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Abstract
In this paper, a homotopy perturbation method (HPM) is extended and applied for

solving system of nonlinear equations of n-dimensional with n-variables. Also, numerical
examples are used to show the performance of the presented method, on a series of examples

published in the literature, and to compare with other literature methods.
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Introduction
Homotopy perturbation methods HPM play a very important role in solving several

mathematical problems such as linear and nonlinear system equations, differential equation
and integral equations (He, 2000-2006; Soltanian, 2010; Dehghan, 2008-2011 ). The basic
idea of HPM is to simplify the difficult equation systems by converting them into either
linear or nonlinear system equations so that they can be solved. In the recent years, HPM
attracts the attention of the authors, because solutions of this method offer a high degree of
accuracy and convergence (El-Shahed, 2005; Ghasemi, 2006; Javidi, 2007,
Abbasbandy2003).

H. He (He; 2005) suggested an iterative method for solving the nonlinear equations by
rewriting the given nonlinear equation as a system of coupled equations. This technique has
been used by Chun (Chun2005) and Noor et. al. (Noor et.al,2006-2007) to suggest some
higher order convergent iterative methods for solving nonlinear equations. In 2007, A.

Golbabai et.al(Golbabai et.al,2007) applied HPM for solving system of nonlinear equations
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in two dimensions by expanding the variables into Taylor series. In this research we extend
this method to solve system of nonlinear equations of n-dimension with n-variables. For
validating our proposed method, we compare its result with the Newton's Raphson method
(Abbasbandy, 2003).

Extended homotopy perturbation method
Suppose we have a system of nonlinear equations of the following form

f2(xl,x2,...,xn):0

F(X)= . X :(xl,xz,...,xn)eRn 1)

fn(xl,xz,...,xn)zo
where f, :0" —[] and F:0"—[",and the functions f; is differentiable up to any

desired order (Burden,2001). To illustrate the basic ideas of homotopy perturbation method,

we construct a homotopy [1" x[0,1] - I which satisfies

H (X, p)=pF (X )+(@-p)[F(X)-F(X )]=0, Xel", pe[01], )
here

Hy(X,p)= f,(X)=fy(X )+pf(X )=0,

Hz(x p)= f2(X )—f2(X 0)"‘ pf2(X 0)=O,

v _ iV n
H(X,p)= . , X ell”,pel0,1] 3
Ho (X, p)=f (X)-f (X )+pf (X )=0,
where p is embedding parameter, X .= (X x 20),___, X :O))is an initial
approximation of Eq. (1).
It is obvious that
H(X,0)=F(X)-F(X )=0, H(X,)=F(X)=0. (4)

The embedding parameter p monotonically increases from zero to unit as a trivial
problem H (X ,0)=F(X)-F(X 0)=0 is continuously deformed to original problem

H (X ,1)=F(X)=0. The (HPM) uses the homotopy parameter p as an expanding parameter

to obtain:
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_y (0) @ 2, (2)
X, =X 74P T HpiX T+

X =x O @ 2 (2)
X, =X + X + X .
X =02 THe TR )

n

x =xO@4 px @ 4 pzx 2 4
The approximate solution of Eq. (1), therefore, can be readily obtained:

lim x :x(0)+xfl)+x1(2)+...,

p—ol
_ I|mx x§0)+x(1)+x§2)+...,
X = Iile =:p-l 2 (6)
p— :

limx =x©@1x®x@ 4
p—1 n n n n

The convergence of the series in (6) has been studied and discussed in (He,1999).

