
European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

213

RISK FACTORS IN SOFTWARE DEVELOPMENT
PHASES

Haneen Hijazi, Msc
Hashemite University, Jordan
Shihadeh Alqrainy, PhD

 Hasan Muaidi, PhD
Thair Khdour, PhD

Albalqa Applied University, Jordan

Abstract

Each phase of the Software Development Life Cycle (SDLC) is
vulnerable to different types of risk factors. Identifying and understanding
these risks is a preliminary stage for managing risks successfully. This paper
presents a comprehensive theoretical study of the major risk factors threaten
each of SDLC phases. An exhaustive list of 100 risk factors was produced.
This list reflects the most frequently occurring risk factors that are common
to most software development projects.

Keywords: Risk factor, SDLC, Requirements analysis

1. Introduction

Software development process or the Software development lifecycle
(SDLC) is a structure imposed on the development of a software system,
according to this structure the software development process involves five
different phases: Requirements Analysis and Definition, Design,
Implementation and Unit Testing, Integration and System Testing, and the
Operation and Maintenance phase.

Software development process is a risky process; SDLC is vulnerable
to risks from the start of the project till the final acceptance of the software
product. Each phase of the SDLC is susceptible to different sets of threats
that might hinder the development process from being completed
successfully. In order to manage these risks properly, an adequate
understanding of the software development process’s problems, risks and
their causes are required. Hence, the first step in managing these risks is to
identify them.

Software Risk Identification is the process of identifying the items
that present a threat to the software project success. These items might

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

214

hinder the project from achieving its expected outcomes, what may likely
cause entire project failure. These items are usually called Software Risk
Factors (Bannerman, 2008).

Risk factors are the uncertain conditions and influences that will
affect the cost, duration and quality of the project negatively (Bannerman,
2008), and if ignored or not mitigated well they will present serious threats to
the software project (Dash & Dash, 2010). Risk factors are diversed in
nature. They can be technical, environmental, managerial and organizational
risk factors (Gupta, 2008).

Technical factors lies at the heart of many software failure causes,
they result from the improper application of the software engineering theory
principles and techniques (Dhlamini, Nhamu & Kachepa, 2009), uncertainty
in the task and procedure (Gupta, 2008), and the improper use of the
software/hardware technologies during the system development
(Sommerville, 2006).

Environmental factors are related to the environment where the
software will operate in (Gupta, 2008). Managerial factors are related to
managing people, time budget and other resources. Organizational factors
are related to the organizational environment where the software system is
being developed (Sommerville, 2006).

The paper starts with a brief summary of risk factors related work. A
framework for identifying risks in the different phases of the software
development process is highlighted. A brief description of each phase and
activity in the SDLC also discussed. Finally, the risk factors that threaten
each SDLC activity are described in more details and the conclusion as well.

2. Related Work:

The current literature shows that many researchers have been
attracted to Identify software development risk factors. Some of these works
are listed below:

Boehm’s list (1991) consisted of the top ten primary risk factors in
software projects. His list was the first, prime, leading list of software risk
factors from which other’s lists were built on top of.

(Keil, Cule, Lyytinen & Schmidt, 1998) identified and prioritized
eleven risk factors. The authors found that there is a relation between the
importance of risks and their perceived level of control. A broad category to
identify risks was provided.

(Vallabh & Addison, 2002) reported on risk factors and controls from
the literature. These factors were presented to different project manager to
identify the importance of each risk factor, the frequency of occurrence for
each risk factor and control, and the effectiveness of each control against
each factor.

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

215

(Arshad, Mohamed & Nor, 2007) introduced a research model about
identifying and classifying risk. His work based on an empirical study that
targeted the public sector.

(Shahzad & Iqbal, 2007) identified the most important risk factors in
each phase of the SDLC in order to find the most frequently occurring risks
in the SDLC.

(Shahzad & Safvi, 2008) presented a list of risk factors and another
one of mitigation strategies to a representative set of students, academics,
and professionals in order to assign the correct mitigation strategy to each
specific factor.

As a consequence, the literature is rich in many existing lists of risk
factors but most of these lists are relatively short and general. This might be
due to organizational, technical, and environmental natural changes.
However, none of these researchers can deny that it is impossible to produce
a complete list of software risk factors, since they absolutely realized that
these risk factors change continuously with time and the appearance of new
tools and technologies. Moreover, none of these lists have investigated the
potential risk factors that might arise in the different SDLC phases. Thus,
most of the identified risks in these lists are common to all SDLC phases.

3. Risk Identification Framework:

Risk Identification is a critical step (Kwak & Stoddard, 2004), since
the success of the risk management depends mostly on identifying all
possible risks the project may face during its development (Shahzad, Ullah &
Khan, 2009). The result of the risk identification phase is a software risk
factors list (Gupta, 2008).

This section is organized into five major subsections. Each one
describes each phase in the SDLC with their activities and probable risk
factors. Section 3.1 presents the Requirements analysis and definition phase,
section 3.2 presents the Design phase, section 3.3 presents the
Implementation and Unit Testing Phase, section 3.4 presents the Integration
and System Testing Phase, section 3.5 presents the Operation and
Maintenance Phase. Lastly, a set of risk factors that are common to all SDLC
phases is listed in section 3.6.

