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Abstract 

 The purpose of this paper is to study the rheological responses of four and five-

parameter viscoelastic models under dynamic loading.  These models are chosen for studying 

elastic, viscous, and retarded elastic responses to shearing stress. The viscoelastic specimen is 

chosen which closely approximates the actual behavior of a polymer. The module of 

elasticity and viscosity coefficients are assumed to be space dependent i.e. functions of ' 'x  in 

non-homogeneous case and stress-strain are harmonic functions of time ' 't . The complex 

viscosity of five parameter model is calculated. The expression for relaxation time for five 

parameters and four parameter viscoelastic models have been obtained by using a constitutive 

equation. The dispersion equation is obtained by using Ray techniques. The rheological 

responses for both models under dynamical loading are shown graphically.  Also, the five 

parameter model is justified with the help of cyclic loading for maxima or minima.
 

 

Keywords: Shear Waves, Viscoelastic Media, Asymptotic Method, Dynamic Loading, 

Friedlander Series 

Introduction 

 The viscoelasticity theory is used in the field of solid mechanics, seismology, 

exploration geophysics, acoustics and engineering. The solutions of many problems related to 

wave-propagation in homogeneous media are available in many literatures of continuum 

mechanics of solids. However, in the recent years, the interest has arisen to solve the 

problems connected with non-homogeneous bodies. These problems are useful to understand 

the properties of polymeric materials and industrial related applications. The practice and 



European Scientific Journal    April 2013 edition vol.9, No.12    ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431  

288 
 

theoretic analysis indicate that the dynamic loadings (such as earthquake, tsunami, raging 

billow and vibration) are the important factor and mainly the power of inducing geological 

disaster of soft rock-soil. The rheological mechanic's response and rheological parameters of 

specimen are tested and analyzed under dynamic loading, the viscoelastic-plasticity 

rheological dynamic model is established, and new rheological equation is deduced. The 

vibrations in earthquakes are due to differences in dynamic characteristics therefore the cyclic 

stress-strain behavior of material play a vital role for reliable prediction of the seismic 

response. Many researchers studied structural pounding during earthquakes. The lack of 

information concerns multi-dimensional waves in viscoelastic-media, and in particular for 

non-homogeneous media, therefore, a formal study of non-homogeneous viscoelastic models 

under dynamic loading is presented. 

              Modeling and model parameter estimation is of great importance for a correct 

prediction of the foundation behavior. Many researchers Alfrey (1944), Barberan and Herrera 

(1966), Achenbach and Reddy (1967), Bhattacharya and Sengupta (1978), and Acharya et al. 

(2008)  formulated and developed this theory. Further, Bert and Egle (1969), Abd-Alla and 

Ahmed (1996) , Batra (1998) successfully applied this theory to wave-propagation in 

homogeneous, elastic media. Murayama and Shibata (1961), Schiffman et al. (1964) have 

proposed higher order viscoelastic models of five and seven parameters to represent the soil 

behavior. Jankowski et al. (1998) discussed the linear viscoelastic model and the nonlinear 

viscoelastic model. Anagnostopoulos (1988) studied the linear viscoelastic model of collision 

to simulate structural pounding. Jankowski et al. (2005) studied the pounding of 

superstructure segments in bridges with the help of a linear viscoelastic model. Muthukumar 

and DesRoches (2006) did a comparison study using two single degree of freedom (SDOF) 

systems for capturing pounding. Westermo (1989) suggested linking buildings with beams 

which can transmit the forces between them eliminating dynamic contacts. Kakar et al.; 

(2012) and Kaur et al.; (2012) analyzed viscoelastic models under Dynamic Loading, 

Recently, Kakar and Kaur (2013) analyzed five parameter model of the propagation of 

cylindrical shear waves in non-homogeneous viscoelastic media. 

               The behavior of real materials cannot be completely represented by the simple 

Maxwell and Kelvin Model. More complicated models are required with a greater flexibility 

in portraying the response of actual material. Maxwell unit in parallel with a spring is the 

standard linear solid and a Maxwell unit in parallel with a dashpot is the viscous model. A 

four parameter model consisting of two springs and two despots may be regarded as a 

Maxwell unit in series with a Kelvin unit is capable of all the three basic viscoelastic patterns. 
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Thus it imparts instantaneous elastic response because of the free spring, viscous flow 

because of the free dashpot and finally delayed elastic response from the Kelvin unit. This 

study also focuses on five parameter model in which the module of elasticity and viscosity 

coefficients are assumed to be space dependent i.e. functions of ' 'x  . Further, shearing strain 

' 'a  and stress ' '  are taken as harmonic functions of time ' 't  i.e.
0

i ta a e   and 

0 0 0 0 .i t i tG a G a e e      The model is justified with the help of cyclic loading for maxima 

or minima. Here all the characteristics of the viscoelastic properties of the material, as 

determined under the harmonic oscillations, are the frequency dependence of the components 

of the complex modulus or the frequency dependence of the phase angle.  

