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Abstract  

 Cysteine protease inhibitors have long been part of drug discovery 

programs for Alzheimer's disease (AD), traumatic brain injury (TBI), and 

other disorders. Select inhibitors reduce accumulating proteins and AD 

pathology in mouse models. One such compound, Z-Phe-Ala-

diazomethylketone (PADK), exhibits a very weak IC50 (9-11 μM) towards 

cathepsin B (CatB), but curiously PADK causes marked up-regulation of the 

Aβ-degrading CatB and improves spatial memory. Potential therapeutic and 

weak inhibitor E64d (14 μM IC50) also up-regulates CatB. PADK and E64d 

were compared regarding the blockage of calcium-induced cytoskeletal 

deterioration in brain samples, monitoring the 150-kDa spectrin breakdown 

product (SBDP) known to be produced by calpain. PADK had little to no 

effect on SBDP production at 10-100 μM. In contrast, E64d caused a dose-

dependent decline in SBDP levels with an IC50 of 3-6 μM, closely matching 
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its reported potency for inhibiting μ-calpain. Calpain also cleaves the 

cytoskeletal organizing protein gephyrin, producing 49-kDa (GnBDP49) and 

18-kDa (GnBDP18) breakdown products. PADK had no apparent effect on 

calcium-induced gephyrin fragments whereas E64d blocked their production. 

E64d also protected the parent gephyrin in correspondence with reduced BDP 

levels. The findings of this study indicate that PADK’s positive and selective 

effects on CatB are consistent with human studies showing exercise elevates 

CatB and such elevation correlates with improved memory. On the other hand, 

E64d exhibits both marginal CatB enhancement and potent calpain inhibition. 

This dual effect may be beneficial for treating AD. Alternatively, the potent 

action on calpain-related pathology may explain E64d’s protection in AD and 

TBI models. 

 
Keywords: Alzheimer's disease, calpain, lysosome, PADK, E64d 

 

Introduction 

 The age-related protein accumulation disorder Alzheimer’s disease 

(AD) afflicts more than 5 million people in the U.S., also causing stress to 

caregivers, family, and friends. Furthermore, the disease greatly burdens a 

healthcare system that is incurring over $250 billion in costs each year. The 

process of aging is known to exacerbate pathogenic protein accumulation, as 

most non-familial cases of AD occur in people 65 years or older. Features of 

AD include i) intracellular aggregates, ii) extracellular deposits, and iii) 

multiproteinopathic components comprising of Aβ42, amyloid precursor 

protein (APP) fragments, hyperphosphorylated tau, and often TDP-43 and α-

synuclein (Nixon, 2007; Mazzuli et al., 2016). Protein accumulations occur 

prior to the onset of synaptic pathology and neurodegeneration (Bendiske et 

al., 2002; Goldberg, 2003; Butler et al., 2005), likely as a result of an 

imbalance between protein synthesis and degradation.  

 Lysosomes contain a variety of cysteine, aspartyl, and serine proteases 

as well as other enzymes as part of a key protein degradation pathway. 

Cathepsins are among the proteolytic enzymes located within the acidic 

environment of the lysosome where their main function is the degradation of 

large biomolecules (see Bahr, 2009; Ditaranto et al., 2001; Wang et al., 2017). 

The specific enzyme cathepsin B (CatB) has been implicated as a therapeutic 

target for AD since it degrades Aβ42 into less pathogenic peptides through C-

terminal truncation (Mueller-Steiner et al., 2006; Butler et al., 2011). In 

addition, positive CatB modulation appears to be a cellular protection avenue 

since the enzyme exhibits an enhancement effect in response to many types of 

protein clearance compromise and protein accumulations, including:  

 Proteasome inhibitor treatment in SH-SY5Y cells (Cecarini et al., 

2014) 



8th International Scientific Forum, ISF 2017, 7-8 September 2017, UNCP, USA,   Proceedings 

40 

 Proteasome inhibition in SH-SY5Y cells expressing human APP 

(Cecarini et al., 2014) 

 Intrahippocampal injection of proteasome inhibitor in aged rats 

(Gavilán et al., 2015) 

 Proteasome inhibitor treatment in hippocampal slices (Farizatto et al., 

2017) 

 Chloroquine-induced lysosomal stress in hippocampus (Bendiske & 

Bahr, 2003). 