3.1 Requirements analysis and definition phase

The requirements analysis and definition phase is the first phase in
the SDLC wherein all the system services, constraints and goals are defined
(Sommerville, 2006). The requirements analysis and definition phase
involves many activities; Feasibility study, requirements elicitation,
requirements analysis, requirements validation and requirements
documentation. The next subsections describe the requirements analysis and

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

216

definition phase activities. The risk factors for each activity are shown in
tables 1-5 respectively.

3.1.1 Feasibility Study Activity

The Feasibility study is a very important activity in the SDLC. In
some large projects it is considered as a separate phase preceding the
requirements analysis and definition phase. It is necessary in order to make a
judgment on whether the software system is possible and worthy to construct
or not (Board for Software Standardization and Control, 1995a). The main
two aspects to be considered in this study are the cost and time, which are the
main causes for project failure. Thus, the feasibility study helps in
identifying the main risk factors that may be faced while developing and
deploying the system, and also in planning for analyzing these risks. Table 1
summarizes the risk factors for the feasibility study activity.

Risk Factor Description

Inadequate estimation of
project time, cost, scope

and other resources.

Project managers may find it difficult to estimate the
required time, cost, scope and other resources needed to
complete the project. This will deadly lead to unrealistic
project schedule, budget, unclear scope and insufficient

resources, which are considered the major project failure
causes.

Unrealistic Schedule

The estimated time for the project as a whole may exceed
the delivery date agreed upon previously. In most of these

cases, project managers add constraints on time and
overload the developers to deliver on time in an unrealistic

manner, what is mostly does not happen.

Unrealistic Budget

The estimated budget mainly depends on the required
time, effort and resources (Shahzad & Iqbal, 2007). The
estimated cost for the project may exceed the available

budget, if this was not mitigated successfully, the project
may be out of fund early in the SDLC, and thus fails.

Unclear Project Scope

To manage project scope (i.e. size, goals and
requirements) is the most important task for the successful

project manager. Project managers, usually, find it
difficult to determine what the project is supposed to do

exactly, this may cause many core functionalities be
missed and other extra ones be taken into consideration, in

both cases the project failure is an expected outcome.

Insufficient resources

Sometimes, the available resources (i.e. people, tools and
technologies) are not enough to complete the project. In
other cases; the system cannot be implemented using the
current available technology where the project involves
the use of new technology. If these alike projects were

posed it may threaten the project from being implemented
successfully, wherein the developers may suffer from the

technology change risks.
Table 1: Risk factors for the feasibility study activity

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

217

3.1.2 Requirements Elicitation Activity
In this activity, the application domain is analyzed, the services that the

system should provide and its performance and constrains are gathered,
reviewed, and articulated with the help of different system stakeholders
(Sommerville, 2006). Table 2 summarizes the risk factors for the
requirements elicitation activity.

Risk Factor Description

Unclear Requirements The requirements are unclear if they are not understandable
by analysts and developers.

Incomplete Requirements

The requirements are incomplete if they are missing some
of the user needs, constraints and other requirements. It

was found that users cannot describe more than 60% of the
requirements at the beginning of the project; hence,
requirements continue to change through the SDLC

(Shahzad et al., 2009).

Inaccurate Requirements
The requirement is inaccurate if it does not reflect the real

user needs (Board for Software Standardization and
Control, 1995a).

Ignoring the Non-
functional requirements

Usually analysts and developers focus on what the system
should do and ignore how the system should be (i.e.

usability, maintainability, scalability, testability, etc.).
Non-functional requirements are essential to project

success as much as the functional requirements (Abdullah
et al., 2010).

Conflicting user
requirements

When the system has different users, their needs from the
system may be not only different but also conflicting

(Sommerville, 2006), thus, this will lead to inconsistency
when analyzing requirements (Huang & Han, 2008).

Unclear Description of the
real environment

In different cases, it is difficult for the analyst to get a clear
description of the real world wherein the software system

will operate (Board for Software Standardization and
Control, 1995a).

Gold Plating

Adding extra functionality to the system that is not
considered in the original scope in order to make the
system better may cause in most cases a threat to the

project as much as, if it was not more than, omitting the in-
scope functionalities (Odzaly, Greer & Sage, 2009).

Table 2: Risk factors for the requirements elicitation activity

3.1.3 Requirements Analysis Activity

This activity is concerned with analyzing, classifying, organizing,
prioritizing and negotiating the stated requirements (Sommerville, 2006).
Table 3 summarizes the risk factors for requirements analysis activity.

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

218

Risk Factor Description

Non-verifiable
Requirements

The requirement is non-verifiable if there is not a finite cost
effective process (i.e. testing, inspection, demonstration or analysis)
with which we can check that the software meets the requirements

(Sommerville, 2006).

