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Abstract 

Each phase of the Software Development Life Cycle (SDLC) is 
vulnerable to different types of risk factors. Identifying and understanding 
these risks is a preliminary stage for managing risks successfully. This paper 
presents a comprehensive theoretical study of the major risk factors threaten 
each of SDLC phases. An exhaustive list of 100 risk factors was produced. 
This list reflects the most frequently occurring risk factors that are common 
to most software development projects. 
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1. Introduction 

Software development process or the Software development lifecycle 
(SDLC) is a structure imposed on the development of a software system, 
according to this structure the software development process involves five 
different phases: Requirements Analysis and Definition, Design, 
Implementation and Unit Testing, Integration and System Testing, and the 
Operation and Maintenance phase.  

Software development process is a risky process; SDLC is vulnerable 
to risks from the start of the project till the final acceptance of the software 
product. Each phase of the SDLC is susceptible to different sets of threats 
that might hinder the development process from being completed 
successfully. In order to manage these risks properly, an adequate 
understanding of the software development process’s problems, risks and 
their causes are required. Hence, the first step in managing these risks is to 
identify them.  

Software Risk Identification is the process of identifying the items 
that present a threat to the software project success. These items might 
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hinder the project from achieving its expected outcomes, what may likely 
cause entire project failure. These items are usually called Software Risk 
Factors (Bannerman, 2008). 

Risk factors are the uncertain conditions and influences that will 
affect the cost, duration and quality of the project negatively (Bannerman, 
2008), and if ignored or not mitigated well they will present serious threats to 
the software project (Dash & Dash, 2010). Risk factors are diversed in 
nature. They can be technical, environmental, managerial and organizational 
risk factors (Gupta, 2008).  

Technical factors lies at the heart of many software failure causes, 
they result from the improper application of the software engineering theory 
principles and techniques (Dhlamini, Nhamu & Kachepa, 2009), uncertainty 
in the task and procedure (Gupta, 2008), and the improper use of the 
software/hardware technologies during the system development 
(Sommerville, 2006).   

Environmental factors are related to the environment where the 
software will operate in (Gupta, 2008). Managerial factors are related to 
managing people, time budget and other resources. Organizational factors 
are related to the organizational environment where the software system is 
being developed (Sommerville, 2006).  

The paper starts with a brief summary of risk factors related work. A 
framework for identifying risks in the different phases of the software 
development process is highlighted. A brief description of each phase and 
activity in the SDLC also discussed. Finally, the risk factors that threaten 
each SDLC activity are described in more details and the conclusion as well.  
 
2. Related Work: 

The current literature shows that many researchers have been 
attracted to Identify software development risk factors. Some of these works 
are listed below: 

Boehm’s list (1991) consisted of the top ten primary risk factors in 
software projects. His list was the first, prime, leading list of software risk 
factors from which other’s lists were built on top of. 

(Keil, Cule, Lyytinen & Schmidt, 1998) identified and prioritized 
eleven risk factors. The authors found that there is a relation between the 
importance of risks and their perceived level of control. A broad category to 
identify risks was provided.  

(Vallabh & Addison, 2002) reported on risk factors and controls from 
the literature. These factors were presented to different project manager to 
identify the importance of each risk factor, the frequency of occurrence for 
each risk factor and control, and the effectiveness of each control against 
each factor. 



European Scientific Journal   January 2014  edition vol.10, No.3  ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

215 
 

(Arshad, Mohamed & Nor, 2007) introduced a research model about 
identifying and classifying risk. His work based on an empirical study that 
targeted the public sector. 

(Shahzad & Iqbal, 2007) identified the most important risk factors in 
each phase of the SDLC in order to find the most frequently occurring risks 
in the SDLC. 

(Shahzad & Safvi, 2008) presented a list of risk factors and another 
one of mitigation strategies to a representative set of students, academics, 
and professionals in order to assign the correct mitigation strategy to each 
specific factor. 

As a consequence, the literature is rich in many existing lists of risk 
factors but most of these lists are relatively short and general. This might be 
due to organizational, technical, and environmental natural changes.  
However, none of these researchers can deny that it is impossible to produce 
a complete list of software risk factors, since they absolutely realized that 
these risk factors change continuously with time and the appearance of new 
tools and technologies. Moreover, none of these lists have investigated the 
potential risk factors that might arise in the different SDLC phases. Thus, 
most of the identified risks in these lists are common to all SDLC phases.  
 
3. Risk Identification Framework: 

Risk Identification is a critical step (Kwak & Stoddard, 2004), since 
the success of the risk management depends mostly on identifying all 
possible risks the project may face during its development (Shahzad, Ullah & 
Khan, 2009). The result of the risk identification phase is a software risk 
factors list (Gupta, 2008).  

