
European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

40

Interface-Driven Software Requirements Analysis

Rais Aziz Ahmad, Mgr.
Department of Information Technologies

University of Economics, Prague, Czech Republic

doi: 10.19044/esj.2016.v12n30p40 URL:http://dx.doi.org/10.19044/esj.2016.v12n30p40

Abstract
 Software requirements are one of the root causes of failure for IT
software development projects. Reasons for this may be that the
requirements are high-level, many might simply be wishes, or frequently
changed, or they might be unclear, missing, for example, goals, objectives,
strategies, and so on. Another major reason for projects’ failure may also be
the use of improper techniques for software requirements specification.
Currently, most IT software development projects utilise textual techniques
like use cases, user stories, scenarios, and features for software requirements
elicitation, analysis and specification. While IT software development
processes can construct software in different programming languages, the
primary focus here will be those IT projects using object-oriented
programming languages. Object-oriented programming itself has several
characteristics worth noting, such as its popularity, reusability, modularity,
concurrency, abstraction and encapsulation.
Object-oriented analysis and design transforms software requirements
gathered with textual techniques into object-oriented programming. This
transformation can cause complexity in identifying objects, classes and
interfaces, which, in turn, complicates the object-oriented analysis and
design. Because requirements can change over the course of a project and,
likewise, software design can evolve during software construction, the
traceability of software requirements with objects and components can
become difficult. Apart from leading to project complexity, such a process
can impact software quality and, in the worst-case scenario, cause the project
to fail entirely.
The goal of this article is to provide interface-driven techniques that will
reduce ambiguity among software requirements, improve traceability and
simplify software requirements modelling.

Keywords: Object-oriented analysis and design, interface-based analysis

http://dx.doi.org/10.19044/esj.2016.v12n30p40

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

41

Introduction
 The latest research, most notably the Standish report of 2015, shows
that around 50% of IT projects carried out between 2011 and 2015
experienced difficulties in delivering their requirements (features and
functions) on time and under budget, and around 18% of IT projects failed to
meet their targets (Standish, 2015). The Standish Chaos Manifesto (Standish,
2013) specifies that IT projects delivered 74% of their itemised requirements
in 2010, and only 69% in 2012. In addition, it also points out that half the
requirements demanded are never used, and 30% of the requested features
and functions are used only rarely. Requirements elicitation, analysis and
implementation nevertheless remain the most difficult tasks in delivering
successful IT projects. The Standish Chaos Manifesto (Standish, 2013)
concludes that requirements management is the process of identifying,
documenting, communicating, and tracking requirements and their evolution,
and has to be maintained throughout the IT project life cycle. In other words,
software requirements have their own life cycle, which exists parallel to the
project life cycle and the software development life cycle.

The software development life cycle
 In order to analyse the complexity of software requirements
elicitation and analysis, it is necessary to look at these processes from the
perspective of the software development life cycle. This enables us to
understand how other processes depend upon them. The life cycle is a
process that can be continuous or discrete, and can have a start and an end
time. In an IT project, software development life cycles are discrete, because
all activities in the process happen separately and can depend on each other’s
outputs. Therefore, software development life cycle processes can be
organised and structured in different types, such as waterfall, spiral,
incremental, agile, and so on.
 Each process is transient in nature, (it has a definite beginning and
end), and is aimed at creating a unique product, service, or result within the
life cycle process as a whole: initiating, planning, executing, controlling and
monitoring, and closing (PMI, 2013). The software development life cycle
manages these temporary software development processes, including
implementation processes. As defined by ISO/IEC 12207 (2008), these can
be modelled as project sub-processes, as in the figure below:

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

42

Fig. 0.1 Software development life cycle implementation processes (source: author)

 Although the topic of this article is the complexity of software
requirements analysis, it is necessary to include software architecture and
detailed design here because these highlight the requirements and structure
of software. They are therefore important factors when it comes to
differentiating between the processes that clarify and affect our
understanding of software requirements.