Infeasible
Requirements

If there are no sufficient resources available for its implementation,
then the requirement is considered as infeasible. In other words; if
the requirement cannot be implemented within the constraints of

the project, then it is infeasible.
Inconsistent

Requirements
The requirement is inconsistent if it contradicts any other

requirement in the project (Sommerville, 2006).

Non-traceable
Requirements

For documentary and referencing purposes, we have to state the
origin source of each requirement to facilitate the referencing in the

future if needed.

Unrealistic
Requirements

If the requirements are clear, verifiable, accurate, consistent,
complete and feasible then they are realistic to be put in the

requirements document and then implemented (Sommerville,
2006).

Table 3: Risk factors for the requirements analysis activity

3.1.4 Requirements Validation Activity

Validating requirements aims to ensure that the stated requirements
actually define what the users want (Sommerville, 2006). Table 4
summarizes the risk factors for the requirements validation activity.

Risk Factor Description

Misunderstood domain-
specific terminology

Application specialists and developers use domain-specific
terminologies that are different and not understandable by

most end-users, this might lead to misunderstanding
between both parties (Board for Software Standardization

and Control, 1995a).

Mis-expressing user
requirements in natural

language

Natural language is a good, but not the best, way for
expressing requirements, since many users may use

different NLs and different conventions. Besides; many
expressions, terms and needs cannot be expressed this way,

and need a more formal way for expressing and
documenting.

Table 4: Risk factors for the requirements validation activity

3.1.5 Requirements Documentation Activity

Requirements documentation is the process of writing down the
requirements in a document (RD) that represents a mean of communication
between different stakeholders (Sommerville, 2006). Table 5 summarizes the
risk factors for the requirements documentation activity.

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

219

Risk Factor Description

Inconsistent requirements
data and RD

While documenting requirements, it might be found that
there is inconsistency between the actual requirements data
and the corresponding documented ones. This may happen

for several reasons related to the gathering and
documentation techniques.

Non-modifiable
Requirement Document

Sometimes, while documenting the requirements,
structuring the document with maintainability in mind is
not considered, what makes it difficult to modify the data

in the requirement document without rewriting it.
Table 5: Risk factors for the requirements documentation activity

3.2 Design phase

The design is the second phase in the SDLC, in which the overall
system architecture is established (Sommerville, 2006). This phase is the
solution phase wherein all the requirements defined in the requirements
document must be addressed (Board for Software Standardization and
Control, 1995b). In this phase the software system is described in terms of its
major components and relationships. This phase involves several activities:
examining the requirements document (RD), choosing the architectural
design method, choosing the programming language, constructing the
physical model, verifying, specifying, and documenting design activities.
The risk factors for each activity are shown in tables 6-12 respectively.

3.2.1 Examining the Requirements Document (RD) Activity

Examining the requirements document is usually carried out by
developers in order to ensure the understandability of the requirements listed
in the Requirements Document (Board for Software Standardization and
Control, 1995b). Table 6 summarizes the risk factors for examining the
requirements document activity.

Risk Factor Description

RD is not clear for
developers

If developers were not involved in the requirements analysis
and definition phase, then the requirements document may

be not understandable by them. Hence, they will be unable to
start their design on a solid knowledge of the system

requirements, and thus they may develop a design for a
system other than the intended one.

Table 6: Risk factors for examining the requirements document activity

3.2.2 Choosing the Architectural Design Method Activity

The architectural design method is a systematic way of defining the
software components, in other words, it is the method that is used to
decompose the software system into its major components (Board for
Software Standardization and Control, 1995b). Many architectural design
methods exist in the literature (i.e. structured, object oriented, Jackson

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

220

system development and formal methods). Table 7 summarizes the risk
factors for choosing the architectural design method activity.

Risk Factor Description

Improper AD method
choice

There is no standard architectural design method. For any
project, you can choose the most suitable design method
depending on the project’s need. If a wrong choice was

made, then the system implementation will not be
completed successfully and problems in the integration

may arise later. Even if it was implemented and integrated
successfully, the architectural design may not work on the

current machine. Furthermore, the choice of the
architectural design method may affect the choice of the

programming language (Board for Software
Standardization and Control, 1995b). If this was not

considered, then the developers may choose a language
that does not support the architectural design method in

use.
Table 7: Risk factors for the architectural design method activity

3.2.3 Choosing the Programming Language Activity

Choosing the programming language should be made early in the
design phase as soon as the architectural design method is chosen, since it
should support it. Table 8 summarizes the risk factors for choosing the
programming language activity.

Risk Factor Description

Improper choice of the PL

The improper choice of the programming language can
affect the development process in many different aspects.

The wrong choice of programming language may not
support the applied architectural design method (Board for

Software Standardization and Control, 1995b). It may
reduce the system’s maintainability and portability too.

Table 8: Risk factors for choosing the programming language activity

3.2.4 Constructing the Physical Model Activity

The physical model is a simplified description of a hierarchal
organized system, composed of symbols and built with recognized methods
and tools (Board for Software Standardization and Control, 1995b). Table 9
summarizes the risk factors for constructing the physical method activity.

