
European Scientific Journal    April 2013 edition vol.9, No.12    ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 
 

202 
 

EXTENSION OF HOMOTOPY PERTURBATION METHOD 
FOR SOLVING NONLINEAR SYSTEMS 

 
 
 
 

Mustafa.Q. Khirallah 
Department of Mathematics and Computer Science,  

Faculty of Science, Ibb University, Yemen 

M.A. Hafiz 
Department of mathematics, Faculty of Science and arts, Najran University, Saudi Arabia 

 
 

 
Abstract 

In this paper, a homotopy perturbation method (HPM) is extended and applied for 

solving system of nonlinear equations of n-dimensional with n-variables. Also, numerical 

examples are used to show the performance of the presented method, on a series of examples 

published in the literature, and to compare with other literature methods. 

 
Keywords: Homotopy method, perturbation method, System of nonlinear equations, Iterative 

method, Newton's method 

 
Introduction 

Homotopy perturbation methods HPM play a very important role in solving several  

mathematical problems such as linear and nonlinear system equations, differential equation 

and integral equations (He, 2000-2006; Soltanian, 2010; Dehghan, 2008-2011 ). The basic 

idea of HPM is to simplify the difficult equation systems by converting them  into either 

linear or nonlinear system equations so that they can be solved. In the recent years, HPM 

attracts the attention of the authors, because solutions  of this method offer a high degree of 

accuracy and convergence (El-Shahed, 2005; Ghasemi, 2006; Javidi, 2007; 

Abbasbandy2003). 

 H. He (He; 2005) suggested an iterative method for solving the nonlinear equations by 

rewriting the given nonlinear equation as a system of coupled equations. This technique has 

been used by Chun (Chun2005) and Noor et. al. (Noor et.al,2006-2007) to suggest some 

higher order convergent iterative methods for solving nonlinear equations. In 2007, A. 

Golbabai et.al(Golbabai et.al,2007) applied HPM  for solving system of nonlinear equations 



European Scientific Journal    April 2013 edition vol.9, No.12    ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 
 

203 
 

in two dimensions by expanding the variables into Taylor series. In this research we extend 

this method to solve system of nonlinear equations of n-dimension with n-variables. For 

validating our proposed method, we compare its result with the Newton's Raphson method 

(Abbasbandy, 2003). 

Extended homotopy perturbation method 
 Suppose we have a system of nonlinear equations of the following form 

( )

( , ,..., ) 01 1 2
( , ,..., ) 02 1 2 , ( , ,..., )1 2

( , ,..., ) 01 2

f x x x n
f x x x nnF X X x x x Rn

f x x xn n

=


== = ∈

 =


 (1) 

where : n
if →   and : ,n nF →  and  the functions if is differentiable up to any 

desired order (Burden,2001).  To illustrate the basic ideas of homotopy perturbation method, 

we construct a homotopy [0,1]n × →  which satisfies 

0
( , ) ( ) (1 )[ ( ) ( ) ] 0, , [0, 1],nH X p pF X p F X F X X p= + − − = ∈ ∈  (2) 

here 

0 0

0 0

0 0

( , ) ( ) ( ) ( ) 0,1 1 1 1
( , ) ( ) ( ) ( ) 0,2 2 2 2( , ) , , [0,1]

( , ) ( ) ( ) ( ) 0,

n

H X p f X f X pf X

H X p f X f X pf X
H X p X p

H X p f X f X pf Xn n n n

 = − + =

 = − + == ∈ ∈

 = − + =




     
        

(3) 

where p is embedding parameter, 
2

(0) (0) (0)
0 1( , ,..., )

n
X x x x= is an initial 

approximation of Eq. (1). 

It is obvious that 

0
( ,0) ( ) ( ) 0, ( ,1) ( ) 0.H X F X F X H X F X= − = = =  (4) 

The embedding parameter p monotonically increases from zero to unit as a trivial 

problem 0( ,0) ( ) ( ) 0H X F X F X= − =  is continuously deformed to original problem 

( ,1) ( ) 0H X F X= = . The (HPM) uses the homotopy parameter p as an expanding parameter 

to obtain:  
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1 1 1 1

2 2 2

(0) (1) (2)2

(0) (1) (2)2
2

(0) (1) (2)2

...,

...,

...
n n n n

x x px p x

x x px p x
X

x x px p x

 = + + +

 = + + += 



= + + +


 (5) 

The approximate solution of Eq. (1), therefore, can be readily obtained: 

1 1 1 1

2 2

(0) (1) (2)
1

(0) (1) (2)
2 21

1

(0) (1) (2)
1

lim ...,

lim ...,
lim

lim ...
n n n n

p

p
p

p

x x x x

x x x x
X X

x x x x

→

→
→

→

 = + + +



= + + +
= = 




= + + +



    (6) 

The convergence of the series in (6) has been studied and discussed in (He,1999). 