Software architecture design
 Software architecture is a combination of the following: a set of
architectural elements, for example, components; the relation between those
elements; and the rationale for choosing them (Babar, 2014, pp.3-4). Babar
also notes that software architecture is a means of achieving quality goals or
meeting non-functional requirements. The software architecture process,
which is high-level, and the detailed design process together constitute the
design processes of the software development life cycle. High-level design
defines the abstract level of functional and logical components based on the
requirements, and identifies their external interfaces. As a result, these
components can, in the detailed design process, be decomposed further into
objects and classes, or software items and units.
 Both levels of design can be executed using different methods. For
high-level design, one example of an applicable approach is the Architecture
Development Method (ADM) from TOGAF (2011), which provides a view
of how software architecture will be used within an enterprise. Similarly,
Multidimensional Management and Development of Information Systems
(MMDIS) (Vorisek, et al., 2008), or Service-Oriented Architecture (SOA,
Ref. Arch., 2011) can be applied to enterprise architecture as well as to

IT project life cycle

Software dev elopment life cycle

Software requirements

Software architecture

Software detailed design

Software construction

Software testing

Software integration

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

43

developing software architecture, as can the “4+1” View Model of Software
Architecture (Kruchten, 1995), Model-Driven Architecture (MDA, 2014),
and so on. The decomposition of high-level design into detailed design can
be done using methods such as structured (functional) design, object-oriented
design, component-based design, aspect-oriented design, data-structured
design, or centred design (SWEBOK, 2014).

Software analysis and detailed design
 Essentially, there are two basic types of method for detailed software
analysis and design: function-oriented and object–oriented (Mall, 2004). All
other design techniques, practices and methods are either an extension of one
of these or a combination of both.
 Function-oriented analysis and design decomposes the high-level
view of the software system into detailed functions, which are then split
further into sub-functions, and so on. The system state is then shared among
all these functions. All the identified functions are grouped into components
and represented in a function decomposition table for better tractability
(Wieringa, 1998). The function-oriented methods are structured analysis
(SA) and structured design (SD). Examples of SA and SD are the Structured
Analysis and Design Technique (SADT), the Yourdon System Method
(YSM), Specification and Description Language (SDL), Jackson System
Development (JSD), and Jackson Structured Programming (JSP) (Wieringa,
1998).
 Object-oriented analysis and design decomposes a software system
into software units, objects, classes, and interfaces. Then, based on these
analysed units, various logical and physical models are constructed using
different notations, such as, for example, the Unified Modelling Language
(Booch, et al., 2007, pp.42).
 To some extent, the relation between analysis and design methods in
programming is given historically. The rest of the time, this relation is
established through their use of similar concepts. For example, the
fundamental concepts in object-oriented analysis (OOA), object-oriented
design (OOD), and object-oriented programming (OOP) are objects, classes,
and interfaces, and the interaction between these three. On the other hand,
function-oriented analysis and design methods, including, for example, the
Structured System Analysis and Design Method (SSADM), separate tasks
(functions) and data, emphasise the software system’s procedural aspects,
and use tools such as data flow diagrams (DFD) and structure charts
(decision tables and decision trees) (UAC, 2016). These procedures, along
with variables, commands, and data abstraction, are the basic concepts of
imperative programming (Watt, 2004). In other words, imperative
programming is programming with a certain state and commands that modify

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

44

that state. Combining these attributes with sub-programs delivers procedural
programming, which can, therefore, be considered a subset of imperative
programming, modularising, as it does, the source code of the latter in the
form of procedures (Kaisler, 2005). In object-oriented programming,
“objects” encapsulates both data and operations (methods) that manipulate
data, but procedural programming separates data from operations
(procedures) (Weisfeld, 2009). The encapsulation of data and operations by
objects can be seen as an improvement upon imperative and procedural
programming.
 Therefore, some analysis and design concepts of function-oriented
methods can be utilised by object-oriented analysis and design thanks to the
former’s simplicity. However, because imperative programming languages
do not have a concept of “object”, it does not make sense to carry out object-
oriented analysis and design, and then construct the software in an
imperative (or procedural) programming language.

Software analysis and the detailed design process
 Booch (2007, pp. 259) describes object-oriented analysis and design
as one process, and explains it as the transformation of the requirements into
a design of the system, which serves as a specification of the implementation
in the selected implementation environment. However, in order to analyse the
complexity connected with object-oriented analysis and design, we need to
understand the difference between object-oriented analysis and object-
oriented design. Khurana (2012) illustrates the object-oriented approach in
Fig. 0.2.