Risk Factor Description

Too much complex system
(Huang & Han, 2008)

If the software system to be developed was too much large
and complex, then the developers well get lost and

confused and do not know from where to start and how to
decompose the system into its main components.

Complicated Design

If the system was too much complex, and the developers
do not have the enough skills and experience to manage
this complexity, then they will create a complicated not

understandable design which will, while being

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

221

implemented, suffer from different difficulties.

Large size components

Large size components, which may be further decomposed
into other components, may also suffer from

implementation difficulties and difficulties in determining
the functionality of a component and consequently in

assigning functions to these components.

Unavailable expertise for
reusability

(Abdullah et al., 2010)

Reusability is not always the right choice, in such cases
wherein the available expertise to maintain old components
in order to reuse them is not available (Board for Software
Standardization and Control, 1995b), it is actually a risk,

because it may hinder the project and delay its progress. In
such cases, developers tend to develop the components

from the scratch, which also may delay the project’s
progress.

Less reusable components
than expected

If an inaccurate estimate about the available reusable
components was made in the analysis phase, then these

components have to be developed from scratch. Thus time
schedule and budget may be under-estimated and the

developers will be surprised that much of the code that was
considered ready and available to reuse has to be re-written

from scratch what will cause project delay and budget
over-run.

Table 9: Risk factors for constructing the physical method activity

3.2.5 Verifying Design Activity

Verifying design aims to make sure that the design of the system
under construction is a correct solution and meets the user requirements.
Table 10 summarizes the risk factors for verifying design activity.

Risk Factor Description

Difficulties in verifying
design to requirements

In order to make sure that the design is a correct solution,
the design must be verified against requirements to ensure

that users’ needs are reflected in the design. This is the case
when the developer found it difficult to check whether the

resulting design meets the users’ requirements.

Many feasible solutions

When verifying design, it might be discovered that many
alternatives to the same design problem may exist. Which
one to choose depends on the system itself and its nature

(Board for Software Standardization and Control, 1995b).

Incorrect Design

When verifying the design, it might be found that the
design does not match some, or even all, of the

requirements. Worse, it might be different design another
than the intended one.

Table 10: Risk factors for verifying design activity

3.2.6 Specifying Design Activity

It is the activity that identifies components, defines the data flow
between them, and states for each component its functions, data input, data
output, and resource utilization (Board for Software Standardization and

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

222

Control, 1995b). Table 11 summarizes the risk factors for specifying design
activity.

Risk Factor Description

Difficulties in allocating
functions to components

If the system was not decomposed correctly and the
components were not defined well, then developers may face

difficulties in assigning functions to each component and
defining its objectives. Moreover, if the requirements in the

requirements documents were not clearly defined, it also may
threaten the allocation activity since the components’

functionalities are derived from the functional requirements in
the requirements document (Board for Software

Standardization and Control, 1995b).

Extensive specification

Extensive specification of modules processing are usually
unimportant in the design stage and should be avoided here in

order to keep the design document smaller as much as
possible.

Omitting data processing
functions

Data processing functions are the operations that the system
component performs on the data (e.g. create, read, update,

delete). The previously defined functional definition helps in
preventing accidentally omitting these functions.

Large amount of tramp
data

When system’s components are organized hierarchal, data
needs to be passed through these components. Sometimes,

this passing data is not used (tramp data); it passes only to be
passed to another component to be used there. If this data was

not managed carefully, it can reduce readability and lead to
confusion.

Table 11: Risk factors for specifying design activity

3.2.7 Documenting Design Activity

In this activity, the main output of the design phase (i.e. design
document DD) is produced. It defines the framework of the solution that
helps leaders to control the project during the implementation and the
remaining (Sommerville, 2006). Table 12 summarizes the risk factors for
documenting design activity.

Risk Factor Description

Incomplete Design
Document

The design document must be detailed enough to allow the
programmers to work independently. If the design

document lacks these important details then the
programmer may not work independently (Board for

Software Standardization and Control, 1995b).

Large Design Document

Although the design document must be detailed enough to
ease the work of programmers, it should avoid extensive

unimportant specification, which cause the design
document to become large and thus non-readable (Board

for Software Standardization and Control, 1995b).

Unclear Design Document
If the components in the design document are not clearly
defined; their inputs, outputs, functions and relationships

were not stated properly. Moreover, if the design

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

223

document was written in an uncommon natural language,
then the design document is unclear and might be non

readable by developers (Board for Software
Standardization and Control, 1995b).

Inconsistent Design
Document

Inconsistency usually results from duplication or
overlapping between components. For example, if more

than one component implements the same functional
requirement, then this will lead to duplication and
redundancy and thus to inconsistency in the design
document (Board for Software Standardization and

Control, 1995b). Also, the same names may be assigned to
different things which might lead to confusion.

Table 12: Risk factors for documenting design activity

3.3 Implementation and Unit Testing Phase

Herein, the actual development of the system starts, where the
programming takes place in order to execute the previously defined design as
a set of programs or program units. This phase incorporates two main
activities; coding and units testing in an iterative manner (Somerville, 2006).
The risk factors for each activity are shown in tables 13-14 respectively.

