
European Scientific Journal   July 2013  edition vol.9, No.20  ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

176 

PRINCIPAL COMPONENTS AND THE MAXIMUM 
LIKELIHOOD METHODS AS TOOLS TO 

ANALYZE LARGE DATA WITH A 
PSYCHOLOGICAL TESTING EXAMPLE 

 
 
 

Markela Muca 
Llukan Puka 

Klodiana Bani 
Department of Mathematics, Faculty of Natural Sciences,  

University of Tirana, Albania 
Edmira Shahu 

Department of Economy and Agrarian Policy,  
Faculty of Economy and Agribusiness, Agricultural University of Tirana. 

 
 

Abstract 
 Basing on the study of correlations between large numbers of 
quantitative variables, the method factor analysis (FA) aims at finding 
structural anomalies of a communality composed of p-variables and a large 
number of data (large sample size). It reduces the number of original 
(observed) variables by calculating a smaller number of new variables, 
which are called factors (Hair, et al., 2010). This paper overviews the factor 
analysis and their application. Here, the method of principal components 
analysis (PCA) to calculate factors with Varimax rotation is applied. The 
method of maximum likelihood with Quartimax rotation is used for 
comparison purposes involving the statistic package SPSS. The results 
clearly report the usefulness of multivariate statistical analysis (factor 
analysis). The application is done by a set of data from psychological testing 
(Revelle, 2010).  

 
Keywords: Factorial analysis (FA), Principal components analysis (PCA), 
Maximum likelihood methods, orthogonal rotation 
 
1. Introduction  

Factor analysis is a class of multivariate statistical methods whose 
primary purpose is data reduction and summarization. It addresses the 
problem of analyzing the interrelationship among a large number of variables 
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and then explaining these variables in terms of their common, underlying 
factors (Hair et al., 1979).   

This method is a summary to the principal component (PCA) method, 
since the results and the interpretations of methods are similar, but the 
mathematical models are different. The FA method relates to the correlations 
between a large numbers of quantitative variables. It reduces the number of 
primary variables by calculating a smaller number of new variables, which 
are called factors. This reduction is achieved by grouping variables into 
factors by which means each variable within each factor is closely correlated 
and variables which belong to different factors are less correlated (Hair et al., 
2010).  

In the area of factors calculation, the principal components analysis 
(PCA), and the maximum likelihood method (ML), are two of the most 
applied techniques. If PCA is used, then the minimum average partial 
method can be used (Velicer, 1976) whereas if ML is used, then fit indices 
can be used as described by (Fabrigar et al. 1999, Browne & Cudeck 1992) 
For more comprehensive review of options we can see  (Fabrigar et al. 1999 
and Zwick and Velicer 1986.)    There are also other methods named in 
general as factor rotation, which make an orthogonal transformation of the 
loadings matrix, (Hair et al., 2010). Here, the loadings of variables of an 
extracted factor are maximized and the loadings of variables in the other 
factors are minimized. In this case, the variables are expected to be 
independent. Consequently, one of the orthogonal rotations is Varimax, 
which attempts to maximize the variance of squared loadings on a factor 
(Kim and Mueller, 1978).  

 The scores of factors are calculated utilizing the regress technique. 
Their scores values are saved in new variables in the data file and can be 
used later for statistical analysis. In this way, each factor now embodies a 
linear combination of the primary variables. We calculate the numerical 
characteristics for these variables from which the new variables are 
standardized with mean 0 and variance 1. Achievable by means of 
correlation matrix, the new variables must be uncorrelated among them.  

 The present paper overviews factor analysis and related factors 
extracting methods. In addition, it reports usefulness of factors analysis and, 
the new variables (factors) are exemplified.  

In this paper, use of PCA when calculating factors with Varimax 
rotation is reported. The maximum likelihood method with Quartimax 
rotation is applied for calculation purposes. Correlations matrix is applied 
and, the factors number is chosen by the eigenvalues which are greater than 
1. 
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Factors rotation and interpretation 
In the area of FA implementation, usually, the factors found by 

methods previously described, cannot be easily interpreted. Determining 
exactly the variables belonging to factor one, two and so on, up to factor q is 
difficult, as some variables have the tendency to load on some factors. 
Consequently, many factors can be interpreted by one variable. On contrary, 
the present paper aims at finding one factor to interpret one or more 
variables.  

There are several techniques, named together as factor rotation, 
which make an orthogonal transformation of the matrix L (factor loadings 
matrix), so that the interpretation of factors can be simplified (Johnson, 
Wichern, 1982). Reporting of the percentage of variables is explained by 
each axe (factor), the rotation affects loadings (big loadings become bigger 
and small loadings become smaller) even in individual values. However, the 
sum of individual values remains unchanged. Once the factors are extracted, 
these techniques could be used bringing different results for the same 
communality of data. Nevertheless, all analysts aim at building simple 
structures where each variable load only in one factor. Consequently, one 
variable could be interpreted only by one factor.  