Fig. 0.2 A typical view of the object-oriented approach (source: Mala and Geetha, 2013)

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

45

 The object-oriented analysis process is, according to Khurana (2012),
composed of activities related to objects, such as, for example, object
identification, object structure, object attributes, object association, and
service definition based on the object specified. Consequently, the OOA
process can be illustrated as in Error! Reference source not found.:

Fig. 0.3 Steps in object-oriented analysis (source: (KHURANA, 2012))

 By comparing the activities in Fig. 2 and Fig. 3, we can see that
object-oriented design starts with mapping objects to classes, structuring
classes, and so on. In order to map each object, it is necessary first to analyse
and identify the classes, and then to map the object to a specific candidate
class. This also seems to be an analysis process. Therefore, object-oriented
analysis can be seen to concern the identification of objects and candidate
classes, and their respective attributes, before mapping each to a service
definition.
 Two techniques are usually used here in order to identify objects,
classes, interfaces, and their interactions: the Vocabulary Approach and CRC
Cards (Blaschek, 1994).
 We can see that the difference between object-oriented analysis and
object-oriented design is difficult to determine because both operate with the
same software units. Thus, the complexity lies in determining which level of
software unit detail should be handled by OOA, and which by OOD. In
practice, it may also happen that the structure of classes and the relation
between them change during OOP, which can cause conflicts in
requirements specifications.

The complexity of requirements specification
 Software analysis and design processes can start based on the outputs
of software requirements specification processes. These latter are, according
to (SWEBOK, 2014), composed of the following activities:

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

46

1. Requirements elicitation: this is the process of gathering
requirements. At this point, the requirements are raw, meaning they need to
be specified and detailed; duplicates, conflicts, and inconsistencies must be
cleaned up; and those requirements whose implementation is more expensive
than their value should be removed.
2. Requirements analysis: here, the requirements need to be
classified as either functional or non-functional, and a conceptual model in
the form of, for example, a sequence diagram, a use case diagram, or a state
diagram must be built. Conflicts in the software features are also solved at
this stage, duplicates are removed, the requirements’ consistency with the
overall goals and strategy is assured, and they are prioritised with the help of
a cost-benefit analysis. Further, analysing the requirements at this point in
the software life cycle also means defining the software domain or the
problem domain. In other words, the requirements analysis is not, at this
stage, about object-oriented analysis and design and specifying the logical
and physical software model.
3. Requirements validation: this is the final validation of the
requirements analysis specification with stakeholders.
4. Requirements specification: here, the result of the analysis is
documented as the software requirements specification then used for OOA
and OOD, and for the software’s implementation.
 Software requirements elicitation and analysis requires language and
techniques that both businesspeople and IT specialists understand. As a
result, most projects use the four textual techniques:
1. User story: user stories are meant primarily for communication
with stakeholders, and for planning the release and estimate of work (Wells,
1999). According to Flower (2003), ‘the user story and the use case have a
complex correlation. Stories are usually more fine-grained because they
have to be entirely buildable within one iteration (one or two weeks for XP).
A small use case may correspond entirely to a story; however, a story might
be one or more scenarios in a use case, or one or more steps in a use case. A
story may not even show up in a use case narrative, such as adding a new
asset depreciation method to a pop up list.’
2. Use case: this is a traditional and common technique used for
requirements elicitation and analysis, and to model the software requirements
(Jacobson, Spence, and Bittner, 2011).
3. Scenario: scenarios, or, more precisely, usage scenarios, describe
the steps and events in the interaction of people and the organisation with the
system (Ambler, 2014). The goal of this technique is to migrate from use
cases to sequence diagrams.
4. Feature: features alone are not sufficient for describing or
analysing requirements. They must, therefore, be combined with use cases. A

