ADIPONECTIN VERSUS THIAZOLIDINEDIONES AND ANGIOTENSIN RECEPTOR BLOCKERS

S. Afzal
M. A. Sattar
H. A. Rathore
School of Pharmaceutical Sciences, University Sains Malaysia, Malaysia

Abdullah Ijaz Hussain
School of Pharmaceutical Sciences, University Sains Malaysia, Malaysia

Department of Chemistry, Government College University, Faisalabad, Pakistan

Ashfaq Ahmad
School of Pharmaceutical Sciences, University Sains Malaysia, Malaysia

Aqeel Javeed
Department of Pharmacology and Toxicology, UVAS, Lahore, Pakistan

Fiaz-ud-din Ahmad
School of Pharmaceutical Sciences, University Sains Malaysia, Malaysia

Edward J. Johns
Universit College Cork, Ireland, Ireland

Safia Akhtar
School of Pharmaceutical Sciences, University Sains Malaysia, Malaysia

Abstract
Adipose tissue has gained great attention during the last decade. It represents not only a depot for energy stores, but also releases adipocytokines regulating energy disposal and can therefore be considered from therapeutic point of view. Hypoadiponectemia is an independent threat for development of metabolic syndrome. When subjects treated with antidiabetic (Thiazolidinediones) and antihypertensive (angiotensin receptor blocker) agents, the plasma concentration of adiponectin, the only component of adipocytokines, directly proportional to plasma values of these drugs. The prevalence of hypertension and T2DM is mounting with unprecedented degree in both developing and advanced countries, therefore, there is a dire need to find safer and economical therapeutic regimes for the treatment of these ailments, and intensive research is also
underway for this purpose. PPARγ serves as a common link in the actions of ADN, TZDs and ARBs when exerting their effects, and it is responsible for stimulation of adiponectin receptors, thus ultimately enhancing the levels of adiponectin in plasma. This review aims to elucidate the role, link and use of ARBs, ADN and TZDs as a safer and convenient approach for the treatment of these co-morbidities as a unanimous or single remedy from comparative point of view.

Keywords: Adiponectin (ADN), Thiazolidinediones (TZD), Angiotensin receptor blocker (ARB), Peroxisome proliferator–activated receptor (PPAR), Type 2 diabetes mellitus (T2DM)

1.1 Introduction

During the last ten years, adipose tissue has entered into the sphere of cardiology. Adiponectin, an adipocytokine, is involved in regulating different physiological mechanisms in body. Consequently, the idea of considering the adipose tissue only as a metabolic storehouse for energy is outdated. In reality, it should be recognised as a vitally important endocrine organ which produces biologically active compounds, together known as adipokines. The interaction between biological systems and adipose tissue is attained through expression of bioactive mediators, known as adipocytokines. Adiponectin, resistin, leptin, interleukin 6, tumour necrosis factor and the inhibitor of plasmainogen activator-1 constitute the major components of adipocytokines.

Adiponectin is now regarded as not only the secretory factor from adipose tissue, but as an adipokine which has several beneficial effects on body. Adipose complement is a related protein of 30 kDa, with 247-amino acids having four differentiable domains. It was identified through cDNA cloning of the adipocyte mouse cell line 3T3-L1 and was referred to as Acrp30 by Scherer (Scherer et al., 1995), meanwhile in 1996, while using the adipocyte cell line, 3T3-F442A, isolated this protein and named it AdipoQ (Hu, Liang et al. 1996). The other names used for adiponectin are apM1 (Maeda et al., 1996) and GBP28 (Nakano et al., 1996). Thus this protein was identified by different research groups as a protein exclusively and abundantly formed in adipose tissue.

The insulin-sensitizing adipokine, adiponectin is composed of N-terminal collagenous and C-terminal globular domain. It exists in three isoforms, globular, multimeric, and full length (Fantuzzi 2005). It has also been known as a ‘fat burning molecule’, because of its ability to mobilise fatty acids to muscle for their oxidation. This is of enormous concern, as entry of fatty acids into the liver will decrease and therefore total
triglyceride content will also fall, which ultimately lead to an insulin-sensitivity state (Garaulet, et al., 2007).