Here in this paper, both Varimax and Quartimax rotation are 
reported. 
Choosing the number of factors 

Choosing of the number of common factors is very important. We 
draw a graphic of pairs (j, λj), the “scree plot”, and we observe the position 
in which this graphic begin to become “flat” (Cattell, 1966). Another 
criterion to address the number of factor problem is the Kaiser criterion 
(Kaiser 1960). With this approach, a factor j is important when the 
eigenvalues is j 1λ > . If the number of factors found by Kaiser Test is 
equivalent with the number of factors, which have resulted even from the 
“scree plot”, than we can continue with the other procedures, or otherwise 
we have to choose one of the results already obtained. If one of the obtained 
results from “scree plot” graphic is chosen, the aforementioned procedures 
and arrange the best number of factors must be repeated. The results change 
as the number of factors changes. Available options include Kaiser’s (Kaiser 
1956) “eigenvalues greater than one” rule, the scree plot, a priory theory and 
retaining the number of factors that gives a high proportion of variance 
accounted for or that gives the most interpretable solution.  

The application of these two techniques is demonstrated in the 
paragraphs below. 
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Calculation of the Factor Scores  
The score for each individual chosen in connections with factors is of 

great importance for FA methods when applied for the calculation of factor 
loadings. Consequently, being of great importance, the new variables that 
correspond to the factors could be added to our selection. SPPS builds a 
column for each factor extracted and then places the scores of these factors 
for each subject inside this column. Once placed in the column, these scores 
can be used for statistical analysis or simply to identify groups of subjects. 
After the evaluation of dispersion errors, the model eΓzμx +=−  can 
calculate scores (the factor values). The Statistical package SPSS contains 
three different methods of evaluation: Regression, Bartlett (Johnson and 
Wichern, 1982) and Anderson-Rubin. 
Data Application of Factorial Analysis (FA) with PCA method 

The set of data psychological testing helps report the usefulness of 
the aforementioned techniques. The set of data in psychological testing 
(Revelle, 2010) provides information for n=1000 individuals. It contains 
three dependent variables: Prelim, GPA and MA, and five predictor 
variables. The variables of the set are in Table 1 reported. Determining a 
smaller number of uncorrelated variables to describe the data is of great 
interest. 

Table 1 Description of the Variables in the Data Set. 
GREV GRE(Graduate Record Examinations ) VERBAL 

GREQ GRE QUANTITATIVE 

GREA GRE ADVANCED 

ACH ACHIEVEMENT 

ANX ANXIETY 

Prelim RATED PERFORMANCE 

GPA GRADUATE PERFORMANCE 

MA MASTERS PERFORMANCE 
 

Initially the PCA method was used to calculate factors with Varimax 
rotation method. Correlation matrix reports that the eigenvalues values are 
greater than 1, which is a means to address the choice of the number of 
factors. The Table 2 shows couples of variables (e.g. GREV, GREQ and 
GREA) which are better correlated with each-other. Regarding the Meyer-
Olkin (KMO) statistical value which in this case is 0.657, see Table 3, we 
see the Kaiser- certain correlation of data (Hair et al., 2010) is reported. 
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Table 2 Correlation Matrix of Variables 
Variables GREV GREQ GREA Ach Anx 

Correlation 

GREV 1.000     
GREQ .729 1.000    
GREA .641 .596 1.000   

Ach .006 .007 .453 1.000  
Anx .010 .005 -.390 -.556 1.000 

Sig. (1-tailed) 

GREV      
GREQ .000     
GREA .000 .000    

Ach .430 .414 .000   
Anx .374 .431 .000 .000  

a) Determinant = .104 
 

Table 3 KMO and Bartlett’s test 
 
 
 
 
 

 
Table 4 shows the proportion of variability which is firstly explained 

with all factors together and then only with the factors before and after 
rotation. The result shows the two first common factors, which explain 81% 
of the total variance, a quite good percentage. After rotation method, this 
percentage does not change, but it changes the percentage that explains each 
factor. Specifically, these percentages are transformed in order to reduce the 
differences between them after rotation.  

Table 4 Total Variance Explained by Components before and after Rotation Method 
Total Variance Explained 

C
om

po
ne

nt
 Initial Eigenvalues Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 

Loadings 
Total % of 

Varianc
e 

Cumulativ
e % 

Total % of 
Variance 

Cumulativ
e % 

Total % of 
Varianc

e 

Cumulativ
e % 

1 2.453 49.063 49.063 2.453 49.063 49.063 2.265 45.292 45.292 
2 1.609 32.180 81.243 1.609 32.180 81.243 1.798 35.951 81.243 
3 .447 8.945 90.188       
4 .282 5.638 95.826       
5 .209 4.174 100.000       

 
Another analysis (scree plot, fig 1) confirms the conclusions: the 

graphic representation of couples is in the same order as reported in the 
Table 4. Separation processes of the two eigenvalues greater than 1 in 
conjunction with those remaining.  