3.3.1 Coding Activity

Coding is the process of writing design modules in the predefined
programming language; this includes developing the user interfaces. Then
each resultant source code module is tested in the unit testing activity (Board
for Software Standardization and Control, 1995b). Table 13 summarizes the
risk factors for the coding activity.

Risk Factor Description

Non-readable Design
Document

If the design document was large, unclear then it might be
non-readable nor understandable by programmers, and thus

they will be unable to decide what to code.

Programmers cannot work
independently

If the design document was incomplete, then programmers
will not be able to work independently since they have to

make their own decisions to fill the gaps in the design
document, which may affect the programmers working on

other components.

Developing the wrong user
functions and properties

(Boehm,1991)

Implementing functions and properties depends largely on
the design specification details listed in the design

document. If the design document was non-readable,
inconsistent and incomplete then programmers may

develop the wrong user functions and properties.

Developing the wrong user
interface (Boehm,1991)

Designing a good user interface is a very important aspect;
it helps make the system more understandable and usable,
which results in a greater user acceptance. Otherwise, the
project could fail. Developing the correct user interface

requires a good understanding of user needs and detailed
specification in the design.

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

224

PL does not support
architectural design

If the programming language was not selected early in the
design phase with respect to the architectural design

method in use, then the programmer will fall into the trap
where he cannot implement the architectural design using

the previously selected programming language.

Modules are developed by
different programmers

In large projects, development team usually has more than
one programmer. These programmers may work on

different components, and each may follow his own way of
thinking and coding, this will lead to inconsistent, complex
and ambiguous code. Moreover, if they work on the same

component, then different versions for the same component
will result.

Complex, ambiguous,
inconsistent code

Programmers during coding may not follow coding
standards and best practices in programming; this will

result in large, complex, ambiguous and inconsistent code.

Different versions for the
same component

If the same component were developed by different
programmers in the team, then different versions for the

same component may exist, causing problems in
integration.

Developing components
from scratch

If the component is to be built for the first time, or if there
is no available expertise to maintain the old ones in order
to be used in the current system, then the developers tend
to build the component from scratch, this will take time

and effort more than if reusable components with
maintainability expertise already exist.

Large amount of repetitive
code

In some projects types, specific pieces of code have to be
rewritten repeatedly. If this was done manually, it will

consume time, effort and budget.

Inexperienced
Programmers (Shahzad et

al. , 2009)

Programmers have to be experienced in the selected
programming language, else, many syntax errors may

occur, the resultant code might be complex and ambiguous,
wrong functions, properties and user interfaces might be

developed.

Too many syntax errors

If the selected programming language was very sensitive
and has bad-quality compilers and debuggers, then the

programmers may commit syntax errors while writing code
especially if they were inexperienced in this programming

language.

Technology change
(Odzaly et al., 2009)

The project may involve the use of new technologies that
has not been use before. Developers may find it difficult to

deal with these technologies.
Table 13: Risk factors for coding activity

3.3.2 Unit Testing Activity

Herein, each source code module is tested in order to verify that each
module meets its specifications and performs what it is supposed to do
before these modules are integrated and tested as a whole system
(Sommerville, 2006). Table 14 summarizes the risk factors for the unit
testing activity.

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

225

Risk Factor Description

High fault rate in newly
designed components

If the component was developed from scratch, then it is tested
and used for the first time, this means that many of the
undiscovered errors and faults might be revealed here.

Code is not understandable
by reviewers

Doing the unit testing, developers have to review the code
from time to time in order to correct the errors which caused
the component’s faults. If this code was not understandable

they would be unable to do that.

Lack of complete automated
testing tools
(Rajendran)

Yet, testing process is poorly automated. Besides, it has many
repetitive activities. If these activities were not automated, the
testing process will be boring and monotonous. Although unit
testing is a large discipline in SDLC, few tools are available
that support this activity (Rajendran). Most of the currently
available tools support a part of the unit testing activity (i.e.

coverage analysis tools) (Rajendran).

Testing is monotonous,
boring and repetitive

(Rajendran)

As mentioned before, if the testing process were not
automated, it will be monotonous and boring and will

continue to fail to produce results.

Informal and ill-understood
testing process (Rajendran)

Mostly, testing process is practiced informally by adapting
intuitive techniques because testing is considered as a

complementary (not essential activity), and little training is
given to the developers on testing.

Not all faults are discovered
in unit testing

Some errors remain unrevealed during the unit testing; this
might be due to the testing techniques in use and lack of

testing automation.
Poor documentation of test

cases (Rajendran)
Test cases have to be documented automatically while doing

the testing for effective future use for similar cases.

Data needed by modules
other than the under testing

one

In unit testing, each unit is tested individually. The module
being tested might need data from another module or send it
to another module; this is solved by coding drivers and stubs

(Rajendran).