Constitutive Relation For Five Parameter Model 

The five parameter model consists of two springs 1 1 2 2( ), ( )S G S G where 1G and 2G  are the 

modulli of elasticity associated to them and three dash-pots      2 2 2' 2' 3 3, ,D D D   where 

2 , 2' and 3  are the Newtonian viscosity coefficients associates to these elements. The 

module of elasticity and viscosity coefficients are assumed to be space dependent i.e. 

functions of ' 'x  in inhomogeneous case taken into consideration. Unidirectional problem is 

formed by taking the material in the form of filament of non-homogeneous viscoelastic 

material by taking one end at x = 0. The co-ordinate x is measured positive in the direction of 

the axis of the filament. Time is specified by t, and ,   and u respectively specify the only 

non-zero components of stress, shearing strain and particle displacement. The model has be 

divided into three sections, I, II, III. In fig.1, the section I, section II and section III has one 

spring 1 1( )S G , two dash-pots    2 2 2' 2',D D   one spring 2 2( )S G and one dash-pot  3 3D 

respectively.  

 

Figure-1 Five parameter viscoelastic model  

 

Under the supper- supposition principle strains are added in the case of series connections 

and stresses are added when they are in parallel. Now if 1a , 2a , 3a  be the three shearing 
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strains elongations in respective sections connected in series, then total elongation is  a   1a

+ 2   a + 3  .a The total stress in the network remains the same. In each section but in the case of 

section II which is sub-divided into two sections is added i.e. 1 2    , where   1  and 2  

are the stresses in the sub-sections. Relation for stress and strain for  2' 2'D  for section II 

(represented by single dash-pot) is  

1 2' 2a                                                                             (1) 

Since the sub-section II is represented by a Maxwell- element, then the relation is expressed 

as 

 
2 2

1

η

D

G

 
 

 
2 =  2D a                                  (2) 

Since, 1 2     for Section II , therefore                                                            

2

2' 2 2

2 2'

2

2

1 1
     

η
D D D a

G
G 

 

    
       

    

                                          (3)  

For section I, for the spring 1 1( )S G , the stress-strain relation is given by                                    

         1 1  aG 
                                                                               

 (4) 

For Section III; for the dash-pot  3 3D  , the stress –strain relation is given by                            

        3 3a 
                                                                    (5) 

The Stress-strain relation for the model representing the viscoelastic body for total stress ( )  

and strain  a  can be obtained from Eq. (3), Eq. (4) and Eq. (5) as:  

2 21 1 2 2 1 2 1 2 2 2 2
1

3 2' 2 2' 2 3 2' 2 2' 22'

   
G G G G G G G G G G G

D D G D D a
         

            
                  

                 (6)

 

Now we take 

 1

ij
  = ij  = i

j

G


 = 

( )

(  )

i i

j

S G

Dj 
        (7) 

Where, ( )i iS G elastic modulus of spring and (  )jDj  = viscosity of dash-pot,
 ij  = 

j

iG


,

'( 1,2 ; 2 ,2,3)i j   Using, Eq. (6) and Eq. (7), we get 

    
 

  
12' 222 2

12' 13 22 22' 1 22 22'

13 22 22'

.
     D D G D D a

 
      

  

   
         

     
             

(8)
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Put   
1 12' 13R    , 2 22 22'R     , R3 = 3 12' 22.R    , R4 = 14 3R  in Eq. (8), we get 

       2 2 2

1 2 3 1 2 1 1 24          D R R D R R G D R D a G D G R D a         
        (9) 

The Eq. (9) can be written in terms of differential operator form as     

        
2 2

1 0

, ,n m

n m

n m

x t D tD a x  
 

                           (10)  

where, the order m and n of sums on right hand side and left hand side in the Eq. (10) 

depends upon the structure of the mechanical model representing the viscoelastic body. n  

and m  are the combinations of the material constants and 2 1G  , 1 1 2 G R   , 

2 1 211,     R R    , 0 = 43R R , 
d

D
dt

 .