For the application of (HPM) to Eqg. (1) we can rewrite (3) by expanding f. (X ) into a

Taylor series around X  as follows:

!k(xo)+ [Z(x —x(°))fk.(xo)]+—[22(x XN =x Ny X o)+ |-

i=1j=1
—fr Xo)+pf (Xo)=0 (M
k =12,..n
of 0%f, - : .
where f,; =—=, and fi = . Substitution of (5) into (7) yields
OX1 OX; OX j

fie (X o)+ _[Z<Zp XM =x ()i (X o)+

i=1 m=0

8
[22(2p x (™ - x“”)(Zp XM —x O)fy i (X )]+ ©

i=1j=1 m=0
i (Xg)+pf(X)=0, k=12,..n

By equating the terms with identical powers of p, we have
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f1(X0)—f1(X() =0
0@/ f2X0)=F2(X0) =0

©)
fa(Xg)—fn(Xo)=0
S
> x Pty (X o) +1(X 0) =0
i1
oy O
X 7f, 0 (Xg)+fo(Xg)=0
@ ; i T2 (Xo)+f2(X o) 10)
Zx i (X o)+, (Xo)=0
=1
n 9 1 n n 1 1
> x P (x 0)+§szi( )Xj()fl,ij (Xo)=0
~ ot
@ Zx<2>f2,(xo)+ ZZx(l)x(l)fZJ(Xo) 0
P fidja (11)
Zx‘z)fn.(xo)+ sz(”x(”fn.,(xo) 0
il j=l
From Eqg. (9-11), the sequences x *)can be obtained in the following form
-1
X1 [faXo) o f1a(Xo) | [f1(Xo)
= (12)
x @ fraXo) - fan(Xo)| [fan(Xo)
1ii O, ®
Xi7X; f1ii (X o)
-1 i 1ij 0
x| [faXo) . fia(Xo) || 253
= .. (13)

Xr(]z) fn,l(XO) fn,n(XO) 1 N

n
ZIZZ)(l(l)X (1)fn Jij (X 0)

i=1j=1

Substituting all the above terms into (6), we can obtain the zero of Eq. (1) as follows:
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-1
Xl(O) f11(Xg) o fra(Xp) f1(Xo)

X =| ... |- —
x O [ Fra(Xo) oo Trn(Xo)| [Fn(Xo)

1N, @, |
| 5 22X X PR (X o) (14)
f11(X0) o f1a(Xp) 2!i=lj=1

fn,l(xo) fn,n(xo) 14O
Ezzxi(l)x J(l)fn,ij (Xo)

i=1lj=1

This formula allows us to suggest the following iterative methods for solving
nonlinear system equations. (1).

Algorithms
In this section, we presented two algorithms for solving system of nonlinear

equations:
Algorithm.1.

(k)

: (k) (k) N :
For a given Z(k)z[z1 Lo ey I calculate the approximation solution

(k+1)  (k+1) (k +1) . .
z (k+D =[z4 ’ 2o ’ v Ly ' I fork =1, 2, ... by the iterative scheme

1
20T 207 T1,2®) L f,@®) ] [f@z®)
_ ~ ] ) (15)

20D {200 ] [£,,@9) . 0, @) [£,2%)

which is the Newton—Raphson method for n dimension and we will denote it by

(NM).
Algorithm.2.

: () k) (k) (k) 7 o ,

For a given Z‘"/=[z; ,z, ,..,z,, ] calculate the approximation solution
(k +1) (k+1) (k+1) ; .
z (4D =[z, .z, ..z, I fork=0, 1, 2, ... by the iterative scheme
-1
L fa@®) Lt @) | e ®)

== (16)
L§ 2@ o £, @®) ] [F@®)
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1SS o0 (x)
| =L
| J

][9] [0] [rue® o e ]'| 25 .
PR ) I S
D | |00 L] 15 20y  f 76 n )
z, z\ n na(Z27) nn(Z7) %ZZLi(l)L(jl)fn,ij z®)

RV

and we will denote it by (HPM). We also remark that if f, ; =0, Vk,i,j=12,..,n

, then Algorithm 2 reduces to the Newton Method, that is, Algorithm 1.

Applications
We present some examples to illustrate the efficiency of our proposed method. We

apply the algorithm 2. and compare the results with the standard Newton—-Raphson method

NM. We use the following stopping criteria for computer programs, |Xn+1—Xn|<<9 or

|f (x,)|<e, and £=10"". Here, the algorithm is performed by Maple 15 with 20
significant digits, but only 15 digits are displayed.