This section is organized into five major subsections. Each one 
describes each phase in the SDLC with their activities and probable risk 
factors. Section 3.1 presents the Requirements analysis and definition phase, 
section 3.2 presents the Design phase, section 3.3 presents the 
Implementation and Unit Testing Phase, section 3.4 presents the Integration 
and System Testing Phase, section 3.5 presents the Operation and 
Maintenance Phase. Lastly, a set of risk factors that are common to all SDLC 
phases is listed in section 3.6. 
 
3.1   Requirements analysis and definition phase 

The requirements analysis and definition phase is the first phase in 
the SDLC wherein all the system services, constraints and goals are defined 
(Sommerville, 2006). The requirements analysis and definition phase 
involves many activities; Feasibility study, requirements elicitation, 
requirements analysis, requirements validation and requirements 
documentation. The next subsections describe the requirements analysis and 
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definition phase activities. The risk factors for each activity are shown in 
tables 1-5 respectively.  
 
3.1.1 Feasibility Study Activity 

The Feasibility study is a very important activity in the SDLC. In 
some large projects it is considered as a separate phase preceding the 
requirements analysis and definition phase. It is necessary in order to make a 
judgment on whether the software system is possible and worthy to construct 
or not (Board for Software Standardization and Control, 1995a). The main 
two aspects to be considered in this study are the cost and time, which are the 
main causes for project failure. Thus, the feasibility study helps in 
identifying the main risk factors that may be faced while developing and 
deploying the system, and also in planning for analyzing these risks. Table 1 
summarizes the risk factors for the feasibility study activity. 

Risk Factor Description 

Inadequate estimation of 
project time, cost, scope 

and other resources. 

Project managers may find it difficult to estimate the 
required time, cost, scope and other resources needed to 
complete the project. This will deadly lead to unrealistic 
project schedule, budget, unclear scope and insufficient 

resources, which are considered the major project failure 
causes. 

 
Unrealistic Schedule 

The estimated time for the project as a whole may exceed 
the delivery date agreed upon previously. In most of these 

cases, project managers add constraints on time and 
overload the developers to deliver on time in an unrealistic 

manner, what is mostly does not happen. 

 
Unrealistic Budget 

The estimated budget mainly depends on the required 
time, effort and resources (Shahzad & Iqbal, 2007). The 
estimated cost for the project may exceed the available 

budget, if this was not mitigated successfully, the project 
may be out of fund early in the SDLC, and thus fails. 

 
 

Unclear Project Scope 

To manage project scope (i.e. size, goals and 
requirements) is the most important task for the successful 

project manager. Project managers, usually, find it 
difficult to determine what the project is supposed to do 

exactly, this may cause many core functionalities be 
missed and other extra ones be taken into consideration, in 

both cases the project failure is an expected outcome. 

 
 

Insufficient resources 

Sometimes, the available resources (i.e. people, tools and 
technologies) are not enough to complete the project. In 
other cases; the system cannot be implemented using the 
current available technology where the project involves 
the use of new technology. If these alike projects were 

posed it may threaten the project from being implemented 
successfully, wherein the developers may suffer from the 

technology change risks. 
Table 1: Risk factors for the feasibility study activity 
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3.1.2 Requirements Elicitation Activity 
In this activity, the application domain is analyzed, the services that the 

system should provide and its performance and constrains are gathered, 
reviewed, and articulated with the help of different system stakeholders 
(Sommerville, 2006). Table 2 summarizes the risk factors for the 
requirements elicitation activity. 

Risk Factor Description 

Unclear Requirements The requirements are unclear if they are not understandable 
by analysts and developers. 

Incomplete Requirements 
 

The requirements are incomplete if they are missing some 
of the user needs, constraints and other requirements. It 

was found that users cannot describe more than 60% of the 
requirements at the beginning of the project; hence, 
requirements continue to change through the SDLC 

(Shahzad et al., 2009). 

Inaccurate Requirements 
The requirement is inaccurate if it does not reflect the real 

user needs (Board for Software Standardization and 
Control, 1995a). 

Ignoring the Non-
functional requirements 

Usually analysts and developers focus on what the system 
should do and ignore how the system should be (i.e. 

usability, maintainability, scalability, testability, etc.).  
Non-functional requirements are essential to project 

success as much as the functional requirements (Abdullah 
et al., 2010). 

Conflicting user 
requirements 

When the system has different users, their needs from the 
system may be not only different but also conflicting 

(Sommerville, 2006), thus, this will lead to inconsistency 
when analyzing requirements (Huang & Han, 2008). 

Unclear Description of the 
real environment 

In different cases, it is difficult for the analyst to get a clear 
description of the real world wherein the software system 

will operate (Board for Software Standardization and 
Control, 1995a). 

Gold Plating 

Adding extra functionality to the system that is not 
considered in the original scope in order to make the 
system better may cause in most cases a threat to the 

project as much as, if it was not more than, omitting the in-
scope functionalities (Odzaly, Greer & Sage, 2009). 