 

Eq. (10) is the required differential operator form 

of constitutive relation for the model for viscoelastic material to be studied. 

 Behavior of the model can be discussed as 

I. On comparing the 2
nd

 order derivatives, we get 

1G a                                                                                                                      (10a) 

Eq. (10a) implies that the instantaneous behavior is elastic due to spring 1G  only in 

section-1of the model. 

II. On comparing Fist order derivatives, we get 

       112' 13 22 22' 22 22' 1 GG a a                                                          (10b) 

From Eq. (10b), the behavior is elastic but effect of viscosity of dashpots 2 , 2' and 

3 is apparent due to the presence of relaxation time ij . 

III. On comparing zero
th

 order derivatives, we get 

  12' 22 13 22 22'. 0                                                                          (10c) 

The zero
th

 order derivatives show that the model is viscoelastic in nature. Hence, from 

the above discussion, it is clear that at the start the higher order derivates of time 

dominate, but as the time passes their dominancy decreases. 

Governing Equations For Five Parameter Viscoelastic Model 

One of the governing equation for the viscoelastic model is constitutive relation and is (Lakes 

(1998))   

    , ,,  ,   ,    ,  , 0t tt tf      
                                                               

(11)  

2 , 1 , 0 2 , 1 ,   tt t tt t           
                                                      

 (12)  
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The equation of motion is                                                                                                               

      , ,   x ttu 

 

                                         (13)             

The displacement-strain relation is                                                                                                  

            
,xa u                                                (14)

                                                                                                                                                      

From Eq. (13) and Eq. (14), we can write    

                     , , , ,, , ,

,

1 1
 x xx x xx tt

x

ttlog u a   
 

 
     

 
                         (15)                                                                                                                            

Using Eq. (12), Eq. (13), Eq. (14) and Eq. (15) the shearing stress field is  

   
2 , 1 ,ttt tt    + 

0 ,t   =   2
, ,,

 xxt xtx
log


  


  +   1

, ,,
 xx xx
log


  


                     (16) 

Solution For Five Parameter Viscoelastic Model 

We assume that the solution σ (x, t) of Eq. (16) may be represented by the Friedlander Series 

(1947) 

 ,x t     
0

n n

n

A F t h x




 .  =  
0 

   n n

n

A F x




    ,     , nx t h x A  = 0 ,   0 n            (17)  

With, 
1 , , 1 , , 1'    ,          n n n x x n n t nF F F h F F F      .                                                                                

The various derivatives stress with respect to x and t are    

, 1, , 2, , 3, ,      n n t n n tt n n ttt n nA F A F A F A F                                                    

, , 1 ,  '  x n n x n nA F h A F                                                     

 , , , 1  '' 2   '   xx n n x n xx n nA F h A h A F    + 2

, 2   n x nA h F 
    

  2

, 1 , , 2 , 3  '' 2   '    xxt n n x n xx n n n x nA F h A h A F A h F                                                  

, 1 , 2 ,  '  xt n n x n nA F h A F                                                                                                   (18)  

From Eq. (17) and Eq. (18) 

  

 

, , 21
,1

,

1
, ,,0 1  1 2  2 3  1 ,

2
,

2

,
,

( )

2   '

( )  ''      '

2   '''

'

x x n

x n

x n

x x nxx nn n n n n n n n n nx

x n
n

xx n
nx

h log A
h A

h A

log h Ah AA F A F A F A log A F F

h AA

h Alog A

 



    

 
 



   

  
  

   
          

              









22
2 , 3   

 

n n x nF A h F



 

 
 
 
  
  

  
    

   



       
 (19)                                    

Comparing the coefficient of  nF , we get       

                      1 ''   ,    ' 0n nA log x A





            
,

''   'n nx
A log A                    (20) 

Comparing the coefficient of 1nF  , we get      
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0 nA  =       1 2
, , , , ,

( ) 2   ' '' 'x x n x n xx n n nx
h log A h A h A A log A

 
 

 

 
    

 
         (21) 

Comparing the coefficient of 2nF  , we get      

1 nA  =   21 2
, , , , ,( ) 2   'x n x x n x n xx nh A log h A h A h A

 


 
                          (22) 