 High concentration Aβ42 in hippocampal slices (Bendiske & Bahr, 

2003) 

 Low-levels of Aβ42 in hippocampal slices (Farizatto et al., 2017) 

 Aβ42 treatment of a mouse neuronal cell line (Mueller-Steiner et al., 

2006) 

 Expression of mutant human APP in mouse brain (Mueller-Steiner et 

al., 2006) 

 Human huntingtin expression in cultured neurons (Wu et al., 2012) 

  

 Note that a compensatory inter-relationship between the proteasomal 

and lysosomal protein clearance pathways has been suggested with recent 

evidence showing that impairment of the proteasomal system activates CatB 

and the lysosomal system (Cecarini et al., 2012; Farizatto et al., 2017). In 

addition, a positive modulator of the lysosomal system enhanced the level of 

CatB activity and also reduced Aβ accumulation in neuroblastoma cells 

expressing mutant APP (Park et al., 2016). Across AD transgenic mouse 

models, genetic and pharmacological manipulations found to increase CatB 

activity also reduced Aβ levels and offset disease parameters (Mueller-Steiner 

et al., 2006; Sun et al., 2008; Butler et al., 2011; Yang et al., 2011; Wang et 

al., 2012). 

 In other studies, CatB inhibition has been linked to the reduction of Aβ 

deposits and improved memory in AD mouse models using the broad cysteine 

protease inhibitor E64d (see Hook et al., 2007, 2011, 2014a). E64d, however, 

was also found to potently inhibit the calcium-activated protease calpain and 

such inhibition was found to protect against different neuropathologies 

(Inubushi et al., 1994; Tsubokawa et al., 2006; Trinchese et al., 2008; Jeon et 

al., 2016). Thus, the current study compared the distinct compounds PADK 

and E64d with regard to the extent of their CatB modulation vs. their calpain 

blocking capacity. The latter was assessed by measuring calcium-dependent 

breakdown of the cytoskeletal protein spectrin that is implicated in many 

pathological states (Vanderklish & Bahr, 2000; Pineda et al., 2004; Weiss et 

al., 2009; Ono et al., 2016) and the calcium-dependent breakdown of gephyrin, 

a postsynaptic scaffold protein that recruits transmitter receptors and interacts 
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with a guanine nucleotide exchange factor (Kawasaki et al., 1997; Fekete et 

al., 2017).   

 

Materials and Methods  

 Hippocampal Slice Cultures. All studies with animals were carried out 

in accordance with the recommendations from the Guide for the Care and Use 

of Laboratory Animals from the National Institutes of Health. Brain tissue 

from postnatal 12-day-old Sprague-Dawley rats (Charles River Laboratories) 

was rapidly removed to prepare hippocampal slices (Farizatto et al., 2017; 

Butler et al., 2011). Transverse slices (400 μm) were quickly prepared and 

gently positioned on Millicell-CM inserts (Millipore, Billerica, 

Massachusetts). The hippocampal slices were maintained at 37°C in 5% CO2-

enriched atmosphere for 18-22 days before being treated with different agents. 

 Culture Treatments. E64d (2S,3S-trans-epoxysuccinyl-L-

leucylamido-3-methylbutane ethyl ester or aloxistatin; Sigma-Aldrich; St. 

Louis, Missouri) was applied daily to hippocampal slice cultures for 2-3 days. 

The compound Z-Phe-Ala-diazomethylketone (PADK; Bachem Inc., 

Torrance, California), which promotes mature CatB levels in different model 

systems (Ryzhikov & Bahr, 2008; Butler et al., 2011; Bahr et al., 2012) was 

similarly assessed in the hippocampal cultures. After treatments, cultured 

slices were gently removed from the inserts into groups of 7-9 each using ice-

cold isosmotic buffer and homogenates were prepared. 

 Cathepsin B Activity. The InnoZyme Assay Kit (Millipore) was used 

to measure CatB activity in the hippocampal slice samples treated with various 

concentrations of compounds. Aliquots of homogenized samples (10 μg 

protein) were assessed in duplicate for proteolytic activity using the Z-Arg-

Arg AMC substrate and the SpectraMax M3 microplate reader.   

 Calcium-Dependent Calpain Assay. Brain tissue homogenates were 

rapidly prepared from adult rats, which were humanely sacrificed by 

isoflurane anesthesia and decapitation. Brains were cooled and removed from 

the skull and then placed in ice-cold homogenization buffer. The brains were 

immediately dissected and telencephalic tissue was collected, homogenized 

and assayed for protein content level. Equal protein aliquots were incubated 

with 6 mM CaCl2 at 37°C, in the absence or presence of potential protease 

inhibitors, and then assessed by immunoblot for proteolytic products.  