In Tables 1-7 we list the results obtained by extended homotopy perturbation method
HPM and compare it with the Newton—Raphson method (NM) using several values of the
initial guess approximation X,. As we see from these Tables, it is clear that the result

obtained by the present method is very superior to that obtained by the other method.

Small systems of nonlinear equations.
Example 1.
In a case of one dimension, consider the following nonlinear functions (Noor

et.al,2010), fl(x):xexz—sinzx +3c0sx +5, with x =-1 and fz(x):eX2+7X—30_1

Example 2.
In a case two dimensions, consider the following systems of nonlinear functions

(Golbabai et.al,2007)

f(x,y):xz—lox +y2+8:0
Fs (X ={ ' ) . (X0, Y0)=(0.8, 0.8).
fo(x,y)=xy“+x -10y +8=0

) (Xo, yo)=(0.8, 0.8).

+X-y-e =0

Fa(X )= fl(x,y)=x4y —Xy +2x -y -1=0
fax,y)=ye™ '

Table 1. Numerical results for Example 2 (F3)
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Fs NM HPM
NI X | y X | y
1 .987766198459447 .985772541912097 0.998270352547736 0.997314611742872
2 .999935603124850 .999916479630138 0.999999995819455 0.999999993343152
3 .999999997926065 .999999997265203 0.999999999999999 1.000000000000000
Table 2. Numerical results for Example 2 (F,)
F, NM HPM
NI X | y X | Y
1 1.202154745465234 1.252500021237429 0.530135422051184 0.375112183418822
2 1.066458500832922 1.071778294601873 1.167578846210930 0.826948359050393
3 1.008970459700100 1.009951147648418 1.002859536677230 0.999714844009216
4 1.000190149835321 1.000217129214667 1.000000085472060 1.000000076036040
Example 3.

In a case three dimensions, consider the following systems of nonlinear functions
(Hosseini et.all,2010;Faid,2006;Vahididi et.al,2012).

Fs (X )=1{f,(x,y,z)=x2+10y —e % —11=0,

fi(x,y,z)=15x +y2—4z -13=0

f3(x,y,z)=y3—252 +22=0

Table 3. Numerical results for Example 3 (Fs)

(Xo, Yo, 20)2(5, 4, 2)

Fs Newton-Raphson HPM
NI | X | Y | z X ly | z
4  104218011628512 1.03108984243725 0.923740415181686 1.04214956379484 1.03100124240577 0.923848150437484
5 104214956059142 1.03109127170003 0.923848154861335 1.04214956057693 1.03109127183940 0.923848154879367
6 1.04214956057693 1.03109127183040 0.923848154879367 1.04214956057693 1.03109127183940 0.923848154879367
7 1.04214956057693 1.03109127183940 0.923848154879367
fi(x,y,z)=3x —cos(yz)-0.5=0
fo(x,y,2)=x°-81(y +0.1)% +sinz +1.06 =0 _
Fe (X )= 2(x,y.2) (y ) . (Xo, Yo, 20)=(5, 5, 2).
_ 107 -3
fa(x,y,z)=e +20z +———=0
Table 4. Numerical results for Example 3. (Fg)
Fe Newton-Raphson HPM
NI | X [ Y | z X [y | z
9 - -
0.496575184963897 ) o1 a0cs703808  0.530372756344176  0-498144684589491  0.498144684589491  0.498144684589491
10 - - . .
0.498036630557039 ) 51 1593651685691 0.520140611531331 -498144684589491 1 99505005543779  0.528825977573387
11 - -
0.498138890356978 ) 5,1241563678410  0.528842599308139
12 - -
0.498144666210892 ) 199607907114003  0.528826030181812
13 -
0.498144684589305  0.498144684589305 ) ooce e a0
14 . -
0.498144684589491 ) 199605805543779  0.528825977573387
15 i -
0.498144684589491 ) 199605805543779  0.528825977573387
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Table 5.Numerical results for Examples 1-3

F F
F(X) f, f 3 s F, F,
=101 Number of iterations
NM 8 12 5 8 7 15
HPM 5 8 4 6 6 10

Large systems of nonlinear equations
In this subsection, we test HPM with some sparse systems and with n unknown

variables. In examples 4 to 6, we compare the NR method with the proposed method HPM
focusing on iteration numbers. In the previous studies, they used [F(x™)|. < 10™** as stop
criterion.