Table 2: Risk factors for the requirements elicitation activity 
 
3.1.3 Requirements Analysis Activity 

This activity is concerned with analyzing, classifying, organizing, 
prioritizing and negotiating the stated requirements (Sommerville, 2006). 
Table 3 summarizes the risk factors for requirements analysis activity. 
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Risk Factor Description 

Non-verifiable 
Requirements 

 

The requirement is non-verifiable if there is not a finite cost 
effective process (i.e. testing, inspection, demonstration or analysis) 
with which we can check that the software meets the requirements 

(Sommerville, 2006). 

Infeasible 
Requirements 

 

If there are no sufficient resources available for its implementation, 
then the requirement is considered as infeasible. In other words; if 
the requirement cannot be implemented within the constraints of 

the project, then it is infeasible. 
Inconsistent 

Requirements 
The requirement is inconsistent if it contradicts any other 

requirement in the project (Sommerville, 2006). 

Non-traceable 
Requirements 

For documentary and referencing purposes, we have to state the 
origin source of each requirement to facilitate the referencing in the 

future if needed. 

Unrealistic 
Requirements 

If the requirements are clear, verifiable, accurate, consistent, 
complete and feasible then they are realistic to be put in the 

requirements document and then implemented (Sommerville, 
2006). 

Table 3: Risk factors for the requirements analysis activity 
 
3.1.4 Requirements Validation Activity 

Validating requirements aims to ensure that the stated requirements 
actually define what the users want (Sommerville, 2006). Table 4 
summarizes the risk factors for the requirements validation activity. 

Risk Factor Description 

Misunderstood domain-
specific terminology 

Application specialists and developers use domain-specific 
terminologies that are different and not understandable by 

most end-users, this might lead to misunderstanding 
between both parties (Board for Software Standardization 

and Control, 1995a). 

Mis-expressing user 
requirements in natural 

language 
 

Natural language is a good, but not the best, way for 
expressing requirements, since many users may use 

different NLs and different conventions. Besides; many 
expressions, terms and needs cannot be expressed this way, 

and need a more formal way for expressing and 
documenting. 

Table 4: Risk factors for the requirements validation activity 
 
3.1.5 Requirements Documentation Activity 

Requirements documentation is the process of writing down the 
requirements in a document (RD) that represents a mean of communication 
between different stakeholders (Sommerville, 2006). Table 5 summarizes the 
risk factors for the requirements documentation activity. 
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Risk Factor Description 

Inconsistent requirements 
data and RD 

 

While documenting requirements, it might be found that 
there is inconsistency between the actual requirements data 
and the corresponding documented ones. This may happen 

for several reasons related to the gathering and 
documentation techniques. 

Non-modifiable 
Requirement Document 

Sometimes, while documenting the requirements, 
structuring the document with maintainability in mind is 
not considered, what makes it difficult to modify the data 

in the requirement document without rewriting it. 
Table 5: Risk factors for the requirements documentation activity 

 
3.2   Design phase 

The design is the second phase in the SDLC, in which the overall 
system architecture is established (Sommerville, 2006). This phase is the 
solution phase wherein all the requirements defined in the requirements 
document must be addressed (Board for Software Standardization and 
Control, 1995b). In this phase the software system is described in terms of its 
major components and relationships. This phase involves several activities: 
examining the requirements document (RD), choosing the architectural 
design method, choosing the programming language, constructing the 
physical model, verifying, specifying, and documenting design activities. 
The risk factors for each activity are shown in tables 6-12 respectively.  
 
3.2.1 Examining the Requirements Document (RD) Activity 

Examining the requirements document is usually carried out by 
developers in order to ensure the understandability of the requirements listed 
in the Requirements Document (Board for Software Standardization  and 
Control, 1995b). Table 6 summarizes the risk factors for examining the 
requirements document activity. 

Risk Factor Description 

RD is not clear for 
developers 

If developers were not involved in the requirements analysis 
and definition phase, then the requirements document may 

be not understandable by them. Hence, they will be unable to 
start their design on a solid knowledge of the system 

requirements, and thus they may develop a design for a 
system other than the intended one. 

Table 6: Risk factors for examining the requirements document activity 
 
3.2.2 Choosing the Architectural Design Method Activity 

The architectural design method is a systematic way of defining the 
software components, in other words, it is the method that is used to 
decompose the software system into its major components (Board for 
Software Standardization and Control, 1995b). Many architectural design 
methods exist in the literature (i.e. structured, object oriented, Jackson 
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system development and formal methods). Table 7 summarizes the risk 
factors for choosing the architectural design method activity. 