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

47

feature may be derived from a requirement for supporting a solution, and can
be described with a use case or with an alternative use case scenario (De
Oliveira, 2013).
 Oberg, Probasco, and Ericsson, (2000) defined a few common
problems with requirements management, some of which can be seen to
comply with the research overview given in the Introduction:
1. Tracking changes in requirements and features can be very time-
consuming. Requirements are not always clear to begin with and, as the
business evolves, they can also change and develop, resulting in many
becoming obsolete or unnecessary, or being duplicated due to multiple
stakeholder viewpoints. Thus, using only the textual techniques described
above for requirements specification and object-oriented analysis can cause
problems in tracking changes.
2. As mentioned above, requirements are not always obvious and may
have many sources. The requirements of different stakeholders can be
diverse, and sometimes conflict with each other, or they may be duplicated.
As a result, it can be complicated clearly to define the problem domain.
3. Requirements may not be expressed in clear language and, as a
result, remain ambiguous. This common problem is rooted in the textual
techniques.
4. Requirements have different types and different levels of detail.
 These four common problems, along with the complexity of object-
oriented analysis and design mentioned in the chapter entitled “Software
analysis and the detailed design process”, can lead to the following three
major issues, which can in turn result in IT project complexity and even
failure:
1. Duplicated analysis: we perform the same analysis twice: once as
part of the software requirements specification process, and then again as
part of the object-oriented analysis and design.
2. Object analysis: in object-oriented analysis and design, we have
trouble identifying objects and classes from requirements written using
textual techniques.
3. Traceability: tracking the relation of requirements to components,
objects, and classes is also problematic.

Interface-driven requirements
 The concept of interface-driven requirements analysis is about
analysing the software system functions with interfaces. This means
representing the objects, classes, methods, modules, and components using
interfaces. Consequently, it is necessary to understand the interrelation of
objects, classes, and interfaces.

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

48

Objects, classes and interfaces
 The relation between objects and interfaces, as explained by Blaschek
(1994), is that objects are structures with a hidden state (data) and behaviour
(operation), that have precise interfaces specifying which messages they
accept, and that can communicate with each other by means of messages in
order to perform complex tasks.
 According to Pecinovsky (2013), there are two types of interface: the
first describes what a module, an entity, a method, an object, and a class
know, and how they communicate with each other. The definition of the first
type of interface allows us to conclude that everything has an interface. The
second type of interface is the representation of the first type in a concrete
programming language. For example, an interface in Java is a contract
between a class and the outside world. When a class implements an
interface, it promises to provide the behaviour published by that interface
(Java tutorial, 2015).
 To put it differently, the first type of interface is the specification of
an entity, which can be used for conceptual analysis, and can be known as a
conceptual interface. The second type of interface, depending on the
programming language in question, can be termed a contractual interface.
If a programming language does not support an interface feature, then the
contractual interface will be represented by each specific feature, for
example, a class, an abstract class, and so on.
 Object-oriented programming languages are classified as pure,
hybrid, or object-based. Pure object-oriented programming languages,
including Java, Simula, Smalltalk and Eiffel, support all object-oriented
concepts. Hybrid object-oriented programming languages, such as C++,
Object Pascal and Turbo Pascal, support not only object-oriented concepts
but also procedural programming or functional programming concepts.
Object-based languages, for example, Ada, support only the concepts of data
encapsulation, data hiding, and access mechanisms, automated initialisation
and object clean-up, and operator overloading (Balagurusamy, 2014).
 Classifying object-oriented programming languages is difficult
because of the way they implement and support object-oriented concepts and
features. From the categories available on the website DMOZ (AOL, 2016),
namely pure, class-based, prototype-based, scripting, compiled, garbage-
collected, interpreted, and aspect-oriented, we can see that some
programming languages fit into more than one group. However, the majority
of object-oriented languages are class-based (a class is an object template),
and all the others support different features for creating objects (in Perl, for
example, a class is created with the key word “package” (TP, 2014)).
According to the TIOBE index (2016), the following class-based object-
oriented programming languages, from a total of 100 such languages, cover