 Immunoblot Analysis. Immunoblot samples of adult brain tissue and 

hippocampal slice cultures were sonicated in cold lysis buffer (Sigma-Aldrich; 

St. Louis, Missouri). Protein content was determined and equal amounts of 

protein were denatured in sample buffer and separated on gradient gels for 

subsequent transfer to nitrocellulose. Blots were incubated in blocking 

solution containing 5% milk or BSA for 1 h. Primary antibody staining utilized 

antibodies against cathepsin B (1:100, Calbiochem), GluR1 (1:1000; 
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Millipore) and anti-αII spectrin (1:100, Santa Cruz), as well as against actin 

20-33 (1:500, Sigma)  and an antibody to gephyrin’s C-terminal (1:250) made 

against the sequence VELHKGEVVDVMVIGRL described in Kawasaki et 

al. (1997). Anti-IgG-alkaline phosphatase conjugates and anti-IgG-

horseradish peroxidase conjugates were used for the secondary antibody step, 

and antigen staining and image development involved the chemiluminescence 

protocols using the GE Amersham AI600RGB imager. Immunostained bands 

were scanned at high resolution to determine integrated optical density with 

BIOQUANT software (R & M Biometrics, Nashville, Tennessee).  

 Transgenic Mice Assessment. Transgenic and control mice were 

housed in vivarium facilities until the desired age. The APPSwInd J20 line mice 

(Jackson Laboratories) exhibit lower levels of Aβ deposits compared to the 

original line, and were used at 9–10 months of age. Genotype was confirmed 

by PCR. Mice were handled daily for 1 week and subsequently received daily 

i.p. injections of 20 mg/kg PADK. Control mice were injected with the 

corresponding volume of vehicle. Mice were handled and familiarized with 

the open field used for spatial memory. The APPSwInd mice and age-matched 

wild-type mice were mildly caloric-restricted and assessed for spatial memory 

in the hidden food cache test. A food reward was placed in one of two opaque 

cylinders in opposite corners of an open field. The food location was changed 

after each 3-trial training session over a 24-h period, and food retrieval time 

was compared across trials. 

 Statistical Analyses. Specific immunoreactivity values [(optical 

density – background) × area] for each antigen were quantitatively compared. 

Results were evaluated with unpaired t tests or analyses of variance (ANOVA) 

followed by post hoc tests using Prism software (GraphPad, San Diego, 

California). IC50 and EC50 values were determined using nonlinear regression.  

 

Results  

 Potential targets of the weak cysteine protease inhibitors PADK and 

E64d include the lysosomal system and the calcium-activated protease calpain 

(Fig. 1a). PADK was assessed for CatB inhibitory action in brain 

homogenates, resulting in a very weak IC
50

 value of 9-10 µM (Fig. 1b). In 

contrast, lower PADK concentrations elicited positive modulation of the 30-

kDa CatB active isoform (CatB-30) in hippocampal slice cultures (Fig. 1c), 

including concentrations that produced no or minimal inhibitory effects on the 

enzyme (see grey zones in Figs. 1b and 1c).  
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 PADK’s dose-dependent modulatory effect on CatB-30 in Figure 1c 

exhibited an EC50 of 2.8 µM, thus was >3-times more potent than its weak 

inhibitory potency to explain its enhancing effect on CatB activity previously 

reported (Butler et al., 2005, 2011; Farizatto et al., 2017). This modulator 

induced a 3-6-fold increase in CatB-30 as compared to levels found in 

untreated hippocampal slices, and its effect was blocked by the very potent 

CatB inhibitor CA074 (open triangle in Fig. 1c). Corresponding with this 

CatB-enhancing effect, PADK improved spatial memory in APPSwInd 

transgenic mice using a novel hidden food cache paradigm (Table 1). APPSwInd 

and age-matched wildtype mice were trained to find the location of food that 

was placed in one of two opaque cylinders positioned in different 

configurations for each test. Wildtype mice exhibited improved time to find 

Figure 1. Potential enzyme modulation avenues. PADK and E64d are protease 

inhibitors that potentially target calpain and/or lysosomal hydrolases (a). PADK was 

assessed for its effect on CatB activity (b), exhibiting an IC50 of 9-10 µM in brain 