For the application of (HPM) to Eq. (1) we can rewrite (3) by expanding ( )if X  into a 

Taylor series around 
0X  as follows: 

(0) (0) (0)
0 , 0 , 0

1 1 1

0 0

1 1( ) [ ( ) ( )] [ ( )( ) ( )] ...
1! 2!

( ) ( ) 0

i i j

n n n

k k i k iji i j
i i j

k k

f X x x f X x x x x f X

f X pf X
= = =

 
 + − + − − + −
 

− + =

∑ ∑∑

 1, 2,...,k n=

 
 

(7) 

 where 
2

1 1
1, 1,

1
, andi ij

i j

f ff f
x x x
∂ ∂

= =
∂ ∂ ∂

. Substitution of (5) into (7) yields 

( ) (0)
0 , 0

1 0

( ) (0) ( ) (0)
, 0

1 1 0 0

0 0

1( ) [ ( ) ( )]
1!

1 [ ( )( ) ( )] ...
2!

( ) ( ) 0, 1,2,...,

n
mm

k k ii i
i m

n n
m mm m

k iji i j j
i j m m

k k

f X p x x f X

p x x p x x f X

f X pf X k n

∞

= =

∞ ∞

= = = =


+ − +



− − +


− + = =

∑ ∑

∑∑ ∑ ∑

 

(8) 

 By equating the terms with identical powers of   p , we have 
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1 0 1 0

2 0 2 0(0)

0 0

( ) ( ) 0
( ) ( ) 0

:

( ) ( ) 0n n

f X f X
f X f X

p

f X f X

− =
 − =


 − =


 (9) 
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1
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1 1 1
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, 0 , 0

1 1 1
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2!

n n n

i iji i j
i i j
n n n
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∑ ∑∑



 (11) 

From Eq. (9–11), the sequences ( )
i

kx can be obtained in the following form 

1(1)
1,1 0 1, 0 1 01

(1) ,1 0 , 0 0

( ) ... ( ) ( )
... ... ... ... ...

( ) ... ( ) ( )

n

n n n nn

x f X f X f X

f X f X f Xx

−     
     = −     
        

 (12) 

(1) (1)
1, 01(2)

1 11,1 0 1, 01

(2) ,1 0 , 0 (1) (1)
, 0

1 1

1 ( )
2!( ) ... ( )

... ... ... ... ...
( ) ... ( ) 1 ( )

2!

n n

iji j
i jn

n nn n nn
n iji j

i j

x x f X
x f X f X

f X f Xx
x x f X

−
= =

= =

 
 

    
    = −    
        

  

∑∑

∑∑

 (13) 

Substituting all the above terms into (6), we can obtain the zero of Eq. (1) as follows: 
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1 ( )
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x x f X
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∑

∑∑

 (14) 

This formula allows us to suggest the following iterative methods for solving 

nonlinear system equations. (1). 

Algorithms 
In this section, we presented two algorithms for solving system of nonlinear 

equations:  

Algorithm.1. 

 For a given 
( ) ( ) ( )( )

1 2[ , ,..., ]
k k kk T

nZ z z z= calculate the approximation solution 

( 1) ( 1) ( 1)( 1)
1 2[ , ,..., ]

k k kk T
nZ z z z

+ + ++ = for k =1, 2, … by the iterative scheme  

1( 1) ( ) ( ) ( ) ( )
1,1 1, 11 1

( 1) ( ) ( ) ( ) ( )
,1 ,

( ) ... ( ) ( )
... ... ... ... ... ... ,

( ) ... ( ) ( )

k k k k k
n

k k k k k
n n n n n n

z z f Z f Z f Z

z z f Z f Z f Z

−
+

+

      
      

= −       
      
        

 (15) 

 which is the Newton–Raphson method for n dimension and we will denote it by 

(NM).   

Algorithm.2.  

For a given 
( ) ( ) ( )( )

1 2[ , ,..., ]
k k kk T

nZ z z z= calculate the approximation solution 

( 1) ( 1) ( 1)( 1)
1 2[ , ,..., ]

k k kk T
nZ z z z

+ + ++ = for k =0, 1, 2, … by the iterative scheme  

1( ) ( ) ( ) ( )
1,1 1, 11

( ) ( ) ( ) ( )
,1 ,

( ) ... ( ) ( )
... ... ... ... ...

( ) ... ( ) ( )

k k k k
n

k k k k
n n n n n

L f Z f Z f Z

L f Z f Z f Z

−
    
    

= −     
    
      

 (16) 
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+
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∑∑

 
(17

) 

 and we will denote it by (HPM). We also remark that if , 0, , , 1,2,...,k ijf k i j n= ∀ =

, then Algorithm 2  reduces to the Newton Method, that is, Algorithm 1. 

