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Abstract  
 In this simulation study, we compared ordinary least squares (OLS), weighted least 

squares (WLS), and three bootstrap versions (resampling of data points, resampling residuals, 

generating new residuals from Laplace distributions) for a linear regression with independent 

residuals from a mixture of two Laplace distributions. Leverage points were removed from 

the data, more outliers were added, and knowledge about the two Laplace distributions was 

omitted.  For the data set with more extreme outliers, all methods showed problems with the 

coverage probability of the confidence intervals for parameter estimation, but bootstrap 

method 1 was clearly more robust. For the base data set, there was no difference between 

bootstrap and WLS, similarly to the data set with some leverage points removed. Without 

knowledge of the two Laplace distributions, bootstrap method 2 performed best in that 

standard errors of the parameter estimates was lower and confidence intervals shorter. This 

result suggests that, depending on the sample kurtosis compared to distribution kurtosis, 

bootstrap method 2 (non-parametric) or 3 (parametric) is better.  
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Introduction 
 Several methods can be used for linear regression analysis, including ordinary least 

squares (which is said to perform poorly in the case of heteroscedastic errors), weighted least 

squares (down-weighs data points with a high residual variance in order to address 

heteroscedasticity), and bootstrap (which depends on fewer assumptions on the residuals and 

can be used with heteroscedasticity and outliers). Within the bootstrap methods, there are 
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variations in how to resample: the data points themselves, the residuals, or generating new 

residuals from a given distribution. This simulation study aimed to investigate the 

appropriateness of each method for a very specific situation: a linear regression line with 

additive independent residuals from a mixture of two Laplace distributions with mean zero 

and different variances (Rao, et al 1999, Aitken 1935)  . We demonstrate that one method did 

not perform better than others, but that the optimal choice depends on the specific data.   

Least squares estimation with non-constant error variance 
 For data analysis the relationship between the examined variables representing 

various aspects of the subjects of study and measuring physical values is often required 

knowledge. If we consider the case in which the goal is to define the linear dependence of 

two parameters X and Y, the difficulty lies in evaluating the unknown coefficients β0, β1 : 

ε+Xβ+β=Y 10       (1) 

Equation (1) is often referred to as the linear regression model. The ordinary least 

squares (OLS) fitting procedure can be used to estimate unknown linear regression 

coefficients (Wolberg 2005). According to this approach, these parameters are obtained via 

function F: 

   
F (b0 ,b1)=∑

i
(Y i− b1 X i− b0)2      (2) 

The minimum of (2) corresponds to necessary linear regression parameters, which can 

be obtained using: 

                                                 
∂ F
∂b1

= 0, ∂ F
∂ b0

= 0 , resulting in 

                                         
( )( )

( )∑
∑

−

−−
21 xx

yyxx
=b

i

ii
 

xby=b 10 − , where 𝑦� is the mean value of Y and �̅� is the mean value of X 

The geometric description of the OLS method is very simple and straightforward. The 

obtained fitted line Ŷ =b0 +b1 X  is known as the least squares regression line.  

If the errors (ε) in the linear regression model (1) are expected to be zero, are 

uncorrelated, and have equal variances (σ)2, which is a constant that is independent of X, then 

the Gauss-Markov theorem states that the OLS estimator is the best linear unbiased estimator 

(BLUE). Here, ‘best’ indicates that which gives the lowest possible mean squared error of the 

estimate.  
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However, in a case for which errors (ε) have unequal variances (σ2), the simple least 

squares method has many drawbacks.  For example, it is not efficient. To account for such a 

situation, a linear regression model with unequal variances is introduced. This model has the 

same form as (1), but for estimating the coefficients of this model, the weighted least squares 

(WLS) scheme is used (Rao et al 1999) . According to this approach, the following method, 

which is a modification of (2), is used. 

                                     

F (b0 ,b1)=∑
i

wi(Y i− b1 X i− b0)2

wi=
1
σ i

2
                                   

The weighting coefficients are defined as reciprocals of the variances σ i
2

 for each 

data point. In this manner, the contribution of more noisy data to the overall estimation 

scheme is reduced. Aitken (1935) showed that using these weights, the estimator is again the 

best linear unbiased estimator (BLUE). Therefore, in a case for which the error variances are 

known, the WLS procedure is straightforward; otherwise the variances must be estimated 

first. 