Risk Factor Description 

Improper AD method 
choice 

 

There is no standard architectural design method. For any 
project, you can choose the most suitable design method 
depending on the project’s need. If a wrong choice was 

made, then the system implementation will not be 
completed successfully and problems in the integration 

may arise later. Even if it was implemented and integrated 
successfully, the architectural design may not work on the 

current machine. Furthermore, the choice of the 
architectural design method may affect the choice of the 

programming language (Board for Software 
Standardization and Control, 1995b). If this was not 

considered, then the developers may choose a language 
that does not support the architectural design method in 

use. 
Table 7: Risk factors for the architectural design method activity 

 
3.2.3 Choosing the Programming Language Activity 

Choosing the programming language should be made early in the 
design phase as soon as the architectural design method is chosen, since it 
should support it. Table 8 summarizes the risk factors for choosing the 
programming language activity. 

Risk Factor Description 

Improper choice of the PL 

The improper choice of the programming language can 
affect the development process in many different aspects. 

The wrong choice of programming language may not 
support the applied architectural design method (Board for 

Software Standardization and Control, 1995b). It may 
reduce the system’s maintainability and portability too. 

Table 8: Risk factors for choosing the programming language activity 
 
3.2.4 Constructing the Physical Model Activity 

The physical model is a simplified description of a hierarchal 
organized system, composed of symbols and built with recognized methods 
and tools (Board for Software Standardization and Control, 1995b). Table 9 
summarizes the risk factors for constructing the physical method activity. 

Risk Factor Description 

Too much complex system 
(Huang & Han, 2008) 

If the software system to be developed was too much large 
and complex, then the developers well get lost and 

confused and do not know from where to start and how to 
decompose the system into its main components. 

Complicated Design 

If the system was too much complex, and the developers 
do not have the enough skills and experience to manage 
this complexity, then they will create a complicated not 

understandable design which will, while being 
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implemented, suffer from different difficulties. 

Large size components 
 

Large size components, which may be further decomposed 
into other components, may also suffer from 

implementation difficulties and difficulties in determining 
the functionality of a component and consequently in 

assigning functions to these components. 

Unavailable expertise for 
reusability 

(Abdullah et al., 2010) 

Reusability is not always the right choice, in such cases 
wherein the available expertise to maintain old components 
in order to reuse them is not available (Board for Software 
Standardization and Control, 1995b), it is actually a risk, 

because it may hinder the project and delay its progress. In 
such cases, developers tend to develop the components 

from the scratch, which also may delay the project’s 
progress. 

Less reusable components 
than expected 

If an inaccurate estimate about the available reusable 
components was made in the analysis phase, then these 

components have to be developed from scratch. Thus time 
schedule and budget may be under-estimated and the 

developers will be surprised that much of the code that was 
considered ready and available to reuse has to be re-written 

from scratch what will cause project delay and budget 
over-run. 

Table 9: Risk factors for constructing the physical method activity 
 
3.2.5 Verifying Design Activity 

Verifying design aims to make sure that the design of the system 
under construction is a correct solution and meets the user requirements. 
Table 10 summarizes the risk factors for verifying design activity. 

Risk Factor Description 

Difficulties in verifying 
design to requirements 

In order to make sure that the design is a correct solution, 
the design must be verified against requirements to ensure 

that users’ needs are reflected in the design. This is the case 
when the developer found it difficult to check whether the 

resulting design meets the users’ requirements. 

Many feasible solutions 

When verifying design, it might be discovered that many 
alternatives to the same design problem may exist. Which 
one to choose depends on the system itself and its nature 

(Board for Software Standardization and Control, 1995b). 

Incorrect Design 

When verifying the design, it might be found that the 
design does not match some, or even all, of the 

requirements. Worse, it might be different design another 
than the intended one. 

Table 10: Risk factors for verifying design activity 
 
3.2.6 Specifying Design Activity 

It is the activity that identifies components, defines the data flow 
between them, and states for each component its functions, data input, data 
output, and resource utilization (Board for Software Standardization and 
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Control, 1995b). Table 11 summarizes the risk factors for specifying design 
activity. 

Risk Factor Description 

Difficulties in allocating 
functions to components 

If the system was not decomposed correctly and the 
components were not defined well, then developers may face 

difficulties in assigning functions to each component and 
defining its objectives. Moreover, if the requirements in the 

requirements documents were not clearly defined, it also may 
threaten the allocation activity since the components’ 

functionalities are derived from the functional requirements in 
the requirements document (Board for Software 

Standardization and Control, 1995b). 

Extensive specification 

Extensive specification of modules processing are usually 
unimportant in the design stage and should be avoided here in 

order to keep the design document smaller as much as 
possible. 

Omitting data processing 
functions 

Data processing functions are the operations that the system 
component performs on the data (e.g. create, read, update, 

delete). The previously defined functional definition helps in 
preventing accidentally omitting these functions. 

Large amount of tramp 
data 

 

When system’s components are organized hierarchal, data 
needs to be passed through these components. Sometimes, 

this passing data is not used (tramp data); it passes only to be 
passed to another component to be used there. If this data was 

not managed carefully, it can reduce readability and lead to 
confusion. 