Comparing the coefficient of 3nF  , we get     

2 nA  = 
22
,  n xA h




                                                                 (23) 

 By putting the value of 2 and 2  in Eq. (23), we get 

 2

,

1

xh
G


                                                                          (24)                                                                                                                  

From Eq. (20) and Eq. (21), we get 

  1
0 , , , ,  ( ) 2   'n x x n x n xx nA h log A h A h A


 


                                 (25) 

From Eq. (21) and Eq. (25) 

2

1
0 2 1 1

1

 
G


                                                               (26) 

By putting the values of 0 1 1 2, , ,     in Eq. (27), we get 

143( )R R G   = 1 2 1.  (G R R + 2R  )
2

21
2

1

G
R

G
                                   (27) 

Finally we get, 

1 3 42  R R R R                                                            (28) 

Eq. (28) is the expression for relaxation time for five parameter viscoelastic model. 

Dynamic Loading And Its Justification 

The time parameter ' 't is introduced into an experimental scheme in dynamic experiments by 

cyclic deformation of the specimen, frequency ' '  of the oscillations plays the role of the 

time factor. The cyclic deformation is the fundamental process of determining the mechanical 

characteristics. The greatest preference is given to harmonic oscillations. A Harmonic action 

of the stress/strain produces a corresponding harmonic response in the strain/stress. Let us 

consider that shearing strain ' 'a  , induced in elastic body which can be expressed by a 

harmonic action as: 

0 a a iwte                                                                  (29) 
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Where, 0a  is the amplitude,  is the frequency of oscillations and ' 't is the time.  

According to Hooke’s law, stress ' '  is   

0    iwte 
                                                                

(30)
 

Where, 0  = 0 0G a , at t=0 

For an elastic body, the strain and stress vary harmonically and there is no lack in the 

harmonic motion in phase as both have 
iwte  as a factor. Thus an elastic body responds 

instantaneously to the external action (strain/stress). The phase shift angle between strain and 

stress is zero. For an ideal viscous body, the Newton’s law of flow to a fluid body is as: 

0

2

0 0 
i t

iwtea i e




  
 

 
  

                                            (31)                                                                                                                       
 

Where, 0  is the viscosity of the body and 0 0 0    a    at t=0. Thus, for a viscous 

deformation, stress advances by the strain by a phase angle
2


. Thus the phase shift angle for 

the stress-strain under periodic harmonic deformation for elastic body is zero and for the 

viscous body, it is 
2


Therefore the phase shift angle ‘ '  for the viscoelastic body must be 

between zero and 
2


 i.e. 0 .

2


  The lagging in phase of the strain behind the stress is due 

to the presence of relaxation processes in the case of viscoelastic body, as phase shift angle

, is given by 0 .
2


   Hence, 0 a a  

iwte  and (   )

0    i wte                                                                                                                                                  
                                                                                                                                        

 

If we represent the projection of the stress vector on axis of co-ordinates by taking 
'  x   

and 
'' ,   y  where 

'  and 
''  represent that real and imaginary parts respectively. If the 

strain is initially set harmonically, then the modulus of viscoelastic body with harmonic 

loading can be written as 

*

*a


=

*

'a


= ' '' *' ''

' '
i G iG G

a a

 
                          (32) 

The phase angle   is given as     

tan 

"

'

G

G
                                                         (33) 

In the case of present model (Five-Parameter; two springs 1 1 2 2( ), ( )S G S G ; three dash-pots

     2 2 2' 2' 3 3, ,D D D   which represents a linear viscoelastic behavior under a given action 
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of loading, the stress is directly proportional to strain. This is also true for time dependent 

stress and strain relation i.e. for viscoelastic body, the stress is 

  *

0  iwtat G e                                                       (34) 

Where, 0 a a  
iwte   

Using, the relation Ga   for an elastic body, the constitutive relation for the physical state 

representing the five parameter model is given by Eq. (9).                                                                       

Using Eq. (32), Eq. (34) in Eq. (9), we get 

  2 *

1 2 3 4 0  (   )R aR i R R G      iwte =  2

1 2 0G R i a   iwte                      (35) 

On solving, we get 

*G  ( )i  = 
 

    

2

1 2

2

3 4 1 2   

G R i

R iR RR

 

 

 

   
                                    (36) 

*G  ( )i =
      2 2

1 2 3 4 1 2

1

   G R i R i

A

R Ri R         
 

               (37)
 