 One method for estimating regression coefficients and their confidence intervals is to 

apply the well-known bootstrap technique (Efron and Tibshirani 1993, Amiri et al 2008, Zhu 

and Jing 2010, Efron 1987). This approach is based on the general idea of resampling from 

the given data set to generate additional samples for estimating desired quantities. Depending 

on how these additional samples are obtained, the bootstrap technique is divided into two 

types: parametric and nonparametric (Benton and Krishnamoorthy 2002). We will compare 

three different bootstrap methods: 

1. If n is the number of pairs (X,Y), then draw n samples from the pairs with 

replacement, perform the estimation procedure for the coefficients, and repeat this B 

times. 

2. Perform an initial estimation of the parameters and obtain estimated errors e by 

subtracting the initial model fit from the data  e=Y-b0 -b1 X . Resample using 

replacement from these n estimated errors e and add them again to the initial model 

fit. Perform the parameter estimation for these pairs and repeat the entire procedure B 

times. This and method 1 are non-parametric bootstraps since they do not involve any 

distributions for the errors. 

3. Estimate the parameters for error distribution and then bootstrap by generating n 

residuals e from this distributions to give Y=b0 +b1 X+e . Perform the estimation 



European Scientific Journal    April 2013 edition vol.9, No.12    ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 
 

123 
 

procedure for the coefficients and repeat this B times. This is a parametric bootstrap 

as we are assuming/using a form for the density of the errors. 

Data and Methodologies 

 To reveal the strengths and weaknesses of the three bootstrap and OLS and WLS 

methods, we simulated data sets. We chose the regression line 

                                                   ε+375X7+72=Y ..                                              (3) 

 for X uniformly distributed in the range of 10 to 15. For the errors ε, we used a 

mixture of two Laplace distributions (also referred to as double-exponential distribution) 

(Alrasheedi 2012). The density f of the Laplace function with expectation 0 is 

                                                 ( )
| |( )
λ
x

e=λx,f
2λ
1 . 

Laplace (0, λ) distributed variables can be generated as the difference of two 

independent identically distributed Exponential (1/λ ) random variables. We generated 4000 

Laplace(0, 0.243) together with 4000 Uniform(10,15) (group A) and 6000 Laplace(0, 0.101) 

together with 6000 Uniform(10,15) (group B) distributed variables for ε and X and obtained Y 

using model (3). We referred to this as our base data set. This type of data can be obtained, 

for example, by measuring physical values with two different devices with different error 

variance. The error distribution for the entire data set is a mixture of two Laplace variables 

with two different variances; therefore, it is heteroscedastic. The Laplace distribution is more 

heavily tailed than the normal distribution, so we expect a greater number of 'outliers' in the 

data set. We modified our base data set in different manners to make the differences between 

the three bootstrap methods more pronounced. We created a data set with a greater number of 

'outliers' by changing the values of three points of group A and B each to result in strong 

leverage points (referred to as the data set with a greater number of outliers) and another by 

removing three points (two from group A, one from group B), which have the strongest 

leverage (referred to as the data set with fewer outliers) by replacing its values by the average 

of the neighbors. 
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Fig. 1: Base data set with added outliers (crosses) and removed outliers (triangles with a circle inside) and 

regression lines. 
 

Simulation and Data Analysis 
All simulations and analyses were conducted using the statistical software package R.  

For all tables, given bootstrap estimates are the median over the 100 simulations and 'range' 

indicates the extremes of all 100 simulations (there is no 'range' for the OLS and WLS 

methods since they give one estimate). For the confidence intervals, 'yes' and 'no' indicate 

whether the true parameters were covered and single numbers, for example, 100, indicates 

how many of the 100th percentile confidence intervals covered the true parameters. 

  First, we examined the entire base data set while ignoring the two groups (Table 1). 

With the R function lm, we first performed linear regression (OLS) and obtained estimates 

for the coefficients 3.54 and 7.32, which are not similar to the true coefficients 2.7 and 7.375, 

particularly considering the sample size of 10,000.  Nevertheless, the regression line in the 

plot appears identical to the true regression line. Next, we obtained confidence intervals for 

the coefficients using the command confint. The diagnostic plots show some problems with 

the fit; several outliers were observed and the Q-Q plot against the normal distribution shows 

significant deviation, which is expected, but it indicates that some of the results, particularly 

the confidence intervals, are inaccurate since they depend on the assumption of normality, 

and some of the points are strong leverage points and significantly influence parameter 

estimation (Figure 2).  
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Table 1: Base data set 