homogenates. PADK at 1-8 μM (grey zone) produced little inhibition (red arrows), while 

the same concentrations enhanced the CatB-30 active isoform 3-5 fold (c; green arrows) 

in hippocampal slice cultures (EC50 = 2.8 µM).  GluR1 was unchanged in PADK-treated 

samples (+). In the presence of the CatB inhibitor CA074, 10 μM PADK was unable to 

have an effect on CatB-30 (*p<0.05).   
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the food reward after three trials (p<0.001), whereas APPSwInd mice showed no 

improvement after 3 trials (Table 1). PADK treatment at 20 mg/kg/day (i.p.) 

allowed the transgenic mice to improve their food location time (p=0.036), to 

a level comparable to the performance by wildtype controls. These results are 

similar to the previously correlated improvement of episodic memory in APP-

PS1 mice (Butler et al., 2011).  

 ____________________________________________________________ 

                                                seconds to find food cache (mean ± SEM):   

 

            trial               WT mice        APPSwInd mice 

            1                11.0 ± 2.5            12.3 ± 2.8 

       3 + veh        6.30 ± 1.2**          13.1 ± 2.6   

       3 + PADK                      –                           6.16 ± 2.7* 

  

 

Table 1. Spatial memory was improved in 9-10-month APPSwInd mice treated with PADK (20 

mg/kg/day ip for 9 days). APPSwInd mice and age-matched wild-type mice (WT) were mildly 

caloric-restricted and assessed with the hidden food cache test. A food reward was placed in 

one of two opaque cylinders in opposite corners of an open field. The food location was 

changed after each 3-trial training session, and food retrieval time was compared across trials. 

**p<0.001, t-test compared to trial 1; *p=0.036, Mann-Whitney test compared to APPSwInd 

trial 3 + vehicle.  

 

 The broad cysteine protease inhibitor E64d also has been implicated as 

a treatment avenue for AD (Hook et al., 2007, 2011, 2014a). While it has been 

suggested that E64d’s inhibitory effect on CatB is the underlying therapeutic 

action for offsetting AD pathology, this weak protease inhibitor was found to 

increase CatB-30 (Table 2). Note that the positive modulation of CatB by E64d 

was less pronounced than the enhancing effect produced by PADK (increase 

of 76% vs. 549%; p<0.001). Other weak cysteine protease inhibitors were also 

found to up-regulate active CatB to varying degrees, including i) SD1002, a 

non-peptidyl PADK analogue previously found to promote Aβ42 clearance 

(Viswanathan et al., 2012), ii) the polyphenol quercetin that, like PADK and 

E64d, exhibits very weak CatB inhibitory action (Ramalho et al., 2015), and 

iii) Cathepsin Inhibitor 1 (CATI-1, also known as Z-Phe-Gly-NHO-Bz), a 

broad inhibitor of papain and several cathepsins (Table 2). The potent CatB 

inhibitors CA074, CA074me, and E64 did not exhibit positive modulation of 

CatB-30. Table 2 also compared the listed 8 compounds for their inhibitory 

action on the calcium-activated cysteine protease calpain and, interestingly, 

E64d and the related E64 compound stand out as the most potent. 
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  very weak inhibitors           CatB-30, percent±SEM      IC50 for CatB, µM     IC50 for calpain, µM 

     vehicle control               100 ± 4.0   –                – 

  
  PADK              1 µM                   340 ± 38.7**                          9 – 11a                                              ≥100 (from Fig. 3d) 

              10 µM      649 ± 74.5***  

  
  E64d                    1 µM      115 ± 9.2                                   14b                       3 – 6 (from Fig. 3b) 

          10 µM     176 ± 12.5*** ###             0.04 - 4c 

   
  SD1002           10 µM      345 ± 13.3**                  >50d                 n.d. 