Applications 
We present some examples to illustrate the efficiency of our proposed method. We 

apply the algorithm 2. and compare the results with the standard Newton–Raphson method 

NM. We use the following stopping criteria for computer programs, 1n nx x ε+ − <  or 

( )nf x ε< , and 
1510ε −= . Here, the algorithm is performed by  Maple 15 with 20 

significant digits, but only 15  digits are displayed.  

In Tables 1-7  we list the results obtained by extended homotopy perturbation method 

HPM and compare it with the Newton–Raphson method (NM) using  several values of the 

initial guess  approximation 0x . As we see from these Tables, it is clear that the result 

obtained by the present method is very superior to that obtained by the other method. 

Small systems of nonlinear equations. 
Example 1.  

In a case of one dimension, consider the following nonlinear functions (Noor 

et.al,2010), 
2 2

1( ) sin 3cos 5,xf x xe x x= − + +  with 
0 1x = −  and 

2 7 30
2( ) 1x xf x e + −= −   

with 0 3.5x =  

Example 2.  
In a case two dimensions, consider the following systems of nonlinear functions 

(Golbabai et.al,2007) 

( )
2 2

1
3 2

2

( , ) 10 8 0
,

( , ) 10 8 0

f x y x x y
F X

f x y xy x y

 = − + + == 
= + − + =

     (x0, y0)=(0.8, 0.8). 

( )
4

1
4 1

2

( , ) 2 1 0
,

( , ) 0x

f x y x y xy x y
F X

f x y ye x y e− −

 = − + − − == 
= + − − =

  (x0, y0)=(0.8, 0.8). 

 
 
 

Table 1. Numerical results for Example 2 (F3) 
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F3 NM HPM 
NI x y x y 
1 .987766198459447 .985772541912097 0.998270352547736 0.997314611742872 
2 .999935603124850 .999916479630138 0.999999995819455 0.999999993343152 
3 .999999997926065 .999999997265203 0.999999999999999 1.000000000000000 

 
Table 2. Numerical results for Example 2 (F4) 

F4 NM HPM 
NI x y x Y 
1 1.202154745465234 1.252500021237429 0.530135422051184 0.375112183418822 
2 1.066458500832922 1.071778294601873 1.167578846210930 0.826948359050393 
3 1.008970459700100 1.009951147648418 1.002859536677230 0.999714844009216 
4 1.000190149835321 1.000217129214667 1.000000085472060 1.000000076036040 

 
Example 3.  

In a case three dimensions, consider the following systems of nonlinear functions 

(Hosseini et.all,2010;Faid,2006;Vahididi et.al,2012). 

( )

2
1

2
5 2

3
3

( , , ) 15 4 13 0

,( , , ) 10 11 0

( , , ) 25 22 0

z

f x y z x y z
F X f x y z x y e

f x y z y z

−

 = + − − =
= = + − − =


= − + =        

(x0, y0, z0)=(5, 4, 2). 

Table 3. Numerical results for Example 3 (F5) 
F5 Newton-Raphson HPM 
NI X Y z x y z 
4 1.04218011628512 1.03108984243725 0.923740415181686 1.04214956379484 1.03109124240577 0.923848150437484 
5 1.04214956059142 1.03109127170003 0.923848154861335 1.04214956057693 1.03109127183940 0.923848154879367 
6 1.04214956057693 1.03109127183940 0.923848154879367 1.04214956057693 1.03109127183940 0.923848154879367 
7 1.04214956057693 1.03109127183940 0.923848154879367    

 

( )

1
2 2

26

3

( , , ) 3 cos( ) 0.5 0

( , , ) 81( 0.1) sin 1.06 0,
10 3( , , ) 20 0

3
xy

f x y z x yz

f x y z x y zF X

f x y z e z π−

= − − =
 = − + + + == 

− = + + =

      (x0, y0, z0)=(5, 5, 2). 