Plasma concentration of AND ranges from 5 to 30 µg/µl, which makes 0.01% of total plasma protein (Gil-Campos, et al., 2004). It exists as full-length AND or globular domain ADN in plasma (Fruebis, et al., 2001 and Yamauchi, et al., 2001, Kadowaki et al, 2005, Kadowaki, et al., 2006) The most active form of ADN is the high-molecular-weight form, and it is related to insulin sensitivity. Both hexamers and high-molecular-weight oligomers circulate in blood with high concentrations of nearly 10 µg/ml (Waki H et al., 2003), with half-life in plasma up to 2.5 hrs (Hoffstedt, et al., 2004). It is apparent that for these structures to have different actions and properties, and the ratio between high molecular and low molecular weight structures, as compared to their respective concentrations, establish ADN physiological activity (Pajvani et al., 2004). There is good evidence that ADN increases fatty acid oxidation in skeletal muscle and hepatic insulin action, thus decreasing glucose levels, as revealed from previous studies (Berg, et al., 2001 and Tomas, et al., 2002). Production of ADN takes place robustly by differentiated adipocytes, liver cells, and cardiomyocytes (Staiger et al., 2003, Piñeiro, et al., 2005 and Ding et al., 2007), thus regulating glucose and lipid breakdown through increases in fatty acid oxidation and glucose uptake with decrease of hepatic gluconeogenesis (and Yamauchi et al., 2002 and Kadowaki et al., 2005)

Adiponectin has type 1 and type 2 receptors. In 2007, Yamauchi isolated these two related receptors by expression cloning from human skeletal muscle, and they share 67% of the gene sequencing. These receptors are activated by full length and globular ADN, and stimulate enhanced adenosine monophosphate (AMP) kinase, leading to gluconeogenesis, PPAR-alpha ligand activity and β-oxidation with searching for reactive oxygen species (Yamauchi et al., 2007). It is noteworthy that AdipoR1 binds to globular adiponectin, whereas AdipoR2 has affinity for full-length adiponectin (Kharroubi, et al., 2003 and Peake et al., 2005). The expression of AdipoR1 is greater in skeletal muscles, whereas liver is enriched with AdipoR2 (Kadowaki and Ymauchi., 2005) as shown in Fig 1. Among these tissues, AdipoR1 is important for the anti-inflammatory effects of ADN on the walls of blood vessels and the cells lining. Several studies also revealed that ADN acts as a powerful anti-inflammatory adipocytokine (Yokota, et al. 2000, Yamaguchi, et al. 2005 and Thakur, et al., 2006) which also has anti-atherogenic and anti-diabetic properties (Trujillo et al., 2005), whereas the increased expression of AdipoR2 is believed to increase sensitivity of liver cells to ADN and thus augment the anti-diabetic activity of ADN (Sun, et al., 2006). In humans, the probability of acquiring insulin resistance, hyperinsulinaemia with an increased risk for type 2 diabetes is
related to the low serum concentration of adiponectin (Weyer, et al., 2001 and Lindsay, et al., 2002). These receptors are up-regulated in fasting, whereas down regulation takes place following insulin administration (Tsuchida, et al., 2004). In addition, skeletal muscle and adipose tissue levels of AdipoR1 and AdipoR2 were found to be less in congenitally obese LepOb mice and humans where the chances of heart attack are elevated (Ouchi, Kihara et al. 2000). Inukai and colleagues confirmed the inhibitory effect on obesity and found that AdipoR1 expression was suppressed in genetically diabetic obese and obese mice (Inukai, et al., 2005). Plasma adiponectin concentrations are decreased in obese individuals (Hotta et al., 2000, Okamoto, et al., 2002 and Ouchi et al., 2007), in coronary artery disease (Kumada, et al., 2003) and in hypertensive individuals (Iwashima et al., 2004). By contrast, high ADN levels have been found in patients with essential hypertension, chronic and congestive heart failure (Kistorp et al., 2005 and George, et al., 2006). Its levels are positively related to insulin sensitization, β-oxidation, and cardiovascular safety (Kadowaki et al., 2006 and Scherer 2006) whereas hypoadiponectinemia, a risk for hypertension is independent of insulin resistance and diabetes (Chow et al., 2007). Male subjects have less of the HMW form as compared to females and in obese, insulin-resistant subjects as opposed to lean subjects and insulin-sensitive individuals. Human serum has generally the more abundant trimer form as compared to mouse adiponectin and the quantity of HMW form selectively decreases in the circulation when obesity reduces adiponectin concentration (Schraw, et al., 2008)

It is also considered that hypoadiponectemia is an independent threat for development of metabolic syndrome (Renaldi et al.,2009) and Diabetes mellitus (Hara K et al.,2005). In addition, the genomic locus encircling human Acrp30 gene, 3q27, has been recognized as a vulnerable locus for diabetes and metabolic syndrome X (Comuzzie, et al., 2001). Studies in rhesus monkeys demonstrate that Acrp30 levels were inversely related to body weight, fat content and resting levels of insulin, and declined with progression toward the diabetic state (Hotta et al., 2001). Apart from these observations, treatment with ADN is responsible for reducing extent of insulin resistance in lipoatrophic/obese mice (Yamauchi et al., 2001).
1.2 Mode Of Action Of Adiponectin