 ' '' ''   G iG G i  
       2 2 2

1 2 1 2 3 4 2 3 4 1

1

     G R RR R R R R R R i

A

          
 

    (38)  

 

Separate Eq. (38) into real and imaginary parts, we get 

'G =
    2 2

1 2 1 2 3 4

1

   G RR R RR

A

     
                                           (39)       

''G =
  2

1 2 3 4 1

1

 G R R

A

R R    
                                                           (40) 

And loss tangent is given by 

 

    

2"
2 3 4 1

' 2

2 1 2 3 4

 
tan  

   

R R

R R R

R R

R

G

G R




 

 
  

   

 

    

2

2 3 4 1

2

3 4 2 1 2

 

   

R R

R

R R

R R R R



 

 

     

         (41)        

To find the values of ''G ,  

we put  2 3 4  ,A R R R  1  ,B R 1 2    ,E R R   
2

2 2  2

1 . A C E    , in Eq. (40), hence 

"G

 
1  2

2

3

2   2

 A B
G

C E

 

 




 
                                                     (42) 

Where,  

Now by taking                          
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D (
"G ( )) 0i                                                       (43) 

Where 
d

D
dt

   

With the help of Eq. (42) and Eq. (43) we get 

      2 2 2 2 2

13    2 2 2  0A B A A CEB           

         
2

2 2 2  2 2 2 2 23     2 2 2  0A B C EE A B C               

         2 2 4 2 2 2 2 2 2 43    2 2 2 2 2 2 0A B C C A C A B CE E E B                
 

     2 2 2 2 2 4 6  3   2   3 2   0E EAC BC A C A B C B             

2
6 2 4 2 23 2     2 3 0 

A A A AC
C E C C

B B
E

B B
  

      
             

                                          

(44) 

Eq. (44) gives the dispersion equation for wave propagation. It is a cubic in
2 , giving three 

roots, then either it  has one real root and other  complex roots as complex roots always occur 

in conjugate pairs or all the  three roots are real and at  
"G  has either a maximal value or 

minimum value at these roots.. Therefore, taking roots as 2 2 2

1 2 3, ,    , we get 

Sum of roots, 

2 2 2

1 2 3    = 2 3 2E
A

C
B

 
  
                                                   

 (45) 

Product of roots taken two at a time, 

  2 2 2 2

1 2 2 3     2 2

3 1     = 2  2 3
A A

E C C
B B

 
  
 

                                (46) 

Products of roots, 

2 2 2

1 2 3    =
2AC

B
                                                              (47) 

To determine 2 2 2

1 2 3 , ,     through Eq. (47) seems not to be so easy, taking one of the root for 

the extreme value of 
"G  as  

2

1 .C                                                                      (48) 

To find the other two roots 2 2

2 3,   for the Eq. (44) from Eq. (45), Eq. (46) and Eq. (47), such 

that  

2 2

2 3  = 2 3
A

CE
B

 
  

 
                                                  (49)   
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2 2

2 3.  =
AC

B
                                                             (50)   

Then Eq. giving 2 2

2 3,    can be expressed as  

2 2  3  
A AC

x C x
B

E
B

  
     

  
=0                                          (51)               

We get the roots, 

2

2 21
  3 3  4
2

A A AC
x C C

B B B
E E
    

          
                                  (52)                               

2 2 2

2 3 2
2

2

2
1
  3 1 1
2

3

,

AC
A BC
B A

C
B

E

E

 

  
  
      

         
       

                                     (53) 

When    
2

2
2 21

4 3 3
A

AC B E C E B A BC
B B

  
       

  
              

Taking –ve sign,  
2

24 3( )ABC E B A BC     

2

2

2 3  

AC

A
B CE

B

 
  

   
  

= 
 2 3

AC

BE A BC                                            (54) 

2

3 2

2

 
AC

B



  = 

 2 3BE A BC

B

 
                                            (55) 

Error due to approximation is 

24     3   
A

AC B CE
B

  
    

                                                  

 (56) 

From, Eq. (46) 

2 2 2 2

1 2 2 3     2 2

3 1     =
 2 2 3

 
AE A BC C

B

 
                                (57) 

Approximate value  

2 2 2 2

1 2 2 3     2 2

3 1   =
  

  
2

2

2
3

3

AC AC C
B A BC

B BE BC
E

B A
   

 
         (58) 

Error can be calculated by subtracting Eq. (57) and Eq. (58) 