Table 11: Risk factors for specifying design activity 
 
3.2.7 Documenting Design Activity 

In this activity, the main output of the design phase (i.e. design 
document DD) is produced. It defines the framework of the solution that 
helps leaders to control the project during the implementation and the 
remaining (Sommerville, 2006). Table 12 summarizes the risk factors for 
documenting design activity. 

Risk Factor Description 

Incomplete Design 
Document 

The design document must be detailed enough to allow the 
programmers to work independently. If the design 

document lacks these important details then the 
programmer may not work independently (Board for 

Software Standardization and Control, 1995b). 

Large Design Document 

Although the design document must be detailed enough to 
ease the work of programmers, it should avoid extensive 

unimportant specification, which cause the design 
document to become large and thus non-readable (Board 

for Software Standardization and Control, 1995b). 

Unclear Design Document 
If the components in the design document are not clearly 
defined; their inputs, outputs, functions and relationships 

were not stated properly. Moreover, if the design 
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document was written in an uncommon natural language, 
then the design document is unclear and might be non 

readable by developers (Board for Software 
Standardization and Control, 1995b). 

Inconsistent Design 
Document 

Inconsistency usually results from duplication or 
overlapping between components. For example, if more 

than one component implements the same functional 
requirement, then this will lead to duplication and 
redundancy and thus to inconsistency in the design 
document (Board for Software Standardization and 

Control, 1995b). Also, the same names may be assigned to 
different things which might lead to confusion. 

Table 12: Risk factors for documenting design activity 
 
3.3 Implementation and Unit Testing Phase 

Herein, the actual development of the system starts, where the 
programming takes place in order to execute the previously defined design as 
a set of programs or program units. This phase incorporates two main 
activities; coding and units testing in an iterative manner (Somerville, 2006). 
The risk factors for each activity are shown in tables 13-14 respectively. 
 
3.3.1 Coding Activity 

Coding is the process of writing design modules in the predefined 
programming language; this includes developing the user interfaces. Then 
each resultant source code module is tested in the unit testing activity (Board 
for Software Standardization and Control, 1995b). Table 13 summarizes the 
risk factors for the coding activity. 

Risk Factor Description 

Non-readable Design 
Document 

If the design document was large, unclear then it might be 
non-readable nor understandable by programmers, and thus 

they will be unable to decide what to code. 

Programmers cannot work 
independently 

If the design document was incomplete, then programmers 
will not be able to work independently since they have to 

make their own decisions to fill the gaps in the design 
document, which may affect the programmers working on 

other components. 

Developing the wrong user 
functions and properties 

(Boehm,1991) 

Implementing functions and properties depends largely on 
the design specification details listed in the design 

document. If the design document was non-readable, 
inconsistent and incomplete then programmers may 

develop the wrong user functions and properties. 

Developing the wrong user 
interface (Boehm,1991) 

Designing a good user interface is a very important aspect; 
it helps make the system more understandable and usable, 
which results in a greater user acceptance. Otherwise, the 
project could fail. Developing the correct user interface 

requires a good understanding of user needs and detailed 
specification in the design. 
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PL does not support 
architectural design 

If the programming language was not selected early in the 
design phase with respect to the architectural design 

method in use, then the programmer will fall into the trap 
where he cannot implement the architectural design using 

the previously selected programming language. 

Modules are developed by 
different programmers 

In large projects, development team usually has more than 
one programmer. These programmers may work on 

different components, and each may follow his own way of 
thinking and coding, this will lead to inconsistent, complex 
and ambiguous code. Moreover, if they work on the same 

component, then different versions for the same component 
will result. 

Complex, ambiguous, 
inconsistent code 

Programmers during coding may not follow coding 
standards and best practices in programming; this will 

result in large, complex, ambiguous and inconsistent code. 

Different versions for the 
same component 

If the same component were developed by different 
programmers in the team, then different versions for the 

same component may exist, causing problems in 
integration. 

Developing components 
from scratch 

If the component is to be built for the first time, or if there 
is no available expertise to maintain the old ones in order 
to be used in the current system, then the developers tend 
to build the component from scratch, this will take time 

and effort more than if reusable components with 
maintainability expertise already exist. 

Large amount of repetitive 
code 

In some projects types, specific pieces of code have to be 
rewritten repeatedly. If this was done manually, it will 

consume time, effort and budget. 

Inexperienced 
Programmers (Shahzad et 

al. , 2009) 

Programmers have to be experienced in the selected 
programming language, else, many syntax errors may 

occur, the resultant code might be complex and ambiguous, 
wrong functions, properties and user interfaces might be 

developed. 

Too many syntax errors 

If the selected programming language was very sensitive 
and has bad-quality compilers and debuggers, then the 

programmers may commit syntax errors while writing code 
especially if they were inexperienced in this programming 

language. 