There are perplexing observations regarding the function and mode of action of ADN, in relation to inflammation and insulin resistance (Garaulet, et al. 2007). In adipose tissue, ADN and TNF-α jointly slow down each other's production (Maeda et al., 2001, 2002, Fasshauer, et al., 2002 and Tomas, et al., 2002) through activation of its specific receptors, AdipoR1 and AdipoR2 (Yamauchi, K, et al. 2003). For the insulin-sensitizing action of ADN, Yamauchi observed that full-length ADN stimulated AMP-activated protein kinase (AMPK) phosphorylation in hepatocytes, whereas globular adiponectin did same in skeletal muscle and liver. The blockade of AMPK activation repressed the effects of globular and full-length ADN, indicating that stimulation of fatty acid consumption and glucose utilization occurred through an antidiabetic hormone known as AND (Berg et al., 2001 and Yamauchi et al., 2002 and). In another study Lodish and colleagues observed that the ADN globular domain improved glucose transport and muscle fat oxidation by using acetyl-CoA carboxylase inhibition and AMPK activation (Tomas et al., 2002). It was also observed that ADN increased energy consumption and fatty-acid combustion (fat burning molecule), through peroxisome proliferator activated receptor (PPARα) activation, which resulted in a decreased triglyceride content in skeletal muscle and liver, and enhanced insulin sensitivity (Yamauchi et al. 2003). It has also been proposed that two pathways are involved in improving insulin resistance stimulated by PPARγ agonists thiazolidinediones (TZDs), rosiglitazone and pioglitazone. TZDs increase ADN levels, thereby improving insulin resistance, decreasing gluconeogenesis in liver while increasing the AMPK activation (dependant pathway). Whereas, independent of ADN, TZDs reduce serum FFA levels, adipocyte size, as well as expression of resistin and TNF-α, which ultimately alters the insulin resistance of skeletal muscle (Yamauchi et al., 2001, Waki
et al., 2003, and Kubota et al., 2006). Adiponectin modulates intracellular signaling pathways and stimulates PPARγ, AMPK and MAPK in skeletal muscle and liver (Kelesidis et al., 2006). Even if ADN activates AMPK, there is also evidence which proves that activation of AMPK through the AMP-mimetic and 5- aminoimidazole-4-carboxamide ribonucleoside (AICAR) enhances ADN gene expression (Lihn et al., 2004) signifying a feedback circle between AMPK and ADN in adipose tissue. Studies using spontaneously hypertensive rats revealed an overexpression of ADN receptors (AdipoR1 and R2) and an impaired downstream signalling of ADN via the AMPK-ACC-CPT1 pathway in liver and skeletal muscle (Rodríguez, et al. 2008). Although adiponectin activates both AMPK and PPAR-α pathways and increase the expression of AdipoR1 expression in coronary artery disease, nonetheless, in spite of increased muscle and circulating adiponectin levels, the PPAR-α/AMPK pathway is deactivated, resulting in decreased AdipoR1 expression for glucose metabolism and fatty acid, which favors a state of adiponectin resistance in coronary artery disease (Berendoncks et al., 2010).

1.3 Peroxisome Proliferator - Activatedreceptor And Adiponectin

Peroxisome proliferator–activated receptor (PPARs), is a subgroup of a superfamily of receptors which are closely related to thyroid hormone (Rios-Vazquez et al., 2006). They are present in adipose tissue, vascular smooth cells, macrophages, vascular endothelial and renal glomerular cells (Tontonoz et al., 1994, Sarafidis P.A et al., 2006 and Sarafidis et al., 2008), skeletal muscle (Norris et al., 2003) and at high level in adipose tissue. So far three PPAR isoforms have been recognized as PPAR-α, PPAR-β (or δ) and PPAR-γ (Abbott et al., 2009). The nuclear hormone receptor peroxisome proliferator–activated receptor-γ (PPARγ) serves as a factor in the regulation of insulin sensitivity. PPARγ functions through activation of its ligands such as prostaglandins and thiazolidinediones/glitazones, as a transcriptional regulator of genes involved in glucose and lipid metabolism, and through this means may ameliorate type 2 diabetes (Picard et al., 2002). The master regulator of adipogenesis, adipose PPARγ, is activated by thiazolidinediones (TZDs) which are used clinically to stimulate the action of insulin (Evans et al., 2004). PPARγ is highly expressed in adipose tissue, and its activation with TZDs changes the fat landscape and adipocyte phenotype besides up-regulating the genes responsible for fatty acid metabolism and triglyceride storage (Nedergaard et al., 2005, Sharma and Staels 2007). PPARγ enhances adipose tissue modification besides fat mass accumulation brought about with an enhanced adipocyte differentiation by genes involved in lipid metabolism. Hydrolysis of triglyceride-rich lipoproteins results in fatty acids which are forwarded towards adipose tissue, hence glucose metabolism in the muscle increases, and it is linked
with an enhanced expression of genes responsible for glucose uptake and insulin signaling in adipose tissue and muscles, which ultimately could influence glucose processing. Therefore, PPARγ seems to care for cells against intracellular triglyceride buildup which is connected with type II diabetes (Picard et al., 2002). The direct effect of PPAR-γ on adiponectin transcription is through PPAR-γ activation (Iwaki et al. 2003). The insulin-sensitising activities of PPARγ agonists causes the decrease of circulating levels of free fatty acids by inhibiting adipocyte lipolysis, apart from regulation of proteins which modulates insulin sensitivity and lipid metabolism (Berger 2002, Desvergne, et al. 2004, Li and Glass 2004).