 



European Scientific Journal    April 2013 edition vol.9, No.12    ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431  

298 
 

Error (ξ) = 2 
A

E
B

-
 

  
  

2
2

2

3
    3

3

A BC C AC C
B A BC

B BB AE C
E

B


   

 
                   

 (59) 

(ξ) =   
 

 

2
2

2

2

3( )
1

3  
3

ABC B A BC
C

AE A BC C
B B B A B

E

E C

   
    

 
                  (60)

 

Taking the +ve sign, we get 

  
 

2 2

3 2
2

1
  3 1

3( )

ACB
E B A BC

B B A BCE


 
    
  
 

 

  2 2

3

1
  3B A BC
B

E   
 2 3

AC

B BCE A


 
                                  (61) 

Case-1 

At very low frequencies, 0  , (from Eq. (42)) 

"G  (
 2 3 4" 2

1

0)  0,    0 
R R R

R
G 

 
    





                                

(62)

 

Then it is to be inferred that during the cyclic loading initially 0 
 

. .i e  ''  0 0,G   there 

must be a point of maxima or minima between 0   and 
 2 3 4

1

R R R

R



  .

 

Case-2 

Also, 

 
 

1 3 4" ''

3

1

2

4

2

(   )
 

 
m

G R R
R R

R
G G

R
 




                                          (63)

 

At very high frequencies,   (from Eq. (42)) 

"G  ( ) 0                                                              (64) 

But for 
2 = 3 4 R R  it is observed that for 

2 C   there must be a point of maxima as when 

initially
 

"G  (0) increases from zero to maximum value 
 

1 3 4''

1 2

(   )
 

 
m

G R R

R
G

R





 and again states 

that diminishing and reaches zero at 
 2 3 42

1

 
R R R

R



   , which justifies the model for the 

Viscoelastic materials. When relaxation is applied to the model i.e. the model is under the 

influence of constant deformation, the specimen representing the model is deformed to the 
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given strain 0a  and after which it is maintained constant, where as the stress required to 

maintained these strains 0( )a  diminishes at 0a a  constant, under thermal conditions. The 

Constitutive equation under constant deformation (strain) 0a a constant reduces to 
 

2 , 1 , 0 0tt t                                                      (65) 

Where, 

    2 1 12' 13 22 22'1,    ,             0 =  12' 22 13 22 22'.       

Eq. (65) can be solved, we taking the roots of the auxiliary equation as  

1

1

1
   m


  and 
2

2

1
m


 .                                                  (66) 

Where, 1    and 2  are relaxation times of the specimen. 

   1 2 12' 13 22 22'

1 2

1 1
m m    

 
                                       (67)  

1 2 12' 22 13 22 22'

1 2

1 1
  .    ( )m m     
 

   

                                        (68)

 

From, Eq. (67) and Eq. (68), the Eq. (65) becomes 

  2

1 2 1 2  ( ) 0D m m D m m    
                                           (69)

 

The Solution of Eq. (69) is  

  1 2

1 2   m t m tt Ae A e                                                               (70) 

To eliminate 1A  and 2A   

At,   0 t  , Eq. (70) reduces to 0
0 0  ,   0

da
a G

dt
    

Hence, 

1 2A A 0                                                                  
(71) 

1 1 2 2 0m A m A 
                                                                 

(72) 

Where, 

2 0 1 0
1 2

2 1 1 2

     ,       
m m

A A
m m m m

 
 

 
 

     2 1 2 10 0 0
1 2 1 2

1 2 1 2

   
       

   

m t m t m t m tG
t m e m e m e m e

m m m m

 
        

 
                 (73) 
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For sufficiently large time, 
1, 2t    so that     0 . Hence with longer periods of observation, 

the stress in the specimen will drop to zero, i.e. equilibrium state will be achieved. 

Complex Viscosity  

Let, here not the strain is specified but the stress which varies by the harmonic law:  

0

i te                                                                (74) 

Let the model instantly respond to the change in stress by undergoing a strain equal to 0I   , 

which occur in phase with ( )t .Where 0I is the instantaneous compliance  

A viscous flow develops by the law  

( )
da

t
dt
                                                               (75) 

On integrating, we get 

                                                              0 1
( )i ta e i t

i




 
                                           (76) 

  

Therefore, there exist third strain components, which is out of phase with the specified 

change in stress. Now, the strain ( )a t  is given by                                                                 

   
 '

0 0

1
( ) ( ) ( )

i t
a t I t e i t

 
  




                                     (77)  

where, '

0 is the amplitude of strain, which is out of phase with ( )t  by the phase angle  .                 