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

49

50% of the market: Java, C++, C#, Visual Basic.NET, Delphi/Object Pascal,
Objective-C, Swift, Python, PHP, Perl, and Ruby.
 The basic concept of interface-driven requirements analysis is to use
the first type of interface for analysis, and a modelling language such as the
Unified Modelling Language (UML), which is supported by the Meta Object
Facility (OMG-MOF, 2015), to transform the UML model of interface-
driven software requirements into either the second type of interface or the
specific feature of a programming language. All ten of the most frequently
used object-oriented programming languages support OOP’s class feature,
and some of them OOP’s interface feature.
Interface-driven requirements analysis
 In order to specify and analyse software requirements, it is first
necessary to look at them from different perspectives: functional (what
application software should do), non-functional (how the software should
work), and external interfaces. The last of these includes the information
system (how other business processes and functionalities are automated and
set up in the organisation, and their relation to new business), the user
(human consumer), the hardware, or low-level interface (how the application
software communicates, and how it uses the services provided by the
hardware, the operation system, the application server, and so on), and
communication (which protocols are to be used to interact with the
application software, and the specification of the external systems protocol)
(IEEE Std 830, 1998).
 The core software requirements are functional, while all the other
perspectives aid in understanding, consuming and supporting this core
functionality. As the tool used to help application software meet non-
functional requirements is software architecture, it is necessary to envision
where and how various software building blocks will implement these core
functionalities. Examples of software architecture building blocks are
components, layers, and tiers. Using a combination of these three types of
building block, we can construct different architecture styles, including one
of the most famous and frequently used architecture styles, service-oriented
architecture (SOA).
 SOA is composed of two horizontal layers and four vertical layers.
The horizontal layers are the logical (comprising the Service Component
Layer, the Services Layer, the Business Process Layer, and the Consumer
Layer), and the physical (the Operational Systems Layer). The four vertical
layers are the Governance Layer (covering availability, registries and
repositories), the Integration Layer, the Quality of Service Layer
(administration, monitoring and management), and the Information Layer
(business events) (SOA Ref. Arch., 2011). As the service consumer can be
either human or other application software, this layer describes the user

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

50

interface requirements of application software. Meanwhile, SOA’s service
layer is the core functionality provided by the application software, and is
managed by the business process layer. The business process layer in turn
determines which service is invoked when the application software receives
a request from the consumer. Lastly, SOA’s information layer is the
equivalent of the domain layer in software architecture, because the business
data are represented by domain objects in application software.
 Thus, using SOA layers and software architecture in describing and
analysing software requirements can be illustrated as a UML model in the
following manner:

Fig. 0.1 An example model of interface-driven requirements analysis (source: author)

 The Fig. 4 service layer is modelled in BPMN OMG Standard (OMG
BPMN, 2011) for business process modelling, which can illustrate different
types of activity, for example, user tasks, manual tasks, service tasks, and so
on. The user task activity can be used to identify and analyse user interfaces
in the consumer layer. The service task activity can be used to identify the
software’s core functionality, and can thus be mapped to the service
interface. Similarly, the script task can be used for business rules, and so on.
Every service accepts business information as a message (in the form of a
user request or other software request) that can be represented as a domain
object. As a result, we are equally able to use such business process models

Domain layer

Service layer

Process layer

Consumer layer

Activity1

«screen»
Consumer::Page 1

«screen»
Consumer::Page 2

«service»
Serv ice::Serv ice 1

«domain object»
Interfaces::Domain-Object-2

Activity2

«service»
Serv ice::Serv ice 2

Activity3

«service»
Serv ice::Serv ice 3

«domain object»
Interfaces::DomainObject-1

«flow»

«flow»«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

51

to identify and analyse the application software’s domain model. Using
UML stereotypes, each type of interface can be marked in order better to
transform the conceptual model. Lastly, so as to have small modules and
clear diagrams, a business process can be split into different modules.
 The next step in software requirements analysis might be to
decompose the service layer interfaces in order to identify all the necessary
operations. SOA separates operational interfaces (the service layer) from
informational interfaces (the domain layer), so the service layer interface
represents all the business functionalities that the software is going to
implement. Of course, these core functionalities may be supported by
technical functionalities such as, for example, data manipulation functions,
using data access objects to access the database, and so on. All these
technical functionalities can be identified and grouped into interfaces
according to the interface-driven software requirements. The pages identified
in the consumer layer can be enhanced by adding attributes and by providing
the description to the user-interface designer for graphical visualisation. The
domain objects can be mapped to the data model.
 Most importantly, the core functionality should be concentrated in
one layer, thus improving the application software’s reusability. These
interfaces can physically exist as interfaces, abstract classes, or other
programming language-specific features in application software code that
contains no implementation. Using the object-oriented programming concept
of inheritance, they can then be extended, implemented, and tested.