Estimates OLS WLS Bootstrap 1 Bootstrap 2 Bootstrap 3 

Intercept 3.54 3.49 3.490 3.485 3.489 

Range   3.44 - 3.53 3.42 - 3.55 3.44 - 3.55 

Slope 7.32 7.3251 7.3248 7.3251 7.3249 

Range   7.3215 7.3293 7.3205 7.3309 7.3202 7.3291 

Standard error 
intercept 

0.955 0.6948 0.7 0.6954 0.6957 

Range   0.664-0.749 0.654-0.724 0.652-0.736 

Standard error 
slope 

0.076 0.05534 0.05557 0.05536 0.05527 

Range   0.0527 0.0595 0.052 0.0579 0.0523 0.0587 

95% CI cov 
intercept 

(1.67, 5.41) yes (2.12, 4.85) yes 100 100 100 

Mean length 3.74 2.7241 2.7244 2.7022 2.712 

99% CI cov  
intercept 

(1.08, 6)  yes (1.7, 5.28) yes 100 100 100 

Mean length 4.92 3.58 3.539 3.544 3.523 

95% CI cov 
slope 

(7.17, 7.47) yes (7.22, 7.43) yes 100 100 100 

Mean length 0.3 0.2169 0.2167 0.2153 0.2163 

99% CI cov  
slope 

(7.12, 7.52) yes (7.18, 7.47) yes 100 100 100 

Mean length 0.39 0.285 0.2803 0.2821 0.2804 

 
 In the next step, we used the group to which a data point belongs to estimate the error 

variances. We performed linear regressions (OLS) similarly to as described above separately 

for the groups A and B, obtained two sets of residuals, and estimated their variances. The 

maximum likelihood estimator for λ in the case of the Laplace distribution is: 

                                                    | |( )∑ −YY
N

=λ ~1
,  

 Where, Y is the sample median. The variance of the Laplace distribution is 2λ2. The 

reciprocals of the variances were then used as weights for the WLS method. Here, the 

estimates for the coefficients were slightly better; the standard errors of the estimates were 

smaller, and the confidence intervals were shorter, but the diagnostic plots show the same 

problems (Figure 2).  
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Fig. 2: Cook's distance for all data points. Points 1 to 4000 belong to group A, and 4001 to 10,000 to group B. 
Triangles indicate outliers which are removed from the base data set with fewer outliers. The left-hand picture 

shows Cook's distances for OLS and the right-hand picture for WLS. 
 

We then continued to apply each of the three bootstrap methods to the base dataset. 

For bootstrap methods 2 and 3, we began with a WLS estimate similarly to above, obtained 

the residuals from the initial fit for method 2 and the parameters for the two Laplace 

distributions for method 3, resampled from the residuals (method 2) or generated new 

residuals from the distribution using the estimated parameters (method 3), and added these 

values to the initial fit. From these data, the WLS estimates were obtained. For each bootstrap 

run, we generated B = 1000 samples and repeated the runs 100 times. A short test using B = 

2000 indicated that 1000 bootstrap runs provide sufficient coverage of the data. For each 

bootstrap method, we obtained 100 estimates of the coefficients, 100 estimates for the 

variances of the coefficients, and 100 percentile confidence intervals. Percentile confidence 

intervals were obtained by sorting the B estimates for the coefficients and discarding the 5% 

most extreme values to obtain a 95% confidence interval, for example. The three bootstrap 

methods showed very similar estimates to the WLS, with only the average length of the 

confidence intervals slightly shorter. There was no clear difference between the bootstrap 

methods. 

 Next, we applied all methods to the dataset with fewer outliers (Table 2). The 

parameter estimates were closer to the true values for all methods. In fact, the OLS estimate 

performed slightly better than other methods. The standard errors for the estimates and the 

length of the confidence intervals were worse using OLS than using other methods. WLS and 
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bootstrap methods showed similar results. Among the bootstrap methods, bootstrap 2 showed 

slightly lower standard errors of the estimates and shorter confidence intervals, but the 

parameter estimates were a bit worse compared to the other methods. Compared to the base 

data set, all methods benefited from the removal of three leverage points out of 10,000 data 

points, particularly the parameter estimates.  