  Let I  be the complex compliance as the inverse of complex modulusG
 such that G

1I   , 

hence 

( )

( )

a t
I

t

 
'

0
0

0

1
, ia

or I I i e 

 

  
   
 

    
' '

0 0
0

0 0

1
cos sin

a a
I I i 

  

    
       

   
 

 ' "

0

1
I I I i I



  
     

 
                                           (78)  

Where  
' '

' "0 0

0 0

cos ; sin
a a

I I 
 

   

So it is clear that for I  the quantity 0I corresponds to the instantaneous elastic deformations 

of the material, and 
1


corresponds to viscous flow. Therefore, the viscoelastic behavior of 
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the material is governed by the values of 'I and "I . Assuming that 0I 'I  and 
1



"I  

.Using relation G
1I   , the relation between complex modulus and complex compliance is 

obtained as: 

       

       

' "
' "

2 2 2 2
' " ' "

' "
' "

2 2 2 2
' " ' "

;

;

I I
G G

I I I I

G G
I I

G G G G

 
 

 
 

                                      (79)  

Using Eq. (39) and Eq. (40), we get the complex compliance for five parameter viscoelastic 

model. The tangent of the angle  (the loss factor) is expressed in terms of the ratio of the 

components of the complex compliance as well as in terms of the ratio
"

'
tan

I

I
  . When the 

sinusoidally varying stress is specified, the change in the rate of strain can be followed such 

that  

 
0

i tda
a a i e i a

dt

 
 


                                                       (80) 

Then we define the complex viscosity     

                     ' "0 0

0 0

sin cos
ie

i i
a a i a

 
    

 

                              (81) 

Where                                        

' 0

0a





 sin ,

" = 0

0a




cos  

 Here 0a  is the amplitude of the strain rate. 

Since                                    
' "( )

( )

t
G G G

a t

     

  where 
' '

' "0 0

0 0

cos ; sinG G
a a

 
    

Using the above relations, we get the relation between complex viscosity and complex 

modulus as: 

 
' 

" '
";

G G


 
                                                                 (82) 

The quantity 
'  is often for simplicity called just the dynamic viscosity. 
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Constitutive Relation For Four Parameter Model 

We consider the four parameter model with two springs 1 1 2 2( ), ( )S G S G  and two dash-pots 

   1 1 2 2,D D   with viscoelasticity 1  and 2  respectively (Fig.1). The springs represent 

recoverable elastic response and dash pot represents elements in the structure giving rise to 

viscous drag. Let 1a be the strain in 1 1( )S G
 
, 2a be the strain along dashpot  1 1D   and 3a be 

the strain in the Kelvin model. Fig. 1 represents the sketch of the standard four parameter 

viscoelastic models. The stress v/s strain behavior for constant stress ( ) with time ( at ) has 

been shown in fig. 1. Here, 1  1 1 2 G    , 2  2 2 2   G      are the modulli of elasticity, 1 2,   

are Newtonian viscosities coefficients and taken as functions of ‘x’ in the non-homogeneous 

case.  

 

 

 

Figure-2 Rheological model and its response 

 

The stress strain equation for four parameter model is of general form. A four parameter 

model consisting of two springs and two das-pots may be regarded as a Maxwell unit in 

series with a Kelvin unit as illustrated in Fig. 1. Let   is stress and ' 'a  is shear strain; the 

relations between them are given as 

1 2 3 1 1 1 2 2 3 2 3, , , ,a a a a G a a G a a                                       (83)                                                              

Eliminating 1 2, 3,a a a  , we get the constitutive Eq. (1) as  

1 2 1 1 2 1 2
1

2 2 1 1 2 2

G G G G G G G
G a a  

    

 
      
 

                             (84)    
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Dynamic Response Of Four Parameter Viscoelastic Model 

The following values of strain are taken for the dynamical response of four parameter model   

0 0* ,iwt iwtG a e a a e                                                 (85)                                                                                               

From Eq. (84) and Eq. (85), we get  

2 21 2 1 1 2 1 2
1

2 2 1 1 2 2

*
G G G G G G G

i G G i   
    

         
             
         

                                       (86)    