Coding Drivers and Stubs

While testing a module, drivers and stubs are used to simulate
the other required modules needed to complete the test

successfully. Stub is the calling module and the driver is the
called module. More clearly; Stub is the piece of code that
replaces modules that are subordinates to the module being
tested. Driver is the piece of code that accepts test case data

and passes that data to the module that is being tested. Coding
Drivers and stubs may consume time and effort, which are

considered additional since these pieces of code are not
delivered with the final system. Besides, these additional
pieces of code may contain defects that require additional

effort for debugging and correcting.

Poor Regression Testing
(Rajendran)

Regression test in unit testing aims to rerun all the already
successful run affected test cases when a change is made to
an existing code (Rajendran). Although regression testing

saves time and money, it might do the opposite if most or all
of the original test cases were selected and the time is limited.

Table 14: Risk factors for unit testing activity

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

226

3.4 Integration and System Testing Phase
In this phase, the complete software system is produced by

integrating and testing the unit tested modules (input) in an iterative manner.
Then the integrated system is introduced to the system testing (Sommerville,
2006). This phase incorporates three activities: integration, integration
testing, and system testing activity. The risk factors for each activity are
shown in tables 15-17 respectively.

3.4.1 Integration Activity

In this activity, the individual units resulting from coding and unit
testing are combined into a complete working system. Table 15 summarizes
the risk factors for the integration activity.

Risk Factor Description

Difficulties in ordering
components’ integration

Integration should be done incrementally; else, errors that
result from the integration could not be localized easily.
Usually, developers get confused in which component to

integrate first. The wrong ordering of integration may
yields in the presence of bugs and errors, and the inability
to produce the desired functionality. (Board for Software

Standardization and Control, 1995c)

Integrate the wrong
version of components

While developing components, multiple versions for the
same component may exist. If the wrong component was

selected to be integrated, then the resultant system may not
produce the desired functionality, and may not perform as

well as it is expected.

Omissions or oversights

If an important component was omitted during the
integration process, some required system functionalities

will be missed. Moreover, if it was forgotten to run a script
that is required for integration, this may lead to errors and

incorrect results.
Table 15: Risk factors for integration activity

3.4.2 Integration Testing Activity

After integrating each component, a kind of testing known as
Integration Testing is performed in order to evaluate the interactions between
these components and to verify that they interface correctly. Table 16
summarizes the risk factors for the integration testing activity.

Risk Factor Description

A lot of bugs emerged
during the integration

If integration was not done properly, wrong versions were
integrated, and many omissions and oversights occurred,

many error and bugs may appear while testing the
integrated system.

Data Loss across an
interface

While exchanging data between modules through an
interface, the data coming out from a module may not go

the desired module. This might happen due to mismatch in
the number or order of parameters between the calling and

called components.

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

227

Integration may not
produce the desired

functionality

When combining sub-functions, modules and components
this may not produce the desired functionality.

Difficulties in localizing
errors

If the components were not integrated incrementally, it
would be difficult for the developers to localize error, in

other words, it would be difficult to determine exactly the
module where the bug exists.

Difficulties in repairing
errors

After localizing errors in the integrated system, they need
to be fixed. Any change may affect other modules,

consequently, many errors and bugs could appear which
make it more difficult to localize and repair from these

new errors.
Table 16: Risk factors for integration testing activity

3.4.3 System Testing Activity

Herein, the integrated software system is tested to ensure that the
software system meets the software requirements and system (Sommerville,
2006). Table 17 summarizes the risk factors for the system testing activity.

Risk Factor Description

Unqualified testing team

Testing team experience has a significant influence on the
testing process. Unqualified testers may destroy the whole

process, since they might misuse the available tools,
resources and techniques. Also, testing teams often lack
skilled programmers, since testing is considered a trivial

activity and can be performed by anybody else.

Limited testing resources
Time, budget, tools and other testing resources can hinder
the testing process; either in their unavailability or in their

misuse.

Inability to test in the
operational environment

At times, the system cannot be tested in the real
environment for different reasons like the difficulties in
delivery, installation with time and budget contention.

Impossible complete
testing (Coverage

Problem)
(Kaner & Tech, 2003)

To be realistic, testers actually cannot test everything.
Since there are many possible variables, combinations,
sequences, HW/ SW configurations, and many possible

interactions for the user with the system.

Testers rely on process
myths (Kaner & Tech,

2003)

Usually, testers trust the company’s claims about project
requirements, process and resources and depend upon this
while doing their job. They design their tests early in the
SDLC according to the early defined requirements and
specifications. After all, the real needs of the customer

become clearer, while the system is designed and
implemented according to the clear needs and

specifications while the test designs remains according to
the initial specifications. This will cause the testing cannot

cope with requirements changes. Moreover, they may
misallocate resources due to these myths.

Testing cannot cope with
requirements change

In most cases, users’ needs continuously change. Tests are
designed according to the initial description of

requirements and cannot change to cope with requirements

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

228

changes.

Wasting time in Building
testing tools

Testers sometimes distracted from testing in building
testing tools, they waste time in Building testing tools

instead of doing testing, what will negatively affects the
testing process.

The system being tested is
not testable enough

If the implemented requirements were not verifiable and if
quality assurance principles were not applied properly in

the SDLC to choose and implement easy-to-test
components, then the system might be difficult to test.