Table 2: Data set without three outliers 

Estimates OLS WLS Bootstrap 1 Bootstrap 2 Bootstrap 3 

Intercept 3.54 3.49 3.490 3.485 3.489 

Range   3.44 - 3.53 3.42 - 3.55 3.44 - 3.55 

Slope 7.32 7.3251 7.3248 7.3251 7.3249 

Range   7.3215 7.3293 7.3205 7.3309 7.3202 7.3291 

Standard error 
intercept 

0.955 0.6948 0.7 0.6954 0.6957 

Range   0.664-0.749 0.654-0.724 0.652-0.736 

Standard error 
slope 

0.076 0.05534 0.05557 0.05536 0.05527 

Range   0.0527 0.0595 0.052 0.0579 0.0523 0.0587 

95% CI cov 
intercept 

(1.67, 5.41) yes (2.12, 4.85) yes 100 100 100 

Mean length 3.74 2.7241 2.7244 2.7022 2.712 

99% CI cov  
intercept 

(1.08, 6)  yes (1.7, 5.28) yes 100 100 100 

Mean length 4.92 3.58 3.539 3.544 3.523 

95% CI cov 
slope 

(7.17, 7.47) yes (7.22, 7.43) yes 100 100 100 

Mean length 0.3 0.2169 0.2167 0.2153 0.2163 

99% CI cov  
slope 

(7.12, 7.52) yes (7.18, 7.47) yes 100 100 100 

Mean length 0.39 0.285 0.2803 0.2821 0.2804 
 
 For the data set with a greater number of outliers (Table 3), OLS showed the best 

parameter estimates, followed by bootstrap method 1.  Some of the confidence intervals no 

longer covered the true parameters. For WLS, the 95% confidence intervals did not cover the 

parameters, but the 99% intervals did. For the bootstrap methods, only method 3 covered the 

true intercept for the 99% confidence interval in 93 of 100 cases. For the 95% interval, the 

slope method 1 covered the true parameter in 91 of 100 cases, method 2 for 17of 100 cases, 

and method 3 for 2 of 100 cases. For the 95% interval, the intercept showed worse results, for 

method 1 in 24of 100 cases and in methods 2 and 3 in 1 of 100 cases.    
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 Finally, we applied the bootstrap methods to the base data set without using any 

previous knowledge of the groups A and B (Table 4). For method 2, we resampled all 10,000 

residuals, and for method 3 we assumed that the residuals showed Laplace distribution and 

estimated one Laplace parameter for all residuals. A Q-Q plot showed a well-fit linear 

relationship between simulated Laplace variables and the residuals. All obtained estimates 

were very close to OLS, but bootstrap method 3 gave lower standard errors for the estimates 

and shorter confidence intervals. 

Table 3: Data set with more outliers 

Estimates OLS WLS Bootstrap 1 Bootstrap 2 Bootstrap 3 

Intercept 4.319 4.341 4.3397 4.3421 4.3446 

Range   4.2750 4.4119 4.2544 4.3965 4.2918 4.3921 

Slope 7.2547 7.2532 7.2533 7.25297 7.25296 

Range   7.2474 7.2586 7.2487 7.26 7.2491 7.2574 

Standard error 
intercept 

0.977 0.7293 0.8305 0.7464 0.7111 

Range   0.776 0.877 0.692 0.782 0.673 0.744 

Standard error 
slope 

0.0777 0.058 0.0674 0.0595 0.0565 

Range   0.063 0.071 0.055 0.062 0.053 0.059 

95% CI cov 
intercept 

(2.4, 6.23)  yes (2.91, 5.77) no 24 1 1 

Mean length 3.83 2.86 3.23 2.93 2.76 

99% CI cov  
intercept 

(1.8, 6.84)  yes (2.46, 6.22) 
yes 

100 100 93 

Mean length 5.03 3.76 4.24 3.8 3.6 

95% CI cov 
slope 

(7.1, 7.41)  yes (7.14, 7.367) 
no 

91 17 2 

Mean length 0.3 0.228 0.2625 0.233 0.22 

99% CI cov  
slope 

(7.05, 7.45) yes (7.1, 7.4)    yes 100 100 100 

Mean length 0.4 0.2992 0.3443 0.3038 0.2865 

Table 4: Base data set without knowledge about the groups A and B 

Estimates OLS Bootstrap 1 Bootstrap 2 Bootstrap 3 

Intercept 3.539 3.537 3.539 3.544 

Range  3.466 3.616 3.471 3.631 3.474 3.599 

Slope 7.32 7.3204 7.32 7.3197 

Range  7.3136 7.3259 7.3123 7.3258 7.315 7.3255 

Standard error 
intercept 

0.955 0.976 0.957 0.896 
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Range  0.918 1.03 0.913 1.014 0.846 0.955 