The increased expression of AdipoR2 leads to an enhanced sensitivity of liver cells to adiponectin and thus improvement in anti-diabetic activity of AND. (Sun, et al. 2006) The use of PPAR-γ agonists results in an improvement in glycaemia in diabetic mice and is linked with an increase in circulating adiponectin levels (Berg, et al. 2001 and Bruce, et al. 2005). PPARγ activation has been shown to stimulate adiponectin expression in adipocytes and to up-regulate ADN plasma levels in animals and humans (Combs et al., 2002 and Fasshauer et al., 2004) Therefore, PPARγ-activating ligands improve adipose tissue function and thus help in averting the development of insulin resistance to diabetes along with endothelial dysfunction in atherosclerosis (Sharma and Staels 2007). Activation of PPARγ promotes the transcription of ADN and AdipoR1 (Chinetti et al., 2004 and Choi et al., 2005), whereas activation of AND receptors have the potential for the treatment of endothelial dysfunction related to diabetes, obesity, and atherosclerosis (Zhang et al., 2009).

1.4 Adiponectin And Thiazolidinediones

“Diabetes mellitus” is defined by high blood glucose level. There is a failure of β-cells to produce insulin togetherness with a resistance of target tissues to the action of insulin. Impaired insulin secretion by the pancreas and insulin resistance in peripheral tissues are the characteristics of Type II diabetes, which has increased dramatically over the last 50 years. There are about 285 million people worldwide in 2010 with this disease (Smyth and Heron., 2006). The increased blood glucose level results in a range of serious complications which arises from the persistently elevated blood glucose levels. The major organ for glucose homeostasis is liver, in which insulin stops gluconeogenesis and stimulate glycogen synthesis whereas in muscle, insulin is responsible for glucose uptake and synthesis of glycogen; and at white adipose tissue (WAT), where glucose uptake is stimulated by insulin (Chao et al., 2000).

Thiazolidinediones (TZDs) are currently being used for the treatment of T2DM (Bowen et al., 1991, Nolan et al., 1994, Saltiel., 2001, Rangwala and Yki-Jarvinen 2004). They are categorized as antidiabetic drugs, with
numerous effects on CVD and lipid metabolism, through increasing levels of adiponectin.

Although adipose tissue only accounts for 10% of the uptake of insulin-stimulated glucose, yet it plays an important role in whole-body glucose homeostasis in adipose tissue, thus helping adipose differentiation besides enhancing small adipocytes which are insulin sensitive (Okuno et al., 1998, Olefsky 2000, Evans 2004 and Rangwala 2004). The understanding that a fatty acid sensor like PPAR-γ serves as an important regulator of glucose metabolism began from the finding that the insulin-sensitizing TZDs are potent agonists for PPAR, which are agonist ligands (Forman et al., 1995 and Lehmann et al., 1995), for the transcription factor and their antidiabetic effects are considered to be mediated through stimulation of certain type of nuclear receptor known as PPARγ (Sarafidis et al., 2008). Different studies have demonstrated that in mice and humans treatment with TZDs causes transcriptional up-regulation accompanied by increase endogenous production and secretion of ADN from adipocytes (Yu et al., 2002 and Maeda et al., 2002). TZDs cause an increase in plasma ADN levels (Pajvani et al., 2004) and high molecular weight ADN is the principal form of ADN upregulated by TZDs (Karpichev et al., 2002). It is also evident that TZDs increase plasma adiponectin levels in obese and diabetic animal models, nondiabetic subjects as well as in patients with type 2 diabetes, by increasing glucose clearance in skeletal muscle by restraining gluconeogenesis in liver, and improving insulin sensitivity (Yamauchi et al., 2001, Combs et al., 2002 and Hirose et al., 2002). However, it is recognised that there are PPAR-γ-independent mechanisms by which TZDs improve insulin sensitivity. Activation of AMPK, which is an adipose-derived factor, ADN, mediates this effect (Kahn et al., 2005), and also imitates the metabolic and vascular actions of insulin (Han, et al., 2007).