   

  quercetin           10 µM      198 ± 19.2**   8e                                    211f 
    

  CATI-1            10 µM      149 ± 14.3**             weak inhibitorg              >20h 

  
      potent inhibitors               CatB-30, percent±SEM           IC50 for CatB, µM                   IC50 for calpain, µM 

  CA074           0.3-1 µM          95 ± 11.9                 0.004b                                  >100b 

  CA074me      0.3-1 µM                   116 ± 9.2                                0.12a                n.d. 
     E64          1-2 µM      112 ± 7.5                 0.03i               0.57j 

   

 

Table 2. Comparisons among weak cysteine protease inhibitors and potent inhibitors 

regarding CatB-enhancing activity in hippocampal slice cultures and inhibitory activity 

targeting CatB and calpain. Measures of the 30-kDa CatB isoform (CatB-30) in treated 

hippocampal slices were from Farizatto et al. (2017). ANOVA multiple comparison tests 

compared to vehicle control: **p<0.01, ***p<0.001; unpaired t-test compared to 10 μM 

PADK: ###p<0.001. IC50 values for inhibiting calpain-mediated SBDP production are shown 

for PADK and E64d from Fig. 3. Other IC50 values for inhibiting CatB and calpain were 

obtained from the following references: a, Butler et al., 2011; b, Jeon et al., 2016; c, Huang et 

al., 1992; d, Viswanathan et al., 2012; e, Ramalho et al., 2015; f: Je Ma et al., 2009; g, 55; h, 

Montagne et al., 2017; i, Inubushi et al., 1994; j, Trinchese et al., 2008. CATI-1, Cathepsin 

Inhibitor 1; n.d., not determined.  

  

 To determine whether PADK and E64d have different actions on the 

calcium-activated calpain, assays were conducted to assess their ability to 

inhibit previously characterized breakdown products of spectrin and gephyrin 

mediated by calpain (SBDP and GnBDP; Fig. 2). Pathogenic calpain 

activation is known to cleave the α-subunit of the cytoskeletal protein spectrin 

(Vanderklish & Bahr, 2000). Calpain also cleaves the postsynaptic scaffold 

protein gephyrin into long-lasting fragments of 18 and 49 kDa (Kawasaki et 

al., 1997). Brain homogenates were prepared and incubated with calcium, 

producing a 150-kDa αII-spectrin fragment, and E64d inhibited this SBDP 

production (Fig. 3a). The dose-dependent inhibitory effect exhibited an IC50 

of 3-6 μM (ANOVA p=0.0066; Fig. 3b), closely matching E64d’s reported 

potency for blocking μ-calpain (Huang et al., 1992). PADK, on the other hand, 

did not decrease SBDP levels in calcium-treated brain samples (Fig. 3c). 

Insignificant variability in SBDP levels was found (Fig. 3d), but some calpain 
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inhibition may occur at very high PADK concentrations that would negate its 

positive modulation of CatB.  

 
Figure 2. Calpain-mediated proteolysis of spectrin and gephyrin. Compounds may have 

an effect on calpain, a calcium-activated protease that generates breakdown products of 

spectrin (SBDPs of 150-152 kDa) and gephyrin (GnBDPs of 18 and 49 kDa). 

   
Fig. 3. E64d blocks calcium-induced spectrin breakdown while PADK does not. Rat 

telencephalic homogenates were not treated (NT) or treated with CaCl2 at 37°C for 1 h to 

activate proteases in the presence of E64d (a, b) or PADK (c, d). Equal protein aliquots were 

assessed by immunoblot for anti-αII-spectrin staining of the 150-kDa SBDP and for labeling 

of a gel loading control. Calcium-induced SBDP levels were normalized to the 0 µM control 

and means ± SEM were compared to the control: *p<0.05, **p≤0.01. PADK had no effect on 

SBDP. 
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Concerning the calpain-mediated gephyrin fragments previously 

characterized in hippocampal membranes, calcium treatment of rat 

telencephalic samples also led to the production of a 49-kDa breakdown 

product (GnBDP49) as found in the hippocampal study, and to the production 

of a smaller 18-kDa fragment (GnBDP18) labeled by the antibodies developed 

against gephyrin’s carboxyl-terminal sequence (Fig. 4a). Comparing the two 

distinct compounds of this study, PADK at 100 μM was found to have no effect 

on the calcium-induced generation of GnBDP18 (Fig. 4b and 4c), whereas 100 

μM E64d completely blocked the 18-kDa fragment from forming (Fig. 4c).  

 

Figure 4. E64d blocks calcium-induced gephyrin breakdown. Telencephalic homogenates 

were treated without (–) or with (+) CaCl2 at 37°C for 1 h, generating gephyrin breakdown 

products of 49 (GnBDP49) and 18 kDa (GnBDP18) that were detected by immunoblot (a). 

Molecular weight markers are shown. PADK had no effect on calcium-induced GnBDP18 

formation (b) whereas E64d blocked its formation (c).  NT, not treated with CaCl2. 