Technology change 
(Odzaly et al., 2009) 

The project may involve the use of new technologies that 
has not been use before. Developers may find it difficult to 

deal with these technologies. 
Table 13: Risk factors for coding activity 

 
3.3.2 Unit Testing Activity 

Herein, each source code module is tested in order to verify that each 
module meets its specifications and performs what it is supposed to do 
before these modules are integrated and tested as a whole system 
(Sommerville, 2006). Table 14 summarizes the risk factors for the unit 
testing activity. 
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Risk Factor Description 

High fault rate in newly 
designed components 

If the component was developed from scratch, then it is tested 
and used for the first time, this means that many of the 
undiscovered errors and faults might be revealed here. 

Code is not understandable 
by reviewers 

Doing the unit testing, developers have to review the code 
from time to time in order to correct the errors which caused 
the component’s faults. If this code was not understandable 

they would be unable to do that. 

Lack of complete automated 
testing tools 
(Rajendran) 

Yet, testing process is poorly automated. Besides, it has many 
repetitive activities. If these activities were not automated, the 
testing process will be boring and monotonous. Although unit 
testing is a large discipline in SDLC, few tools are available 
that support this activity (Rajendran). Most of the currently 
available tools support a part of the unit testing activity (i.e. 

coverage analysis tools) (Rajendran). 

Testing is monotonous, 
boring and repetitive 

(Rajendran) 

As mentioned before, if the testing process were not 
automated, it will be monotonous and boring and will 

continue to fail to produce results. 

Informal and ill-understood 
testing process (Rajendran) 

Mostly, testing process is practiced informally by adapting 
intuitive techniques because testing is considered as a 

complementary (not essential activity), and little training is 
given to the developers on testing. 

Not all faults are discovered 
in unit testing 

Some errors remain unrevealed during the unit testing; this 
might be due to the testing techniques in use and lack of 

testing automation. 
Poor documentation of test 

cases (Rajendran) 
Test cases have to be documented automatically while doing 

the testing for effective future use for similar cases. 

Data needed by modules 
other than the under testing 

one 

In unit testing, each unit is tested individually. The module 
being tested might need data from another module or send it 
to another module; this is solved by coding drivers and stubs 

(Rajendran). 

Coding Drivers and Stubs 

While testing a module, drivers and stubs are used to simulate 
the other required modules needed to complete the test 

successfully. Stub is the calling module and the driver is the 
called module. More clearly; Stub is the piece of code that 
replaces modules that are subordinates to the module being 
tested. Driver is the piece of code that accepts test case data 

and passes that data to the module that is being tested. Coding 
Drivers and stubs may consume time and effort, which are 

considered additional since these pieces of code are not 
delivered with the final system. Besides, these additional 
pieces of code may contain defects that require additional 

effort for debugging and correcting. 

Poor Regression Testing 
(Rajendran) 

Regression test in unit testing aims to rerun all the already 
successful run affected test cases when a change is made to 
an existing code (Rajendran). Although regression testing 

saves time and money, it might do the opposite if most or all 
of the original test cases were selected and the time is limited. 

Table 14: Risk factors for unit testing activity 
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3.4 Integration and System Testing Phase 
In this phase, the complete software system is produced by 

integrating and testing the unit tested modules (input) in an iterative manner. 
Then the integrated system is introduced to the system testing (Sommerville, 
2006). This phase incorporates three activities: integration, integration 
testing, and system testing activity. The risk factors for each activity are 
shown in tables 15-17 respectively. 
 
3.4.1 Integration Activity 

In this activity, the individual units resulting from coding and unit 
testing are combined into a complete working system. Table 15 summarizes 
the risk factors for the integration activity. 

Risk Factor Description 

Difficulties in ordering 
components’ integration 

Integration should be done incrementally; else, errors that 
result from the integration could not be localized easily. 
Usually, developers get confused in which component to 

integrate first. The wrong ordering of integration may 
yields in the presence of bugs and errors, and the inability 
to produce the desired functionality. (Board for Software 

Standardization  and Control, 1995c) 

Integrate the wrong 
version of components 

While developing components, multiple versions for the 
same component may exist. If the wrong component was 

selected to be integrated, then the resultant system may not 
produce the desired functionality, and may not perform as 

well as it is expected. 

Omissions or oversights 

If an important component was omitted during the 
integration process, some required system functionalities 

will be missed. Moreover, if it was forgotten to run a script 
that is required for integration, this may lead to errors and 

incorrect results. 
Table 15: Risk factors for integration activity 

 
3.4.2 Integration Testing Activity 

After integrating each component, a kind of testing known as 
Integration Testing is performed in order to evaluate the interactions between 
these components and to verify that they interface correctly. Table 16 
summarizes the risk factors for the integration testing activity. 

Risk Factor Description 

A lot of bugs emerged 
during the integration 

If integration was not done properly, wrong versions were 
integrated, and many omissions and oversights occurred, 

many error and bugs may appear while testing the 
integrated system. 