Rosiglitazone enhances AMPK activity cell lines of skeletal muscle through an increase in the AMP/ATP ratio (Fryer, et al., 2002). In another study, rosiglitazone treatment re-established α2AMPK activity in skeletal muscle of insulin-resistant obese Zucker rats (Lessard, et al., 2006). Scherer’s group observed that ob/ob mice exhibited a significant improvement in glucose tolerance with rosiglitazone, whereas Adipo⁻/⁻ ob/ob mice remained glucose intolerant (Nawrocki et al., 2006) which suggested that rosiglitazone ameliorated glucose intolerance through ADN-independent and dependent pathways. In another trial performed in 64 type 2 diabetic patients, rosiglitazone treatment for 6 months resulted in twice the increase in plasma ADN level (Yang, et al., 2002) than observed in normal subjects, while comparable results have been reported for pioglitazone (Hirose et al., 2002). This synthetic PPAR-γ agonist, rosiglitazone, is reported to increase the serum ADN level in T2DM. The
activation of PPAR-γ by rosiglitazone increases adipocyte differentiation thereby increasing the number of small adipocytes which promote body weight apart from enhancing adiponectin gene transcription (Okuno et al., 1998). These effects potentially protect diabetic patients from macrovascular problems, and thus enable them to recover their insulin sensitivity as well as glycemic control (Yang et al., 2002). Expression of Acrp30 transgene results in modulation of lipogenesis and hepatic gluconeogenesis with a consequent reduction in expression of two key genes: PEPCK (phosphoenolpyruvate carboxykinase) and SREBP-1c (sterol regulatory element-binding protein) in the liver (Shklyaev et al., 2003). Different studies also confirmed that rosiglitazone treatment decreased plasma concentrations of glucose, NEFA and triglyceride content, although body weight increased in obese Zucker rats (Cai et al., 2000, Finegood et al., 2001 and Reifel et al., 2005), whereas in animal models of metabolic syndrome, rosiglitazone recovered the metabolic profile and increased plasma levels of ADN and its gene expression. (Sharabi, et al., 2007).

The PPARreceptor-γ ligand, pioglitazone, is another oral agent used in the treatment of T2DM. Experimental studies have shown show that pioglitazone has beneficial effects on insulin resistance (Yki et al., 2004), hypertension (Iglarz et al., 2003) and atherosclerosis (Thorp et al., 2007). These beneficial effects of pioglitazone on glucose metabolism in patients with T2DM are associated with an increase in the plasma concentration of AND (Miyazaki, et al., 2004). Therefore, the pioglitazone-induced improvement in insulin resistance is dependent on ADN to improve insulin sensitivity (Kubota, et al., 2006), and this effect is self-regulating for reduction in food intake and body weight increase or activation of PPARγ in adipose tissue. (Zhao et al., 2011)

Troglitazone treatment is also associated with an increase in ADN levels in diabetic, obese and lean non-diabetic subjects (Yu, et al. 2002). In another study, subjects with glucose intolerance used troglitazone for 12 weeks which markedly increased plasma ADN levels in a dose-dependent manner (Maeda, et al., 2001).

These PPAR- agonists stimulate the production of adiponectin, which promotes fatty acid oxidation and insulin sensitivity in muscle and liver. As a result, hepatic glucose production is reduced and muscle glucose use is increased (Guan, et al., 2002). Current evidence suggests close relationship between activation of PPARγ and restoration of insulin sensitivity by reductions in the stimulation of PI3-K Pathway and also increase in ADN. (Tjokroprawiro 2006) Deficits in AND production lessen the capability of TZDs to recover glucose tolerance (Nawrocki et al., 2006) indicating the importance of ADN in the protective effects of TZDs against cardiovascular diseases. There are also different reports which confirm that the activation
of PPARγ or a PPARγ agonist, such as TZD, which induces adipocyte differentiation, improves insulin resistance (Tsuchida et al., 2004, Sharma 2007, Hunag et al., 2009 and DeFronzo 2010). Besides improving glycemic control in subjects with T2DM, several studies support the notion that TZDs have other important actions on metabolic syndrome, such as significant reduction in blood pressure (BP), elevation in high-density lipoprotein–cholesterol, reduction in triglycerides level (Lebovitz et al., 2001 and Stolar et al., 2003), improvement in endothelial function, reduction of intracellular Ca$^{2+}$ content in vascular smooth muscle cells and attenuation of sympathetic overactivity (Sarafidis et al., 2006).

TZDs also have interactions with the renin–angiotensin system (RAAS), particularly, rosiglitazone decreases the production of angiotensins I and II from human subcutaneous adipose tissue (Harte et al., 2005), whereas in other studies TZDs have been observed to downregulate the expression of angiotensin AT1 receptor mRNA and AT1 receptor protein in vascular smooth muscle cells (Takeda et al., 2000 and Sugawara, et al., 2001). Such actions of TZDs could be attributed to reports describing their ability to blunt angiotensin II-induced vascular smooth muscle cells proliferation (Fukuda et al., 2002). Besides TZDs, which are effective exogenous agonists of PPAR-γ (Lehmann, Moore et al. 1995), the AT1 receptor antagonist telmisartan also acts as partial agonist of PPAR-γ and may potentially be useful in the treatment of diabetes and insulin resistance in times to come (Kurtz 2005).