 

In addition to inhibiting the GnBDP18 proteolytic cleavage product, 

E64 blocked the formation of the larger GnBDP49 fragment as well (Fig. 5a 

and 5b). The dose-dependent reduction of the 49-kDa cleavage product in 

calcium-activated samples closely corresponded with E64d’s dose-dependent 

inhibition of spectrin breakdown (Fig. 5c). Note that the calcium-induced loss 

of the protein band shown as a gel load control was also protected by E64d. 
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Figure 5. E64d reduces GnBDP49 in calcium-treated brain tissue. Telencephalic 

homogenates were treated with CaCl2 at 37°C for 1 h, generating the gephyrin fragment 

GnBDP49 detected by immunoblot (a) and the E64d inhibitory effect was determined across 

concentrations. Calcium-induced GnBDP49 levels were normalized to the 0 µM control and 

means ± SEM were compared to the control: *p<0.0182. A corresponding E64d effect was 

found for blocking calcium-induced SBDP levels (c). NT, not treated with CaCl2. 

 

Next, we tested the E64d and PADK compounds for the ability to 

protect the parent gephyrin protein, the 95-kDa isoform, from deterioration by 

calcium-induced proteolysis. In a pair of calcium-treated telencephalic 

homogenates, the brain sample with the addition of E64d exhibited a 

correspondence between blocking gephyrin fragment formation and 

protecting the parent gephyrin (see top two blot strips in Fig. 6a). As also 

indicated in the figure, the E64d inhibitor had similar abilities to 1) reduce 

gephyrin from being fragmented to GnBDP49 and other breakdown products 

and 2) reduce spectrin from being proteolyzed to the SBDP calpain cleavage 

product.  
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Figure 6. E64d protects the 95-kDa parent gephyrin from being proteolytically 

depreciated. The calcium-treated brain homogenates incubated in the absence (–) or 

presence of E64d (+) were assessed by immunoblot for both the parent gephyrin and 

GnBDP49 as well as SBDP (a). PADK- and E64d-treated samples were assessed for 

protection of calcium-induced loss of gephyrin (b). Integrated optical densities (mean 

IODs ± SEM) of gephyrin labeling were normalized to the 0 µM control for PADK 

samples (no protection) and for E64d samples that exhibited protection to levels that 

were ≥control levels (c). Dotted line: gephyrin amount in no-calcium control samples.   

  

Additional calcium-treated brain samples were incubated with 10-100 

μM PADK and showed no evidence that PADK protected the 95-kDa parent 

gephyrin, but samples treated with 10-100 μM E64d were associated with 

robust levels of protected gephyrin protein (Fig. 6b). When examining the 

effects across dosages of PADK and E64d, for evidence that they govern 

cytoskeletal decay, calcium-treated samples with different PADK 

concentrations fell well below the control gephyrin measures from samples 

without the calcium incubation (average control level noted by dotted line in 

Fig. 6c). This finding indicates that no protection of gephyrin was produced 

by PADK. In contrast, calcium-incubated samples with different E64d 
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concentrations exhibited amounts of parent gephyrin that approached or 

exceeded the dotted-line control level of gephyrin (Fig. 6c). Interestingly, the 

calcium-activated homogenates that were treated with 10-100 μM E64d 

exhibited much more parent gephyrin than those homogenate samples that 

were treated with 100 μM PADK. Together with results of the breakdown 

product experiments, these findings indicate that E64d protects gephyrin from 

calpain-mediated proteolytic damage.  

 

Discussion 

 For over 30 years, research programs for developing neurotherapeutics 

and other disease treatments have included cysteine protease inhibitors (see 

Wang & Yuen, 1994; Nixon, 2000; Vanderklish & Bahr, 2000; Trinchese et 

al., 2008; Saatman et al., 2010; Ono et al., 2016; Sugiyama et al., 2017). For 

protein accumulation disorders (e.g., AD, Parkinson’s disease, and 

Huntington’s disease), it is counterintuitive to use protease inhibitors that 

would block the same protein clearance pathways whose dysfunctions are part 

of pathogenic cascades (see Torres et al., 2012; Burbulla et al., 2017; Farizatto 