Data Loss across an 
interface 

While exchanging data between modules through an 
interface, the data coming out from a module may not go 

the desired module. This might happen due to mismatch in 
the number or order of parameters between the calling and 

called components. 
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Integration may not 
produce the desired 

functionality 

When combining sub-functions, modules and components 
this may not produce the desired functionality. 

Difficulties in localizing 
errors 

If the components were not integrated incrementally, it 
would be difficult for the developers to localize error, in 

other words, it would be difficult to determine exactly the 
module where the bug exists. 

Difficulties in repairing 
errors 

After localizing errors in the integrated system, they need 
to be fixed. Any change may affect other modules, 

consequently, many errors and bugs could appear which 
make it more difficult to localize and repair from these 

new errors. 
Table 16: Risk factors for integration testing activity 

 
3.4.3 System Testing Activity 

Herein, the integrated software system is tested to ensure that the 
software system meets the software requirements and system (Sommerville, 
2006). Table 17 summarizes the risk factors for the system testing activity. 

Risk Factor Description 

Unqualified testing team 

Testing team experience has a significant influence on the 
testing process. Unqualified testers may destroy the whole 

process, since they might misuse the available tools, 
resources and techniques. Also, testing teams often lack 
skilled programmers, since testing is considered a trivial 

activity and can be performed by anybody else. 

Limited testing resources 
Time, budget, tools and other testing resources can hinder 
the testing process; either in their unavailability or in their 

misuse. 

Inability to test in the 
operational environment 

At times, the system cannot be tested in the real 
environment for different reasons like the difficulties in 
delivery, installation with time and budget contention. 

Impossible complete 
testing (Coverage 

Problem) 
(Kaner & Tech, 2003) 

To be realistic, testers actually cannot test everything. 
Since there are many possible variables, combinations, 
sequences, HW/ SW configurations, and many possible 

interactions for the user with the system. 

Testers rely on process 
myths (Kaner & Tech, 

2003) 

Usually, testers trust the company’s claims about project 
requirements, process and resources and depend upon this 
while doing their job. They design their tests early in the 
SDLC according to the early defined requirements and 
specifications. After all, the real needs of the customer 

become clearer, while the system is designed and 
implemented according to the clear needs and 

specifications while the test designs remains according to 
the initial specifications. This will cause the testing cannot 

cope with requirements changes. Moreover, they may 
misallocate resources due to these myths. 

Testing cannot cope with 
requirements change 

In most cases, users’ needs continuously change. Tests are 
designed according to the initial description of 

requirements and cannot change to cope with requirements 
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changes. 

Wasting time in Building 
testing tools 

Testers sometimes distracted from testing in building 
testing tools, they waste time in Building testing tools 

instead of doing testing, what will negatively affects the 
testing process. 

The system being tested is 
not testable enough 

If the implemented requirements were not verifiable and if 
quality assurance principles were not applied properly in 

the SDLC to choose and implement easy-to-test 
components, then the system might be difficult to test. 

Table 17: Risk factors for system testing activity 
 
3.5 Operation and Maintenance Phase 

This is the final phase in the SDLC and normally the longest phase, 
in which the software is delivered to the customer and deployed, tested for 
user acceptance and maintained for any faults exist. This phase includes the 
following activities: installation, operation, acceptance testing, and 
maintenance (Sommerville, 2006). The risk factors for each activity are 
shown in tables 18-21 respectively. 
 
3.5.1 Installation Activity 

In this activity, the software system is delivered to the customer, 
deployed and put into practical use (Sommerville, 2006). Table 18 
summarizes the risk factors for the installation activity. 

Risk Factor Description 

Problems in installation 

If the deployers are not experienced enough, do not have 
the adequate knowledge of the system nature and how it 

works, If the system is complex and distributed and if the 
real environment is challenging, it may be difficult to 
install the system or it might be installed incorrectly. 

The effect on the 
environment 

When installing the system, it may affect the environment 
it works in. Mostly, the user does not accept this. If this has 

to happen, it must be insignificant. 

Change in environment 

When installing the system, deployers might get shocked 
for the system cannot be deployed correctly due to change 

in environment, especially the hardware advancement 
(Shahzad et al., 2009).  This change in environment is 

inevitable due to the fact that continuous development is 
natural especially if it lasts a long time from the system 

analysis to delivery and installation. 
Table 18: Risk factors for installation activity 

 
3.5.2 Operation Activity 

Herein, the software system is operated, and the end-users are trained 
on its operation and services. Table 19 summarizes the risk factors for the 
operation activity. 
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Risk Factor Description 

New requirements emerge 

While operating the system, end users might find that new 
requirements have to be implemented in order to meet the 

current actual user needs, business, environmental and 
organizational changes. 

Difficulties in using the 
system 

It is common for the end-users to find it difficult to use any 
newly installed system. But if this lasts along, it might 

threat the acceptability of the system. 
Table 19: Risk factors for operation activity 

 
3.5.3 Acceptance Testing Activity 

The delivered system is put into acceptance testing from the end-
users to verify that it meets the end-users requirements. Table 20 summarizes 
the risk factors for the acceptance testing activity. 

