 22,8,15,24 − . These function all are optimized considering order of 
resiliency, nonlinear, algebraic degree, i.e. the functions that achieve 
Siegenthaler’s and Sarkar, al.’s bounds. 
Example 2: Four 11=n , we consider an  ( )710 22,4,6,11 −  initial function 0G , 
the function 0G  used in this example is proposed for ACHTERBAHN-80 
(Gammel 2005), this function is optimal, i.e. that achieve Siegenthaler’s and 
Sarkar, al.’s bounds. The functions 1G  is an ( )1014 22,5,9,15 −  function. Next 
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function 2G is an ( )1318 22,6,12,19 −  function. The function 3G is an 
( )1622 22,7,15,23 −  function. At the next step we have 4G is an 
( )1926 22,8,18,27 −  function. All the functions 321 ,, GGG and 4G are achieve 
Siegenthaler’s and Sarkar, al.’s bounds. 
Example 3: Let us start with an initial ( )912 22,4,8,13 −  function 0G  proposed 
for Achterbahn-128/80 (Gammel 2006), this function achieve Siegenthaler’s 
and Sarkar, al.’s bounds. The functions 1G  an ( )1216 22,5,11,17 − . The 
function 2G is an ( )1520 22,6,14,21 − . The function 3G is an ( )1824 22,7,17,25 − . 
The function 4G is an ( )2128 22,8,20,29 − . The functions 321 ,, GGG and 4G  all 
achieve Siegenthaler’s and Sarkar, al.’s bounds. 
 
Conclusion 
 A modified Tarannikov’s construction method is presented. This 
construction can be applied iteratively, therefore permitting to increase the 
cryptographic parameters: algebraic degree, resiliency, nonlinearity and 
algebraic immunity, and to define many more resilient functions where the 
algebraic degree, resiliency and nonlinearity achieving are high. Thus, the 
construction permits to design: from any optimal resilient functions 
achieving Siegenthaler’s bound and Sarkar, al.’s bounds a large class of 
optimal function achieving Siegenthaler’s bound and Sarkar, al.’s bounds.  
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