Table 17: Risk factors for system testing activity

3.5 Operation and Maintenance Phase

This is the final phase in the SDLC and normally the longest phase,
in which the software is delivered to the customer and deployed, tested for
user acceptance and maintained for any faults exist. This phase includes the
following activities: installation, operation, acceptance testing, and
maintenance (Sommerville, 2006). The risk factors for each activity are
shown in tables 18-21 respectively.

3.5.1 Installation Activity

In this activity, the software system is delivered to the customer,
deployed and put into practical use (Sommerville, 2006). Table 18
summarizes the risk factors for the installation activity.

Risk Factor Description

Problems in installation

If the deployers are not experienced enough, do not have
the adequate knowledge of the system nature and how it

works, If the system is complex and distributed and if the
real environment is challenging, it may be difficult to
install the system or it might be installed incorrectly.

The effect on the
environment

When installing the system, it may affect the environment
it works in. Mostly, the user does not accept this. If this has

to happen, it must be insignificant.

Change in environment

When installing the system, deployers might get shocked
for the system cannot be deployed correctly due to change

in environment, especially the hardware advancement
(Shahzad et al., 2009). This change in environment is

inevitable due to the fact that continuous development is
natural especially if it lasts a long time from the system

analysis to delivery and installation.
Table 18: Risk factors for installation activity

3.5.2 Operation Activity

Herein, the software system is operated, and the end-users are trained
on its operation and services. Table 19 summarizes the risk factors for the
operation activity.

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

229

Risk Factor Description

New requirements emerge

While operating the system, end users might find that new
requirements have to be implemented in order to meet the

current actual user needs, business, environmental and
organizational changes.

Difficulties in using the
system

It is common for the end-users to find it difficult to use any
newly installed system. But if this lasts along, it might

threat the acceptability of the system.
Table 19: Risk factors for operation activity

3.5.3 Acceptance Testing Activity

The delivered system is put into acceptance testing from the end-
users to verify that it meets the end-users requirements. Table 20 summarizes
the risk factors for the acceptance testing activity.

Risk Factor Description

User resistance to change
(Huang & Han, 2008)

Recent research shows that end-users have a great impact
on project success and project failure. Naturally, Human

beings reject changes on the way they perform especially if
these changes were imposed externally. This rejection

deadly affect their acceptance to the new system
negatively.

Missing capabilities

Doing the acceptance testing, end-users may find some of
the required needs and capabilities they expected to find in

the newly installed system omitted (Board for Software
Standardization and Control, 1995e).

Too many software faults

If not all faults were discovered and mitigated before
system operation, they might be discovered later. The cost
of discovering and maintaining such faults exceeds it if it

was discovered before.

Testers do not perform
well

End users or user acceptance testers may do their job
poorly due to problems in the operational environment,

unqualified management, lack of tools and testing
resources, and lack of the involvement of different system

stakeholders.

Suspension and
Resumption problems

Testers might find it difficult to decide whether to continue
doing the acceptance testing or suspend when a problem is

discovered (Board for Software Standardization and
Control, 1995e).

Insufficient data handling
When the system is put into real operation, it might be

overloaded with large amounts of users’ data that cannot be
handled due to shortcomings in the system.

Table 20: Risk factors for acceptance testing activity

3.5.4 Maintenance Activity

Any errors, faults, improvements revealed in the acceptance testing
are resolved in the maintenance activities. This may include fixing errors,
improving system implementation, enhancing its services and upgrading the
software (Sommerville, 2006). Software maintenance activity may involve

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

230

repeating previous phases; hence, it is the longest phase (Sommerville,
2006). Table 21 summarizes the risk factors for maintenance activity.

Risk Factor Description

The software engineer
cannot reproduce the

problem

After customers report for a problem, software engineers
have to try to reproduce the problem by asking end users

questions that lead to the causes of the problem. If the
problem was non-producible, or if customer description of

the problem was not detailed enough, then it will be
difficult for the software engineers to point out to the

problem exactly and find solutions.

Problems in
maintainability

The system might be difficult to change by its nature due
to its rigid architecture or due to constraints forced by end-

users or developers (Board for Software Standardization
and Control, 1995e).

Budget Contention

Since this phase is the longest in the SDLC and most of its
activities need to be repeated. Often, the allocated budget

does not account for this. The cost of repeating these
activities may exceed the available budget, causing the
operation and maintenance phase to be cut while the

system is not accepted yet.
Table 21: Risk factors for maintenance activity

3.6 Risk Factors common to all SDLC phases

Some risks factors threaten all the phases of the SDLC, starting from
the initial inspection of the project to the final release. Table 22 summarizes
the risk factors that are common to all SDLC phases.

Risk Factor Description

Continually changing
requirements

(Wallace, Keil & Rai,
2004)

Since requirements cannot be fully described at the start of
the project, it might change continually over the SDLC. If
this factor was not successfully mitigated, time and budget

may overrun, testing may not cope with this continually
changes since test plans are designed early according to the

initial requirements.