On simplifying Eq. (86), we get  

             
      2 2

1 8 9 5 6 7*

2

G R i R R R R i
G

A

        
                       (87)                                  

where,    
2 22

2 9 5 6 7A R R R R                                                                                                    

*G can be written in terms of real and imaginary parts     

         2 2 2 2 3

1 9 8 5 6 7 8 9 8 5 6 7*

2

G R R R R R i R R R R R R
G

A

              
 

  (88)    

or 
* ' "G G G                                                        (89)                                                                                                                  

    2 2 2

1 9 8 5 6 7

2

' ,
G R R R R R

G
A

      
                         (90a) 

    
   

2 3

8 9 8 5 6 7"

2 22

9 5 6 7

.
R R R R R R

G
R R R R

  

 

   


   
                              (90b)  

The loss tangent is, 

"

'
tan

G

G
                                                                                (91)  

From Eq. (90a), Eq. (90b) and Eq. (91), we get 

   

    

2

8 9 8 5 6 7

2

9 8 5 6 7

tan
R R R R R R

R R R R R

 




   


   
                              (92) 

Numerical Analysis 

The behavior of both the models have been studied numerically as well as graphically, the 

rheological responses are discussed by plotting a graph between 
''G and   and 'G verses   

for five parameter and four parameter models. 



European Scientific Journal    April 2013 edition vol.9, No.12    ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431  

304 
 

For five parameter model, we have  

''G

 
1  2

2 

3

2 2

 
.

A B
G

C E

 

 




 
 

Here,

  2 3 4 ,A R R R   1,B R  3 4C R R  , 1 2E R R  ,
12' 31 1R    , 22 222 'R   , 12' 23 2.R    

and 14 3 2.R R
                                                                                                                                      

To calculate 
''G at different frequencies, we assume the following values

 

1 1.0,G    2 1.10,G   2 0.1,   2' 0.2,   3 0.3   

Using these values we get  

1 2 3 48.33, 16.5, 55, 54.945, 1814.175, 8.33, 109.945, 24.83R R R R A B C E         

Now, 

    2 2

1 2 1 2 3 4'

1

   R R RG R R
G

A

     
   

where, 

1 2 3 48.33, 16.5, 55, 54.945R R R R    ,  
2

2 2  2

1  A C E     

Fig. (3-4), has been plotted for five parameter model. It is quite clear from graph, form fig. 3 

and fig. 4 for  =7, there is peak for the graphs 
''G verse   and 

'G verses  , as the value of 

 increases both 
''G and

'G decreases i.e the exponential decay takes place. However, the 

decay in fig. 4 is steeper as compared in fig. 3. 

 

Figure-3 Variation of 
''G verses  for five parameter model 
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Figure-4 Variation of 
'G verses  for five parameter model 

 

Four parameter model, we have 

     
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The values of the parameters for studying the rheological response are  

1 1.0,G   2 1.10,G   1 0.1,   2 0.2,   5 5,R   6 5.5,R   7 10,R   8 5.5,R   9 55.R   

Now, 

    

   

2 2 2

1 9 8 5 6 7'

2 22

9 5 6 7

G R R R R R
G

R R R R

  

 

    
 

   
 

A graph between 
'G verses   is plotted by taking above equation. The parameters taken for 

this case are the same. The fig. (5-6), shows that as the value of  increases both 
''G and

'G

decreases, but the value of 
'G becomes constant after  =55 for four parameter model. 

 

Figure-5 Variation of 
''G verses  for four parameter model 
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Figure-6 Variation of 
'G verses  for four parameter model 

 

Conclusions 

It can be concluded that the both models possess an excellent potential for proper 

representation of the time dependent behavior of a viscoelastic medium subjected to loading 

and unloading. However, five parameter models are slightly better than four parameter 

model. The viscous strains due to a constant stress are found to increase linearly with time for 

both the models. Moreover, after the removal of stress, the viscous strain is found to remain 

constant with time. During the cyclic loading initially there must be a point of maxima or 

minima for five parameter model between 0   and 
 2 3 4

1

.
  





 

 
For sufficiently 

large relaxation time for five parameter model, the stress in the specimen will drop to zero. 

The phase shift angle ' '  for the viscoelastic body for five parameter model must be between 

zero and .
2


The use of five parameter and four parameter models are mostly restricted in the 

field of rock mechanics. Thus, both models can be used in determining the time-dependent 

behavior of a viscoelastic medium. 
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