Conclusion
 The goals of this article have been to reduce ambiguity among
software requirements, minimise the problem of analysis duplication,
improve the traceability of requirements, and simplify software requirements
modelling. It has provided the relation between high-level and low-level
design for the purpose of proving that the former can already be used during
software requirements analysis in order to simplify understanding of the
requirements. It has likewise demonstrated that detailed design uses methods
that increase complexity in the separation of analysis and design activities,
and that traceability is made difficult due to possible changes in software
requirements and software implementation. This problem might be better
solved by working with objects’, classes’, and components’ interfaces,
instead of with classes and components that are meant more for
implementation than for specification and contracts. The model in Fig. 4
illustrates all the characteristics of software requirements, so there is no need
for either a second object-oriented analysis, or a software requirements
analysis using textual techniques. Tools and techniques such as interviews,

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

52

user stories, scenarios, observation, workshops, brainstorming, and so on, are
sufficient to elicit software requirements.
 The advantage of using interfaces with object-oriented concepts and
programming is that the architect, testers, and developers can work and use
features that provide them all with the same perspective. This can improve
both the testability and the traceability of the requirements and software.
 This approach will not limit the software developer in
implementation, and, in the case of functionality re-factorisation, and thus of
interfaces, we can immediately see the change’s side effects. Further, the
software quality assurance team can begin to write test cases and automate
the testing before implementation. Interface-driven software requirements
analysis is a good solution for supporting test-driven development.

References:

1. Ambler, S. W., 2014. Usage Scenarios: An Agile Introduction.
Retrieved from
http://www.agilemodeling.com/artifacts/usageScenario.htm

2. America Online (AOL), 2016. DMOZ - Computers: Programming:
Languages: Object-Oriented. Retrieved from
https://www.dmoz.org/Computers/Programming/Languages/Object-
Oriented/

3. Babar M. A., Brown A. W., Mistrik I., 2014. Agile Software
Architecture. Elsevier Inc. ISBN 978-0-12-407772-0

4. Balagurusamy E, 2008. Object Oriented Programming With C++.
Retrieved from https://books.google.cz/books?isbn=0070669074

5. Blaschek Günther, 1994. Object-Oriented Programming with
Prototypes. Springer-Verlag, Berlin, ISBN: 3-540-56469-1

6. Booch G., et al., 2007. Object-Oriented Analysis and Design with
Applications. Third Edition, Addison-Wesley. ISBN 0-201-89551-X

7. Computer Society IEEE (SWEBOK), 2014. Guide to the Software
Engineering Body of Knowledge. Version 3.0. A Project of the IEEE
Computer Society. New York: Pierre Bourque, Richard E., ISBN-13:
978-0-7695-5166-1

8. Computer Society (IEEE Std 830), 1998. IEEE Recommended
Practice for Software Requirements Specifications. IEEE Std 830-
1998

9. De Oliveira, R. P., et al., 2013. A Feature-Driven Requirements
Engineering Approach for Software Product Lines. DOI
10.1109/SBCARS.2013.11

10. Fowler, M., 2003. UseCasesAndStories. Retrieved from
http://martinfowler.com/bliki/UseCasesAndStories.html

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

53

11. International Organization for Standardization (ISO/IEC 12207),
2008. System and software engineering – Software life cycle
processes.

12. Jacobson I., Spence I., Bittner K., 2011. USE-CASE 2.0: The Guide
to Succeeding with Use Cases. Retrieved from
https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/
use-case_2_0_jan11.pdf

13. Kaisler Stephen H., 2005. Software Paradigms. John Wiley & Sons,
inc, ISBN 0-471-48347-8, pp. 22-23. Retrieved from
https://books.google.cz/books?isbn=0471703575

14. Khurana, R. 2012. Software Engineering (WBUT). 2nd Edition,
VIKAS publishing house PVT LTD. Retrieved from
https://books.google.cz/books?isbn=8125953035 pp. 64

15. Kruchten, P., 1995. Architectural Blueprints—The “4+1” View
Model of Software Architecture. Retrieved from
https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-
architecture.pdf