Table 1 shows observations pertaining to their effect as reduction in blood pressure levels in animal studies conducted earlier.

Table 1: BP: Blood pressure, SHR: spontaneously hypertensive rats, TZD: thiazolidinedione.

<table>
<thead>
<tr>
<th>Study</th>
<th>TZD treatment</th>
<th>Animal model</th>
<th>Duration</th>
<th>Effect on BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoshioka et al.1993</td>
<td>Troglitazone</td>
<td>Obese Zucker rats</td>
<td>4 and 8 weeks</td>
<td>↓</td>
</tr>
<tr>
<td>Fujiwara et al. 2000</td>
<td>Troglitazone</td>
<td>Heminephrectomized Wistar fatty rats</td>
<td>24 weeks</td>
<td>↓</td>
</tr>
<tr>
<td>Yoshida et al. 2001</td>
<td>Troglitazone</td>
<td>5/6 nephrectomized SHR</td>
<td>12 weeks</td>
<td>↓</td>
</tr>
<tr>
<td>Khan et al. 2005</td>
<td>Rosiglitazone</td>
<td>Obese Zucker rats</td>
<td>12 weeks</td>
<td>↓</td>
</tr>
<tr>
<td>Buckingham et al. 1998</td>
<td>Rosiglitazone</td>
<td>Obese Zucker rats</td>
<td>4 and 9 months</td>
<td>↓</td>
</tr>
</tbody>
</table>
1.5 Adiponectin And Angiotensin Receptor Blockers

Essential hypertension, the major cause of mortality in developed countries (Ezzati et al., 2002), is linked to additional metabolic irregularities like obesity and dyslipidemia, glucose intolerance and insulin resistance, which are collectively classified as the metabolic syndrome (Eckel et al., 2005). It is considered that hypertension complicated with T2DM results in an increased incidence of CVD. Therefore, treatment of hypertension along with diabetes may be significant in reducing the risk of cardiovascular complications in subjects with T2DM (Hansson, Zanchetti et al., 1998). Metabolic syndrome relates to atherosclerosis and other cardiovascular diseases (Gustafson et al., 2007). The activation of rennin–angiotensin system (RAAS) is a general characteristic in patients with the metabolic syndrome (Prasad et al., 2004).

Angiotensin II apparently reduces adiponectin production (Ran J et al., 2006). However, the molecular mechanisms governing angiotensin II signaling reduction in adiponectin production is still not clear. There are also reports that ACEI and ARBs enhances plasma adiponectin concentration in hypertensive patients (Furuhashi et al., 2003 and Lely et al., 2007), whereas sympathetic activation restrains ADN expression through β adrenergic mechanisms (Delporde et al., 2002, and Imai et al., 2006). One pathway underlying ADN reduction is that via inflammatory cytokines, eg, TNF-α, which causes transcriptional suppression and inhibition of adiponectin secretion (Maeda et al., 2001).

ARBs, are now considered as first line of treatment for hypertensive individuals with T2DM. Apart from their antihypertensive activity, they also have metabolic actions and improve insulin resistance and enhance serum AND levels (Furuhashi et al., 2003 and Kurtz et al., 2006). They play pivotal role in cardiovascular, metabolic abnormalities like hyperlipidemia, through AT1 receptor-mediated signaling (Cooper et al., 2007 and Perkins et al., 2008). These receptor blockers are characterized as a class of orally active and effective antihypertensive drugs in diabetic and hypertensive individuals (Adler 2002). They also act as fractional PPARγ agonists (Drazen et al., 2007).

Adiponectin levels are higher in patients receiving long-term ARB therapy, indicating that ARBs decrease arterial stiffness by increasing serum ADN concentration and is independent of their effect on BP. One possible mechanism is that ARB can cause an increase in adipogenes which results in a larger capacity for ADN production, as in vitro studies have proved that angiotensin II distinctly slow down adipogenic differentiation of human adipocytes through angiotensin AT1 receptor (Sharma et al., 2002). Studies in animals established the function of angiotensin II signaling in diabetes and insulin resistance (Dahlof et al., 2002), whereas Agata and colleagues
observed that long-term blockade of the (RAAS) could be appropriate treatment for averting increased arterial stiffness and lessening chances for cardiovascular complications, and this reduction in arterial stiffness after ARB treatment could be due to an increase in serum ADN concentration (Agata et al., 2004). The evaluation of antihypertensive drugs for their effect on regulation of ADN, ACE inhibitors and ARBs treatment has been shown to enhance ADN levels compared to other classes of antihypertensive drugs. RAAS blockers enhance plasma adiponectin levels to a greater extent than doxazocine, amlodipine and metoprolol regimens (Yilmaz et al., 2007) Enhanced ADN levels recover endothelial function and insulin sensitivity through various mechanisms (Koh et al., 2005). Most common ARBs are not strong PPARγ activators which only occurs when given in high concentrations. There are also findings demonstrating that some AT1 receptor blockers (ARBs) have an agonistic action on nuclear PPARγ receptors (Benson et al., 2004, Schupp et al., 2004, Kurtz., 2006, Iwai, et al., 2007 and Y. Tomono et al., 2008).