Risk Factor Description 

User resistance to change 
(Huang & Han, 2008) 

Recent research shows that end-users have a great impact 
on project success and project failure. Naturally, Human 

beings reject changes on the way they perform especially if 
these changes were imposed externally. This rejection 

deadly affect their acceptance to the new system 
negatively. 

Missing capabilities 

Doing the acceptance testing, end-users may find some of 
the required needs and capabilities they expected to find in 

the newly installed system omitted (Board for Software 
Standardization and Control, 1995e). 

Too many software faults 

If not all faults were discovered and mitigated before 
system operation, they might be discovered later. The cost 
of discovering and maintaining such faults exceeds it if it 

was discovered before. 

Testers do not perform 
well 

End users or user acceptance testers may do their job 
poorly due to problems in the operational environment, 

unqualified management, lack of tools and testing 
resources, and lack of the involvement of different system 

stakeholders. 

Suspension and 
Resumption problems 

Testers might find it difficult to decide whether to continue 
doing the acceptance testing or suspend when a problem is 

discovered (Board for Software Standardization and 
Control, 1995e). 

Insufficient data handling 
When the system is put into real operation, it might be 

overloaded with large amounts of users’ data that cannot be 
handled due to shortcomings in the system. 

Table 20: Risk factors for acceptance testing activity 
 
3.5.4 Maintenance Activity 

Any errors, faults, improvements revealed in the acceptance testing 
are resolved in the maintenance activities. This may include fixing errors, 
improving system implementation, enhancing its services and upgrading the 
software (Sommerville, 2006). Software maintenance activity may involve 
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repeating previous phases; hence, it is the longest phase (Sommerville, 
2006). Table 21 summarizes the risk factors for maintenance activity. 

Risk Factor Description 

The software engineer 
cannot reproduce the 

problem 

After customers report for a problem, software engineers 
have to try to reproduce the problem by asking end users 

questions that lead to the causes of the problem. If the 
problem was non-producible, or if customer description of 

the problem was not detailed enough, then it will be 
difficult for the software engineers to point out to the 

problem exactly and find solutions. 

Problems in 
maintainability 

The system might be difficult to change by its nature due 
to its rigid architecture or due to constraints forced by end-

users or developers (Board for Software Standardization 
and Control, 1995e). 

Budget Contention 

Since this phase is the longest in the SDLC and most of its 
activities need to be repeated. Often, the allocated budget 

does not account for this. The cost of repeating these 
activities may exceed the available budget, causing the 
operation and maintenance phase to be cut while the 

system is not accepted yet. 
Table 21: Risk factors for maintenance activity 

 
3.6 Risk Factors common to all SDLC phases 

Some risks factors threaten all the phases of the SDLC, starting from 
the initial inspection of the project to the final release. Table 22 summarizes 
the risk factors that are common to all SDLC phases. 

Risk Factor Description 

Continually changing 
requirements 

(Wallace, Keil & Rai, 
2004) 

Since requirements cannot be fully described at the start of 
the project, it might change continually over the SDLC. If 
this factor was not successfully mitigated, time and budget 

may overrun, testing may not cope with this continually 
changes since test plans are designed early according to the 

initial requirements. 

Time contention 

Time is the major risk factor that threats all SDLC phases, 
mainly the implementation and testing phases. Time 
contention may force the developers to discard some 

functionalities which might be core ones, neglect some 
nonfunctional requirements and other design quality issues 

and do the testing poorly in order to go in progress and 
deliver on time. 

Project Funding Loss 
(Shahzad et al. , 2009) 

Project funding might be interrupted at any phase in the 
SDLC due to lack of commitment from the funding 

agencies. Once the funding is lost, the project cannot be 
completed and it directly goes to fail. 

Team Turnover 
(Shahzad, A. Al-Mudimigh 

& Ullah, 2010) 

In most organizations, experienced team member are 
looking for better job vacancies and leave their work if any 

was found. This factor threats any project in any of its 
phases. 

Data Loss Project documents can be lost for different reasons; natural 
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(Shahzad & Iqbal, 2007) disasters, viruses and intruders, developers run away with 
codes, etc. 

Miscommunication 
(Huang & Han, 2008) 

Many troubles may appear if there was miscommunication 
between customers, managers and developers. The 

developer may not understand the user actual needs, and 
the customers may under or overestimate their 

expectations. 
Table 22: Risk factors common to all SDLC phases 

 
4. Conclusion 

In this research, we have made our utmost effort in identifying a 
comprehensive list of software risk factors that covers wider range of threats 
through the SDLC. This list can serve as a checklist that can guide project 
team in identifying probable risk factors and help them in designing 
strategies to (mitigate/avoid) them. 
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