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .657 

Bartlett's Test of Sphericity 
Approx. Chi-Square 2256.716 

Df 10 
Sig. .000 
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Fig. 1 Scree Plot of the Principal Components Analysis 

 
Table 5 Component Analysis Factor Matrix Before and After Rotation Method 

 

PCA 
Components 
1 2 

GREV .794 .472 
GREQ .777 .472 
GREA .920 -.093 
   
Ach .451 -.757 
Anx -.411 .763 

  a)         b) 
 

Reporting correlation with the variables and the role they play when 
interpreting a variable, the factors loadings before and after rotation is in 
table 5 shown. Table 5 a) reports the first factor having the highest loadings 
for variables {GREV, GREQ, and GREA}. Table 5 b) reports the situation 
after rotation. 

The linkage process of variables with the first factor, but with higher 
loadings is clear. Table 2 (Table of correlation) reports that in general groups 
of variables found in this way are reasonable as correlations between groups 
are important. 

Table 6 Component Analysis Factor MatrixCommunalistic (PCA) 
Component Matrix PCA 

 
 
 
 
 
 
 

 
a)                                      b) 

PCA Components 
(VARIMAX) 1 2 
GREV .923* -.040 
GREQ .907* -.049 
GREA .767* .517 
Ach .040  .880 
Anx -.001  -.867 

PCA 
Component 
1 2 

GREV .794*   .472* 
GREQ .777 .472 
GREA .920 -.093 
Ach .451 -.757 
Anx -.411 .763 

PCA Initial Extraction 
GREV 1.000 .854* 
GREQ 1.000 .825 
GREA 1.000 .855 
Ach 1.000 .776 
Anx 1.000 .751 
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Confirmed by the results of Table 6 b), (0.854=0.7942+0.4722), 
Table 6 a), shows how 0.854 (or 85.4%) of variable variance GREV is 
explained by means of the first and second factors. In general, the 
communalities show variables, for which the factor analysis is best working 
or at least, well (Hair et al., 2010). 
Implementation of FA with Maximum Likelihood Method (ML) 

ML method is here applied to calculate the factor loadings with 
Quartimax rotation within the same set of data. The number of eigenvalues 
greater than 1 are a means to address the choosing of the number of factors, 
while scores are calculated using the regression method. Table 7 reports that 
they are the two first common factors.  

Table 7 Specific variances by factors before and after rotation methods. 
Total Variance Explained 

Fa
ct

or
 

Initial Eigenvalues Extraction Sums of Squared 
Loadings 

Rotation Sums of Squared 
Loadings 

Total % of 
Variance 

Cumulativ
e % 

Total % of 
Varianc

e 

Cumulativ
e % 

Total % of 
Varianc

e 

Cumulativ
e % 

1 2.453 49.063 49.063 2.202 44.036 44.036 2.017 40.349 40.349 
2 1.609 32.180 81.243 1.225 24.499 68.535 1.409 28.186 68.535 
3 .447 8.945 90.188       
4 .282 5.638 95.826       
5 .209 4.174 100.000       

 
The first common factor explains about 69% of total variance, that it 

is not a good percentage. After rotation this value does not change. It 
changes only the percentage which explains each factor. The number of 
factors is the same as the one obtained from the first technique, but the 
percentage explained by these factors is a bit smaller.  

In Table 8 we have the factor loadings before and after rotation. On 
the left, we can see that variables {GREV, GREQ, GREA} all load highly on 
factor 1, while on the right, after rotation, we see that the loadings for each 
variable within each factor has changed.  

Table 8 Factor-Loading Matrix Before and After Rotation (ML) 
 
ML Factors 
  1 2 
GREV .803 .376 
GREQ .746 .345 
GREA .895 -.207 
Ach .341 -.716 
Anx -.288 .640 
 

ML Factors 
 QUARTIMAX) 1 2 
GREV .886* -.036 
GREQ .821* -.030 
GREA .746* .537 
Ach .038 .792 
Anx -.018 -.701 
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Conclusion 

Based on the study of correlations between large numbers of 
quantitative variables, the factor analysis (FA) method aims at finding 
structural anomalies of a communality composed of p-variables and a large 
number of data (large sample size). It reduces the number of original 
(observed) variables by calculating a smaller number of new variables, 
which are called factors. In PCA the original variables are transformed into 
the smaller set of linear combination, with all of the variance in the variables 
being used. In FA (ML), however, factors are estimated using mathematical 
model, where only the shared variance is analyzed. However, principal 
components analysis is often preferred as a method for data reduction, while 
principal factors analysis is often preferred when the goal of the analysis is to 
detect structure. 

Varimax and Quartimax are the two orthogonal approaches, which 
are used to report on FA method. The most commonly used orthogonal 
approach is the Varimax method, which aims to minimize the number of 
variables that have high weights on each factor. 

Results are described via a database from a psychological testing. A 
possible database with information from Albania for similar analysis of 
practical interest as a future task is being considered. 
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