Among ARBs, there is clear order of potency. Telmisartan is the most powerful and the only ARB to exhibit an effect at physiologically achievable plasma concentrations. Adiponectin is linked with glucose sensitisation and is modulated by activation of AT1, AT2 receptors and PPARγ agonists which are considered to stimulate adipocyte differentiation, as the breakdown of adipocyte differentiation is associated with T2DM (Kintscher and Unger 2005). In recent times, ARBs (irbesartan, telmisartan) have been shown to be ligands of the PPARγ receptor. Telmisartan also stimulates adiponectin protein expression, whereas the non-PPARγ-activating ARB like eprosartan does not express this effect. The PPARγ antagonist GW9662 significantly blocked irbesartan-induced AND expression (Clasen et al., 2005). Telmisartan, acts as an incomplete agonist of PPARγ and manipulates the expression of PPARγ target genes involved in lipid and carbohydrate metabolism, ultimately lowering insulin, triglyceride and glucose levels in rats on elevated carbohydrate and fat diets (Stephen et al., 2004). Irbesartan and telmisartan act as binding/dissociation discriminatory cofactors with a link between selective gene regulation and ligand-induced conformational changes of PPAR-γ at the molecular level, and thus may activate specific metabolic effects (Berger., 2003, Wang, et al., 2003 and Guan et al., 2005). Furthermore, the stimulatory effect of ARBs on PPARγ has been studied in a cell-free system, signifying the binding of blockers with PPARγ (Erbe, et al., 2006). The influence on the perfection of metabolic profile confirmed by telmisartan and the inverse correlation between ADN concentration and B.P could be partly due to its partial PPARγ agonistic activity (Negro et al., 2006). Analysis of PPARγ protein conformation using protease protection demonstrated that irbesartan
and telmisartan interacted with the receptor, thereby producing conformational change which were different compared to those induced by pioglitazone (Schupp., 2005). In another recently conducted study by Shiota, this group also observed that telmisartan acted through a PPARgamma-independent pathway, but to some extent exerted its effects through a direct action on skeletal muscle AMPK/SIRT1 signalling pathways (Shiota, et al. 2012).

In vivo, irbesartan administration increased the DNA-binding activity of PPARγ in white adipose tissue (WAT) of atherosclerotic mice. It increased adipocytes, and lessened WAT weight and increased mRNA expression of PPARγ in WAT. It can be assumed that a PPARγ agonist induces adipocyte differentiation, thereby, causing adipocytes of smaller size and increasing insulin sensitivity (Tsuchida et al., 2005), whereas treatment with angiotensin II in rats decreased plasma ADN concentration via ATR1 receptor signalling (Ran J et al., 2006). These explanations suggest the possibility that ARBs show partial agonistic activity of PPARγ and through this mechanism could improve adipocyte differentiation. In addition, the ARBs losartan and candesartan enhance adiponectin plasma levels in essential hypertensive individuals (Furuhashi, et al. 2003, Watanabe et al., 2006 and Koh, Quon et al. 2004).

Apart from their role in the CVS, ARBs have been acknowledged as controller of lipid and glucose metabolism in adipose tissue. Clinicians have observed that AT1R antagonism lessen the risk for T2DM as compared to other antihypertensive therapies (Scheen 2004). Humans and rodents studies have shown an improvement in insulin sensitivity when treated with AT1 blockers (Benson et al., 2004, Negro et al., 2006, Aksnes, et al., 2007, Nishimura, et al., 2008 and Rong et al., 2010). Moreover, Ang II is believed to antagonize insulin signaling in liver and skeletal muscles (Olivare et al. 2009). Furthermore Ang II contributes to the pathogenesis of insulin resistance and myocardial remodeling in pioglitazone treated subjects through an ADN dependant mechanism (Li, et al., 2010).