Example 4.
Consider the following system of nonlinear equations [31]:

Foofy=ei -1 i=12..,n
The exact solution of this system is x™ = [0,0,...,0]". To solve this system, we set

X =[0.5,0.5,...,0.5]" as an initial value. Table 6 has shown this result.

Example 5.
Consider the following system of nonlinear equations (Hafiz and Bahgat,2012)

Fe:f, =x2—cos(x; -1), i=12..,n.
One of the exact solutions of this system is X" = [1,1,...,1]". To solve this system, we
set Xo = [2,2.,...,2]" as an initial value. The results are presented in Table 6.

Example 6.

Consider the following system of nonlinear equations (Hafiz and Bahgat,2012):
Fg:f; =cosx; =1, i=12,..,n.

One of the exact solutions of this system is X" = [0,0,...,0]". To solve this system, we

set
Xo = [2,2.,...,2]" as an initial guess. The results are presented in Table 6.
Table 6. Numerical results for Example 4, 5 and 6.
Number of iterations F, | Fe |Fe |F; |Fs |Fe |F [Fs |Fo
=101 n=50 n=75 n=100
NR 5 7 21 5 7 21 5 7 21
HPM 4 5 15 4 5 15 4 5 15
Table 7.Numerical results for Examples 1-6 for several values of the initial guess
-2.5 -2.3 2.1 i -1.8 -1
f, | Xo
NM 11 10 9 8 7 6
HPM 7 6 6 5 5 4
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f X 3.1 3.2 3.3 3.4 35 3.6
2
NM 6 8 9 10 12 13
HPM 4 5 6 7 8 9
F X 0 (-1.5,-1) (0,0) (.5,5) (.8,.8) (1.5,0) (0,1.5)
3
NM 7 6 6 5 6 6
HPM 6 5 4 4 4 4
F4 X, (.6,.9) (5,.5) (5,.7) (9,.9) (1.2,1.2) (1.5,0)
NM 7 7 7 9 6 7
HPM 6 6 5 4 4 5
= X, (3,4,4) (5.4,2) (6,4,3) (6,3,1) (7,2,1) (8,1,1)
5
NM 7 7 8 8 Divergent 21
HPM 5 6 6 5 5 5
= X, (4,4,2) (5,5,2) (6,4,1) (5,2,0) (5,1,0) (4,0,1)
6
NM 11 15 11 10 9 9
HPM 8 10 8 7 6 8
= Xo | (1122 [ (3.3...3) [ (5.5....5) (1,1,..,1) (15,15,..,15) | (2.2.....2)
75
n=50 | NM 4 4 5 6 6 7
HPM 3 3 4 4 5 6
= X, | ©00..0) [(2.2..2) | (5.5..5 | Q111,11 [ (1515..15) | (22...2)
8
n=50 | NM 6 8 6 4 5 6
HPM 6 7 5 3 4 5
= X, | (L1d) [ (2.2...2) | (5.5..5) (1,1,...1) (1.515,..15) | (2,2,...,2)
9
n=50 | NM 18 19 21 21 22 21
HPM 13 14 15 15 15 15
Conclusions

The Homotopy perturbation method was extended and applied to the numerical
solution for solving system of nonlinear equations. The numerical examples show that our
method is very effective and efficient. Moreover, our proposed method provides highly
accurate results in a less number of iterations as compared with the Newton—-Raphson
method, when the initial value Xq is well chosen. It is an open problem to determine the most
appropriate choice of the initial guess.

Recommendation In future works i will prove the extended homotopy method.
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