et al., 2017). Pathogenic protein clearance is a critical issue for AD-type 

pathology since Aβ42 and Aβ40 peptides have impaired clearing rates in the 

human disease (Mawuenyega et al., 2010). Accordingly, a growing number of 

studies has investigated agents that enhance enzymes appropriately involved 

in protein clearance. The CatB cysteine protease is one such enzyme: it is a 

lysosomal hydrolase that degrades Aβ into less amyloidogenic species 

(Mueller-Steiner et al., 2006; Butler et al., 2011; Wang et al., 2012; Cermak 

et al., 2016; Park et al., 2016) and it is neuroprotective when up-regulated, 

reducing synaptic and behavioral deficits related to AD (Mueller-Steiner et al., 

2006; Sun et al., 2008; Butler et al., 2011; Yang et al., 2011; Viswanathan et 

al., 2012). The PADK and E64d compounds compared here are both very 

weak inhibitors of the Aβ-degrading CatB, but both were found to up-regulate 

CatB levels which may explain their beneficial actions in AD mouse models 

(see Butler et al., 2011; Hook et al., 2011; Bahr et al., 2012). It is noteworthy, 

however, that the two compounds exhibited distinct actions on the active CatB 

isoform vs. the calcium-dependent cysteine protease calpain: 

  PADK up-regulated CatB-30 by 549% while causing no apparent 

change in calpain activity; 

  

  E64d  up-regulated  CatB-30  by  76%  but reduced calpain activity by 

80-90%. 

   PADK has a >7-fold effect on CatB enhancement as compared to E64d’s 

effect, as indicated by hippocampal slices after being treated with the compounds. 

PADK’s robust effect on CatB explains the improved protein clearance as part of 

its protective actions in AD mouse models, which is consistent with human 
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studies showing exercise elevates CatB levels in correlation with improved 

memory (Moon et al., 2016). E64d, on the other hand, elicits a much smaller 

enhancing effect on CatB, but this small enhancement may be part of E64d’s 

therapeutic action at concentrations that do not block the protein clearing role of 

CatB.  

 This study also indicates that PADK and E64d differ mechanistically 

in their abilities to block calpain-mediated proteolysis. PADK’s positive effect 

on CatB was found to be selective, apparently independent of any inhibitory 

effect on calpain, an enzyme linked to several neurodegenerative disorders 

including stroke, seizures, TBI, and AD (see reviews: Nixon, 2000; 

Vanderklish & Bahr 2000). E64d’s blocking of calpain-mediated cytoskeletal 

damage was observed to be many times more potent than its effect on CatB. 

Thus, PADK and E64d may provide separate yet promising therapeutic 

avenues by acting on different targets (see Fig. 7).  

 PADK increases CatB-30 levels through an interaction with the CatB 

enzyme’s active site. Such an interaction appears to occur to different degrees 

by phenolic-rich structures including PADK, the related Z-Phe-Phe-

diazomethylketone, the nonpeptidic modulator SD1002, and the natural 

phenolic compound quercetin since they were effective at up-regulating CatB-

30. In contract, the structurally distinct epoxysuccinyl peptide E64d acted 7-

fold less potently than PADK for CatB positive modulation. In addition to 

lacking phenolic motifs that may facilitate the modulation, E64d is known to 

be hydrolyzed once it readily permeates into cells, becoming a potent cysteine 

protease inhibitor with an IC50 for blocking calpain of 0.04 μM (Huang et al., 

1992). This feature of E64d likely influences its ability to up-regulate CatB 

since the better positive CatB modulators identified here are very weak 

inhibitors of cysteine proteases.   
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Figure 7. Differential pathways and therapeutic targets of PADK and E64d. PADK has 

a positive and selective effect on lysosomal CatB which likely explains its beneficial effect 

on AD-type protein accumulation pathology. E64d elicits low-level positive CatB modulation 

which may be part of its therapeutic action. In addition, evidence indicates that E64d potently 

blocks pathogenic, calpain-mediated cytoskeletal damage, and the compound is known to 

block a number of lysosomal enzymes. The singular action on calpain or the dual effect on 

calpain and the lysosomal pathway may explain E64d’s protective results. 

 

 The results suggest that E64d targets the calcium-regulated enzyme 

calpain, an enzyme that is essential to a host of cellular processes and is known 

to participate in many pathologic cascades. E64d effectively reduced 

cytoskeletal degradation linked to neuropathology, evaluated by measuring 

spectrin and gephyrin proteolysis that was shown previously to be blocked by 

selective calpain inhibitors (Kawasaki et al., 1997; Vanderklish & Bahr 2000). 