The usefulness of Azilsartan in treatment of the metabolic syndrome, the insulin-sensitizing effect is self-regulating of increase in body weight and decreases in food intake or of the activation of adipose PPARγ in obese Koletsky rats (Zhao, et al. 2011). In another study, Iwai, observed that in normotensive KK-Ay mice azilsartan was more effective as compared to candesartan in reducing plasma concentrations of fatty acids and glucose, enhancing adipose expression of PPAR-γ with its target AND genes, besides decreasing adipose tissue weight and size, without altering B.P or plasma insulin concentrations (Iwai, Chen et al. 2007). Other ARBs like efonidipine, ramipril and candesartan enhance ADN evels and insulin sensitivity in subjects without body mass index change (Koh et al., 2005,
Koh et al., 2006 and Koh, et al. 2007). Adding together ramipril and candesartan have direct effects to enhance insulin-stimulated glucose uptake and promote adipogenesis (Arya et al., 2002) and induce PPAR-γ activity which aides differentiation of adipocytes (Schupp et al., 2004). Agents which block RAAS, candesartan and temocapril, increased ADN levels with associated improvements in insulin sensitivity without affecting adiposity (Furuhashi, et al., 2003). The system, through which these drugs enhance ADN, is improvement in insulin sensitivity and modification in adipocyte differentiation whereas quinapril enhances the expression of ADN in T2DM patients (Hermann et al., 2006), and ramipril prevents the commencement of diabetes (Bosch et al., 2005).

Kidneys secrete renin and mediate the production of angiotensin II from angiotensinogen. Adiponectin production is inhibited by angiotensin II, whereas Angiotensin II receptor blockers exhibit antidiabetic like activity and B.P control via AND which stimulates the production of nitric oxide (NO), and regulates blood pressure (Wang and Scherer 2008). In a recent observation, irbesartan activated PPARγ in WAT of atherosclerotic mice which was associated with an improvement of adipose tissue function in atherosclerosis and adipocyte differentiation (Iwai, et al. 2011). The role of ADN and mechanism of action of TZDs and ARBs through AND in diabetes and hypertension is shown in Fig 2.

Fig 2: Role of adiponectin through ppar gamma in diabetes and hypertension. Mechanism of action of TZDS and ARBs directly and through adiponectin.
1.6 Conclusion And Future Directions

We are living in a world where the prevalence of T2DM and hypertension are increasing at a rapid pace and their alarming increase compels the scientists to make novel and effective remedies for both these diseases. There are reports which are providing us with the latest figures regarding these co-morbidities associated with metabolic syndrome from developed and third world countries. PPAR-γ is a universal pharmacological objective as it plays its significant role as a negotiator for both thiazolidinediones as well as ARBs, particularly in improving insulin sensitivity, thereby offering protection against T2DM and the reduction in blood pressure through an increase in adiponectin level. TZDs (antidiabetic therapeutic agents), whose primary target is PPARγ, require ADN as their mediator for the expression of their desired effects, but there are serious concerns regarding their cardiovascular safety (Drazen JM et al., 2007). Several studies have proven that treatment with antihypertensive drugs like ARBs enhance ADN concentration with PPAR-γ as their mediator and thus exert multiple effects, like B.P control, antidiabetic activity, and cardioprotection. There is no doubt ADN, as a guardian angel, may have many beneficial effects to its credit, but there is another side of the coin that the cost effectiveness of the compound and its administration as therapeutic agent, urges us to find alternate and safe therapeutic strategies. TZDs have their own limitations. Angiotensin receptor blockers (ARBs) only address the issue in an effective manner if the goal/purpose is only to activate PPAR-γ receptors and ultimately increase ADN concentrations in body, from bifunctional treatment point of view. Adiponectin has become an important potential focus for the development of therapeutic compounds, but the size of the molecule and its glycosylation requirement presents difficulty in the synthesis of this hormone. Different corporations have stopped their efforts for secretion and of ADN through adipose tissue (George L Blackburn., 2010). It is also controversial whether ADN bears a risk factor for cardiovascular diseases (CVD). However, there can be further exploration for the presence of ADN in natural sources, or for compounds which have ADN as part of their molecular structure. Further studies on these lines will help us gain a better perceptive of these findings and thus develop novel as well as safer therapeutic compounds.

References:
Prevents Increased Arterial Stiffness in Patients With Essential Hypertension." Circulation Journal 68(12): 1194-1198.

Cai XJ, Lister CA, Buckingham RE et al. (2000). Down-regulation of orexin gene expression by severe obesity in the rats: studies in Zucker fatty and

George L Blackburn., (2010) “From bench to bedside: novel mechanisms and therapeutic advances through the development of selective peroxisome proliferator-activated receptor g modulators” Am J Clin Nutr; 91(suppl):251S–3S. Printed in USA.

Levels and Insulin Sensitivity in Type 2 Diabetic Patients." Journal of Clinical Endocrinology & Metabolism 89(9): 4312-4319.

Sarafidis PA, Lasaridis AN. (2006); Actions of PPAR γ agonists explaining a possible blood pressure lowering effect. Am J Hypertens 19: 646–653

Tjokroprawiro A. (2006)"New approach in the treatment of T2DM and metabolic syndrome (focus on a novel insulin sensitizer, Diabetes and Nutrition Center, Dr. Soetomo Teaching Hospital-Airlangga University, Faculty of Medicine, Surabaya. Acta Med Indones. Jul-Sep;38(3):160-6

Increases Plasma Levels of Adiponectin in Type 2 Diabetic Patients." Diabetes Care 25(2): 376-380