Standard error 
slope 

0.076 0.0778 0.0762 0.0715 

Range  0.0731 0.082 0.0726 0.0801 0.0672 0.0754 

95% CI cov 
intercept 

(1.67, 5.41)   
yes 

100 100 100 

Mean length 3.74 3.81 3.74 3.5 

99% CI cov  
intercept 

(1.08, 6)        
yes 

100 100 100 

Mean length 4.92 4.95 4.87 4.58 

95% CI cov 
slope 

(7.17, 7.47)   
yes 

100 100 100 

Mean length 0.3 0.303 0.296 0.278 

99% CI cov  
slope 

(7.12, 7.52)   
yes 

100 100 100 

Mean length 0.39 0.395 0.386 0.363 

 
Discussion 

 The simulation results show that for a data set with heavy leverage points (data set 

with a larger number of outliers), bootstrap method 1 is the most robust. The bootstrap 

resampling procedure often does not choose some of the leverage points, so that the estimates 

are less influenced by special points. Methods 2 and 3 begin with an initial fit which is under 

the influence of leverage points, and cannot easily overcome this. Using method 1, the 

confidence intervals did not always show the desired coverage probability. The comparison 

between the base data set and that with fewer outliers showed that the bootstrap methods 

benefit strongly from elimination of leverage points. The OLS method did not perform 

poorly, even without data normalization. However, the OLS estimator is the BLUE and 

estimates of the standard errors are valid. To be sure of the quality of the confidence 

intervals, the data should be normalized (at least approximately through the central limit 

theorem). However, the OLS then behaved in a conservative manner, resulting in confidence 

intervals which were a bit longer. Although the bootstrap depends on fewer assumptions and 

is therefore more robust, it should not be used in all situations, but can be used for linear 

regression of standard diagnostics and potentially some treatment of the data. 

 Apart from the confidence intervals for the data set with a larger number of outliers, 

WLS performed quite well. Parameter estimates were better than for OLS, but this is because 

WLS used additional information regarding the two groups A and B. This reduces the 

influence of specific data points, but in the case of the extreme leverage points, this method 

was not sufficient.    
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 When applied to the base data set, without knowledge regarding the groups A and B, 

method 3 performed better since it gave smaller standard errors and shorter confidence 

intervals than the other two methods. Amiri et al. (2008) compared parametric and non-

parametric bootstrap methods and concluded that when bootstrapping, variance in the 

behavior of the bootstrap methods depends on kurtosis. If the sample kurtosis is larger than 

the kurtosis of the distribution used in method 3, the obtained standard errors were smaller for 

method 3. This suggests that a similar rule would hold here: if the kurtosis of the residuals 

obtained after initial fitting is larger than the kurtosis of the distribution, method 3 gives 

lower standard errors and shorter confidence intervals. The kurtosis of the residuals, defined 

as 
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 after initial fit when neglecting groups A and B, is 4.4 (for a general discussion 

regarding kurtosis, see Gill and Joanes 1998, Decarlo 1997). Kurtosis of the Laplace 

distribution is 3. For groups A and B separately, kurtoses are 2.45 and 2.46. In these 

situations (Table 1-3), method 3 did not perform better than the other methods. High kurtosis 

indicates a heavily tailed distribution with a higher likelihood of extreme values. If sample 

kurtosis is high, extreme values are already present may influence the estimation process. If 

new residuals are generated from a distribution with lower kurtosis, the chances for retaining 

extreme values are less, resulting in smaller standard errors and shorter confidence intervals. 

Conclusion 
 None of the tested methods were consistently better than the others; rather, 

performance depended on the available data.  For the base data set (Laplace errors with 

different variances), only OLS was slightly worse in all aspects, as it did not take into account 

the information regarding the two groups with different error variances. Removing leverage 

points from the data set helped to improve all methods and only OLS was slightly worse with 

respect to the standard variations of parameter estimates and lengths of the confidence 

intervals. With leverage points added to the data set, some methods showed problems with 

the coverage probability of the confidence intervals. OLS and bootstrap 1 performed the best 

in this situation. Applying all methods (without WLS) to the base data set, but without using 

knowledge regarding the two groups with different error variances, bootstrap 3 showed 

smaller standard errors for the estimates and shorter confidence intervals. These results 
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indicate that OLS still performs reasonably well even without data normalization. The 

performance of WLS was comparable to that of the three bootstrap methods. Bootstrap 1 

(resampling the data pairs) was more robust towards outliers/leverage points and bootstrap 3 

(resampling from a known distribution) showed lower variance if the kurtosis of the sample 

residuals was larger than the kurtosis of the distribution from which resampling was 

conducted. 
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