E64d and PADK exhibited disparate effects on the cytoskeletal damage in 

brain samples: 

  E64d blocked calcium-mediated spectrin and gephyrin breakdown at 

≥10 μM; 

  E64d protected the parent gephyrin from calcium-mediated 

proteolysis at ≥10 μM; 

  PADK did not block the induced cytoskeletal breakdown or protect 

the parent gephyrin. 
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 Of its different modulatory actions depicted in Figure 7, E64d’s 

negative modulation of calpain alone very likely explains its protective effects 

against neurodegenerative insults, rather than through dual inhibition of both 

calpain and a family of lysosomal cathepsins (E64d is listed as an inhibitor of 

cathepsins B, F, H, K, and L). First, selective calpain inhibitors have been 

widely reported to protect against ischemic insults and TBI (see Vanderklish 

& Bahr, 2000; Saatman et al., 2010; Ono et al., 2016). Second, E64d 

completely protected against the TBI-induced neuronal loss measured in CatB 

knockout mice (Hook et al., 2014b). Third, intracellular and hydrolyzed E64d, 

having a 0.04-μM IC50 for blocking calpain (Huang et al., 1992), is 350 times 

more potent towards calpain vs. CatB and has been shown to lower Aβ peptide 

levels and improve memory in APP transgenic mice (Hook et al., 2007, 2011, 

2014a). In comparison, the calpain inhibitor BDA-410 is 748 times more 

potent towards calpain vs. CatB and exhibited similar memory improvement 

as well as restored normal synaptic functions in AD mice (Trinchese et al., 

2008). Lastly, inhibition of cathepsins would not be a beneficial feature to add 

to a therapeutic for synaptic/cognitive protection since CatB-blocking levels 

of cysteine protease inhibitors were found to be toxic, causing the 

accumulation of APP fragments and reducing synaptic protein measures (Bahr 

et al., 1994). Similarly, E64d blocked lysosomal protein clearance leading to 

accumulating levels of the mutant huntingtin protein (Jeong et al., 2009). 

 Inhibiting calpain enzymes as a therapeutic avenue has long been a 

challenge since reducing calpain activity can i) negatively affect one of the 

many physiological roles for calpains and ii) lead to adverse side effects. Even 

with these challenges, drug discovery efforts remain active to develop calpain-

targeted strategies to treat cancer, cardiovascular diseases, drug abuse, and 

neurodegenerative disorders including latter stages of AD (see Ono et al., 

2016; Liang et al., 2017).  

 Interestingly, the E64d neuroprotectant, shown to be effective in 

London-mutant APP mice, appears to be the first compound identified that is 

both a potent calpain inhibitor and a positive modulator of the lysosomal 

pathway through CatB up-regulation. As should be noted, a cautionary study 

reported that all APP-overexpressing mice exhibit a toxic protein 

accumulation that does not occur in AD brains and that calpain activation can 

be an artifact of APP overexpression (Saito et al., 2016). Notwithstanding, 

aberrant calpain activity may play a role in AD-related oxidative stress and 

age-related disruption of proteostasis that lead to lysosomal destabilization 

(see Nixon, 2000; Yamashima, 2016). Perhaps related, calpain inhibition has 

been suggested to promote protective protein clearance through inducing the 

autophagic-lysosomal pathway (Menzies et al., 2015; Watchon et al., 2017) 

and blocking the switch from 26S to 20S proteasomes in order to enhance 
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regulated 26S proteasomal protein degradation that is essential for neuronal 

health and survival (Huang et al., 2013). Thus, a potential therapeutic with 

calpain inhibitory and lysosomal enhancement properties may elicit two 

separate avenues for proteostasis protection. CatB enhancement, in fact, has 

been shown to protect against AD-type protein accumulation pathology and 

associated synaptic compromise in a chloroquine-induced model of protein 

accumulation stress (Bendiske & Bahr, 2003; Butler et al., 2005; Rhyzikov & 

Bahr, 2008) and in models directly treated with Aβ42 (Park et al., 2016; 

Farizatto et al., 2017).  

 In summary, among the weak cysteine protease inhibitors assessed, the 

PADK compound was found to have a positive effect on CatB but did not 

appear to inhibit calpain. E64d, on the other hand, was demonstrated to be 

both a positive CatB modulator and a potent calpain inhibitor. This dual action 

suggests E64d has a unique ability to treat protein accumulation events related 

to AD. 
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