Table 4. Numerical results for Example 3. (F6) 
F6 Newton-Raphson HPM 
NI X Y z x y z 
9 0.496575184963897 -

0.261732255793898 
-

0.530372756344176 0.498144684589491 0.498144684589491 0.498144684589491 

10 0.498036630557039 -
0.211523651685691 

-
0.529140611531331 0.498144684589491 -

0.199605895543779 
-

0.528825977573387 
11 0.498138890356978 -

0.200241563678410 
-

0.528842599308139    

12 0.498144666210892 -
0.199607907114003 

-
0.528826030181812    

13 0.498144684589305 0.498144684589305 -
0.528825977573917    

14 0.498144684589491 -
0.199605895543779 

-
0.528825977573387    

15 0.498144684589491 -
0.199605895543779 

-
0.528825977573387    
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Table 5.Numerical results for Examples 1-3 
( )F X  1f  

2f  F3 F4 
5F  

6F  

1510ε −=  Number of iterations 

NM 8 12 5 8 7 15 
HPM 5 8 4 6 6 10 

 
Large systems of nonlinear equations 

In this subsection, we test HPM with some sparse systems and with n unknown 

variables.  In examples 4 to 6, we compare the NR  method with the proposed method HPM 

focusing on iteration numbers. In the previous studies, they used ||F(x(n))||2 < 10-13 as stop 

criterion. 

Example 4.  
Consider the following system of nonlinear equations [31]: 

7 : 1, 1, 2,..., .ix
iF f e i n= − =  

The exact solution of this system is x* = [0,0,...,0]T. To solve this system,  we set 

[0.5,0.5,...,0.5]TX = as an initial value. Table 6 has shown this result. 

Example 5.  
Consider the following system of nonlinear equations (Hafiz and Bahgat,2012) 

2
8 : cos( 1), 1, 2,..., .i i iF f x x i n= − − =  

One of the exact solutions of this system is x* = [1,1,...,1]T. To solve this system, we 

set x0 = [2,2.,...,2]T as an initial value. The results are presented in Table 6. 

Example 6.  
Consider the following system of nonlinear equations (Hafiz and Bahgat,2012): 

9 : cos 1, 1,2,..., .i iF f x i n= − =  

One of the exact solutions of this system is x* = [0,0,...,0]T. To solve this system, we 

set 

x0 = [2,2.,...,2]T as an initial guess. The results are presented in Table 6. 
Table 6. Numerical results for Example 4, 5 and 6. 

Number of iterations  F7 F8 F9 F7 F8 F9 F7 F8 F9 
1310ε −=  n=50 n=75 n=100 

NR 
HPM 

5 
4 

7 
5 

21 
15 

5 
4 

7 
5 

21 
15 

5 
4 

7 
5 

21 
15 

 
Table 7.Numerical results for Examples 1-6 for several values of the initial guess 

        

1f  0x  -2.5 -2.3 -2.1 -2 -1.8 -1 

NM 11 10 9 8 7 6 
HPM 7 6 6 5 5 4 
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2f  0x  3.1 3.2 3.3 3.4 3.5 3.6 

NM 6 8 9 10 12 13 
HPM 4 5 6 7 8 9 

        

3F  0X  (-1.5,-1) (0,0) (.5,.5) (.8,.8) (1.5,0) (0,1.5) 

NM 7 6 6 5 6 6 
HPM 6 5 4 4 4 4 

        

4F  0X  (.6,.4) (.5,.5) (.5,.7) (.9,.9) (1.2,1.2) (1.5,0) 

NM 7 7 7 9 6 7 
HPM 6 6 5 4 4 5 

        

5F  0X  (3,4,4) (5,4,2) (6,4,3) (6,3,1) (7,2,1) (8,1,1) 

NM 7 7 8 8 Divergent 21 
HPM 5 6 6 5 5 5 

        

6F  0X  (4,4,2) (5,5,2) (6,4,1) (5,2,0) (5,1,0) (4,0,1) 

NM 11 15 11 10 9 9 
HPM 8 10 8 7 6 8 

        

7F , 
n=50 

0X  (.1,.1,...,.1) (.3,.3,...,.3) (.5,.5,...,.5) (1,1,...,1) (1.5,1.5,...,1.5) (2,2,...,2) 

NM 4 4 5 6 6 7 
HPM 3 3 4 4 5 6 

        

8F  
n=50 

0X  (0,0,...,0) (.2,.2,...,.2) (.5,.5,...,.5) (1.1,1.1,...,1.1) (1.5,1.5,...,1.5) (2,2,...,2) 

NM 6 8 6 4 5 6 
HPM 6 7 5 3 4 5 

        

9F  
n=50 

0X  (.1,.1,...,.1) (.2,.2,...,.2) (.5,.5,...,.5) (1,1,...,1) (1.5,1.5,...,1.5) (2,2,...,2) 

NM 18 19 21 21 22 21 
HPM 13 14 15 15 15 15 

 
Conclusions 

The Homotopy perturbation method was extended and applied to the numerical 

solution for solving system of nonlinear  equations. The numerical examples show that our 

method is very effective and efficient. Moreover, our proposed method provides highly 

accurate results in a less number of iterations as compared with the Newton–Raphson 

method, when the initial value x0 is well chosen. It is an open problem to determine the most 

appropriate choice of the initial guess. 

Recommendation  In future works i will prove the extended homotopy method. 
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