16. Mall, R., 2004. Fundamentals of Software engineering. Third
Edition, Prentice-Hall of India, ISBN-81-203-3819-7, pp. 162,
Retrieved from https://books.google.cz/books?isbn=8120338197

17. Mala, D J., Geetha S., 2013.Object Oriented Analysis and Design
Using UML. McGraw Hill Education (India) Private Limited,
Retrieved from https://books.google.cz/books?isbn=1259006743 pp.
20

18. Object Management Group (MDA), 2014. Model Driven
Architecture (MDA) MDA Guide rev. 2.0. [Online] OMG Document
ormsc/14-06-01. Available at: http://www.omg.org/cgi-
bin/doc?ormsc/14-06-01.pdf, http://www.omg.org/cgi-
bin/doc?ormsc/10-09-06.pdf

19. Oberg R., Probasco L., and Ericsson M., 2000. Applying
Requirements Management with Use Cases.published: Rational
Software Corporation, Rational Software White Paper, Retrieved
from
https://www.dimap.ufrn.br/~jair/ES/artigos/appreqmanucases.pdf

20. Object Management Group (OMG-MOF), 2015. Meta Object
Facility. Retrieved from http://www.omg.org/spec/MOF/2.5/PDF

21. Object Management Group (OMG BPMN), 2011. Business Process
Model and Notation. Retrieved from
http://www.omg.org/spec/BPMN/2.0/

22. Oracle (Java tutorial), 2015. Object-Oriented Programming
Concepts. Retrieved from
https://docs.oracle.com/javase/tutorial/java/concepts/

European Scientific Journal October 2016 edition vol.12, No.30 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

54

23. Pecinovsky R., 2013: OOP – Learn Object Oriented Thinking and
Programming. Publishing: Eva & Tomas Bruckner, 2013. ISBN
80-904661-8-4.

24. Project Management Institute (PMI), 2013. A Guide to the Project
Management Body of Knowledge (PMBOK® Guide) – Fifth Edition.
Project Management Institute, Inc. ISBN: 978-1-935589-67-9

25. Standish Group, 2015. CHAOS Report 2015 [online]. Retrieved from
http://www.infoq.com/articles/standish-chaos-2015

26. Standish Group, 2013. CHAOS Manifesto 2013. Retrieved from
https://www.versionone.com/assets/img/files/CHAOSManifesto2013.
pdf

27. The Open Group Standard (TOGAF), 2011. The open group
architecture framework. Version 9.1, Document Number: G116.
ISBN: 978-90-8753-679-4

28. The Open Group Standard (SOA Ref. Arch.), 2011. SOA Reference
Architecture. Document Number: C119. ISBN: 1-937218-01-0

29. TIOBE, 2016. TIOBE Index for June 2016. Retrieved from
http://www.tiobe.com/tiobe_index?page=index

30. Tutorialspoint (TP), 2014. Object Oriented Programming in PERL.
Retrieved from http://www.tutorialspoint.com/perl/perl_oo_perl.htm

31. The Open Group Standard (SOA Ref. Arch.), 2011. SOA Reference
Architecture. Document Number: C119. ISBN: 1-937218-01-0

32. Uni Assignment center (UAC, 2016). Overview Of Structured
Systems Analysis Information Technology Essay. Retrieved from
http://www.uniassignment.com/essay-samples/information-
technology/overview-of-structured-systems-analysis-information-
technology-essay.php

33. Vorisek, J., et al., 2008: Principy a modely řízení podnikové
informatiky. Praha:Oeconomica. ISBN 978-80-245-1440-6. pp 118.

34. WATT David A, 2004. programming language design concepts.
John Wiley & Sons Ltd. ISBN 0-470-85320-4, pp. 265

35. WEISFELD Matt, 2009.The Object-Oriented Thought Process. Third
Edition, Addison-Wesley. ISBN 978-0-672-33016-2, pp. 10

36. Wells Don, 1999. User Stories. Retrieved from
http://www.extremeprogramming.org/rules/userstories.html

37. WIERINGA Roel, 1998. Survey of Structured and Object-Oriented
Software Specification Methods and Techniques. Retrieved from
http://www.diku.dk/OLD/undervisning/2002f/datV-
system/structured_methods.pdf