Time contention

Time is the major risk factor that threats all SDLC phases,
mainly the implementation and testing phases. Time
contention may force the developers to discard some

functionalities which might be core ones, neglect some
nonfunctional requirements and other design quality issues

and do the testing poorly in order to go in progress and
deliver on time.

Project Funding Loss
(Shahzad et al. , 2009)

Project funding might be interrupted at any phase in the
SDLC due to lack of commitment from the funding

agencies. Once the funding is lost, the project cannot be
completed and it directly goes to fail.

Team Turnover
(Shahzad, A. Al-Mudimigh

& Ullah, 2010)

In most organizations, experienced team member are
looking for better job vacancies and leave their work if any

was found. This factor threats any project in any of its
phases.

Data Loss Project documents can be lost for different reasons; natural

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

231

(Shahzad & Iqbal, 2007) disasters, viruses and intruders, developers run away with
codes, etc.

Miscommunication
(Huang & Han, 2008)

Many troubles may appear if there was miscommunication
between customers, managers and developers. The

developer may not understand the user actual needs, and
the customers may under or overestimate their

expectations.
Table 22: Risk factors common to all SDLC phases

4. Conclusion

In this research, we have made our utmost effort in identifying a
comprehensive list of software risk factors that covers wider range of threats
through the SDLC. This list can serve as a checklist that can guide project
team in identifying probable risk factors and help them in designing
strategies to (mitigate/avoid) them.

References:
Abdullah, T., Mateen, A., Sattar, A., & Mustafa, T. (2010). Risk analysis of
various phases of software development models. European Journal of
Scientific Research, 40(3), 369–376.
Arshad, N., Mohamed, A., & Nor, Z. (2007). Risk factors in software
development projects. Proceedings of the 6th WSEAS International
Conference on Software Engineering, Parallel and Distributed Systems,
pages 51–56, 2007.
Bannerman, P. (2008). Risk and risk management in software projects: A
reassessment. Journal of Systems and Software, 81(12), 2118–2133.
Board for Software Standardization and Control. (1995a). Guide to the user
requirements definition phase. Technical report, ESA.
Board for Software Standardization and Control. (1995b). Guide to the
software architectural design phase. Technical report, ESA.
Board for Software Standardization and Control. (1995c). Guide to the
software detailed design and production phase. Technical report, ESA.
Board for Software Standardization and Control. (1995e). Guide to the
software transfer phase. Technical report, ESA, 1995e.
Boehm, B. (1991). Software risk management principles and practices. IEEE
Software, 8 (1), 32–41.
Dash, D., & Dash, R. (2010). Risk assessment techniques for software
development. European Journal of Scientific Research, 42(4), 629–636.
Dhlamini, J., Nhamu, I. & Kachepa, A. (2009). Intelligent risk management
tools for software development. Proceedings of the 2009 Annual Conference
of the Southern African Computer Lecturers’ Association, 33–40.

European Scientific Journal January 2014 edition vol.10, No.3 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

232

Gupta, D. (2008). Software risk assessment and estimation model.
Proceedings of the International Conference on Computer Science and
Information Technology, pages 963–967.
Huang, S., & Han, W. (2008). Exploring the relationship between software
project duration and risk exposure a cluster analysis. Information and
Management, 45 (3), 175-182.
Kaner, C., & Tech, F. (2003). Fundamental challenges in software testing.
Colloquium Presentation at Butler University.
Keil, M., Cule, P., Lyytinen, K., & Schmidt, R. (1998). A framework for
identifying software project risks. Communications of the ACM, 41(11), 76–
83.
Kwak, Y., & toddard, J. (2004). Project risk management lessons learned
from software development environment. Technovation, 24(11), 915–920.
Odzaly, E., Greer, D., & Sage, P. (2009). Software risk management barriers:
An empirical study. Proceedings of the 2009 3rd International Symposium
on Empirical Software Engineering and Measurement, pages 418–421.
Rajendran, R. White paper on unit testing.
Shahzad, B., Al-Mudimigh, A., & Ullah, Z. (2010). Risk identification and
preemptive scheduling in software development life cycle. Global Journal of
Computer Science and Technology, 10(2), 55–63.
Shahzad, B., & Iqbal, J. (2007). Software risk management prioritization of
frequently occurring risk in software development phases. using relative
impact risk model. 2nd International Conference on Information and
Communication Technology, pages 110–115.
Shahzad, B., & Safvi, S. (2008). Effective risk mitigation: A user
prospective. International Journal of Mathematics and Computers in
Simulation, 2(1), 70–80.
Shahzad, B., Ullah, I., & Khan, N. (2009). Software risk identification and
mitigation in incremental model. Proceedings of the International
Conference on Information and Multimedia Technology, pages 366–370.
Sommerville, I. (Ed.). (2006). Software Engineering. Addison Wesley.
Vallabh, S., & Addison, T. (2002). Controlling software project risks: An
empirical study of methods used by experienced project managers.
Proceedings of SAICSIT, 128–140.
Wallace, L., Keil, M., & Rai, A. (2004) Understanding software project risk:
A cluster analysis. Information & Management, 42(1), 115–125.

