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Abstract 

 A finite size analysis of the Kondo lattice model with hybridization 

interaction between localized and extended orbitals using the exact 

diagonalization technique has brought more insight into the specific heat 

behavior of the heavy fermion (HF) systems under low temperature regimes. 

The specific heat under the antiferromagnetic region of temperatures below 3k 

is lower than that of the ferromagnetic region. While the specific heat for 

temperatures above 4k, shows a reversed trend. 
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Introduction 

The investigation of HF systems or metals with heavy electrons has 

developed into a new branch of metal physics. Often these systems contain 

Ce, Yb, U or Np as one of their constituents, implying that 4f or 5f electrons 

are involved. Characteristics examples are: 𝐶𝑒𝐴𝑙3, 𝐶𝑒𝐶𝑢2𝑆𝑖2, 𝐶𝑒𝑅𝑢2𝑆𝑖2, 

𝐶𝑒𝐶𝑢6, 𝑌𝑏𝐴𝑙3, 𝑌𝑏𝐶𝑢2𝑆𝑖2 etc [Coqblin, 2009]. Below a characteristics 

temperature (usually on the order of a few Kelvin up to a few tens of Kelvin) 

heavy – fermion systems show Fermi-liquid behavior with large effective 

masses of the quasiparticles. As the temperature increases above a certain 

critical value, the excitations lose their HF behavior i.e. the specific heat level 

drops. At present there are two different physical processes which result in HF 
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behavior. In both of these cases the weak interaction of f-electrons with 

conduction electrons constitutes the origin of the heavy quasiparticle 

excitations, the differences being that in one case the interactions among 

conduction electrons can be neglected, while in the other strong correlations 

between them are essential [Amadon and Hirsh, 1996]. We shall restrict 

ourselves to the first case which we will call standard HF behavior, because 

most of the systems belong to that category. We can relate the anomalous low-

temperature properties of standard HF systems to the weak hybridization of 

the f electrons with the electrons of the neighboring atoms. Because the 

overlap between the corresponding wave functions is so small, the strong 

coulomb repulsions between the f electrons suppress charge fluctuations to a 

large extent, thereby generating low energy excitations.   

Many approximation techniques, however, were developed in the 80s 

based on treating 1/N as a small parameter’. These methods were used to 

calculate the one electrons density of states and the dynamics susceptibility 

[Coqblin, 2010]. What they clearly showed was the buildup of a narrow many 

body resonance in the density of states at the Fermi level in the Kondo regime 

known as the Kondo resonance. The many body calculations giving exact 

results for the models or approximate ones within controlled approximations 

have extended the range of theoretical predictions and enabled some 

quantitative comparison between theory and experiment to be made [Basylko 

et al, 2008]. Specific heat properties of many physical quantities involve 

electronic excitations with energies of the order of KBT. These energies are 

usually of the order of or less than 10-2 ev and therefore much smaller than 

the Fermi energy (on the order of a few electron volt) [Desbrosavljevic and 

Kotliac, 1992; Hundley et al, 1994; Reich and Falicove, 1998]. This implies 

that the excited electrons are close to the Fermi surface which makes their 

effective scattering due to the interaction with other elections small. In this 

paper, we will systematically study the behavior of the specific heat of the 

Kondo lattice model (KLM) with hybridization interaction between the 

localized orbitals and the extended orbital under different temperature 

regimes. The exact diagonalization technique would be used to obtain the 

energy spectrum (eigenvalues) covering both the antiferromagnetic coupling 

(J>0) and ferromagnetic coupling (J<0) regions. There would be systematic 

variation of the hybridization term under various temperature regimes. The 

effect of the hybridization between the f – and the c – orbitals would be 

discussed. 

 

Methodology 

The ground state of the ID KLM is a spin liquid with new fixed points: 

the kondo spin liquid and the Haldane gap state. The Hamiltonian of the ID 

KLMH with hybridization interaction is written with standard notation as: 
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𝐻 = −𝑡 ∑ ∑ (𝐶𝑗𝜎
+ 𝐶𝑗+𝜎 + 𝐻. 𝐶. ) + 𝐽 ∑ 𝑆𝑗𝑐

𝐿
𝑗=1 . 𝑆𝑗𝑓

𝐿
𝑗=1𝑡 +V∑ ∑ (𝐶𝑗𝜎

+ 𝐹𝑗+1𝜎 + 𝐹𝑗𝜎
+ 𝐶𝑗+1𝜎)𝐿

𝑗=1𝜎       (1a) 

Where, 
 

𝑆𝑗𝑐 = ∑ 𝐶𝑗𝜎
+ (

1

2
𝜎)

𝜎𝜎
𝐶𝑗𝜎𝜎𝜎                                 (1b) 

𝑆𝑗𝑓 = ∑ 𝐹𝑗𝜏
+ (

1

2
𝜎)

𝜏𝜏
𝐹𝑗𝜏𝜏𝜏   

Where L is the number of sites. Here we restrict ourselves to the half-

filled case. We impose the periodic boundary condition and set t = 1 as energy 

units. The Kondo coupling is usually antiferromagnetic (J>0). However, the 

Kondo coupling becomes ferromagnetic when there is a direct Hund coupling 

between c and f electrons. This Hund coupling may generate a mixing term 

between the c and f orbitals [Heershe et al, 2005;Magalhaes, et al, 2005]. The 

mixing (or hybridization) term is the, v. Again, it should be noted that J<0 = 

JHund (Hund coupling). The ground state energy is determined using the exact 

diagonalization method on equation 1 and also with the aid of wolfram 

mathematica 9 software which is effective in diagonalizing large matrix sizes. 

We considered a systems of 4 electrons on 4 lattice sites and a 70 x 70 matrix 

size was obtained representing the 70 states in the Hilbert space. 

 

The ground state energy Eg  obtained is 
 

𝐸𝑔 =
1

2
[𝐽 − √𝐽2 − 2𝐽 + 16𝑡2 + 8𝑣]                                (2) 

The specific heat of the system is determined by first calculating the partition 

function Z using 
 

𝑍 = 𝑇𝑟⟨𝑖|exp (−𝛽𝐻)|𝑗⟩                                  (3) 

Where 𝛽 = 1
𝑘𝑇⁄  

Hence, 𝑍 = 2𝑒𝑥𝑝(−4𝛽𝑣) + 4𝑒𝑥𝑝 (−𝛽 (
𝐽

2⁄ + 4𝑣))                              (4) 

The expectation value 〈𝐻〉 = 𝐸 is defined as follows 
 

𝐸 =
1

𝑍
⟨𝑖|𝐻𝑒𝑥𝑝(−𝛽𝐻)|𝑗⟩                     (5) 

Equation (5) is the thermal average of the quantity H. From equation (5) we 

therefore obtained E as  

 

𝐸 =
8𝑣𝑒𝑥𝑝(−4𝛽𝑣)−2𝑡𝑒𝑥𝑝(𝛽𝑡)+4∅𝑒𝑥𝑝(−𝛽∅)+2𝑡𝑒𝑥𝑝(−𝛽𝑡)

2𝑒𝑥𝑝(−4𝛽𝑣)+4𝑒𝑥𝑝(−𝛽(𝐽
2⁄ +4𝑣))

                (6a) 
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Where ∅ =
𝐽

2⁄ + 4𝑣                   (6b) 

 

Hence, our expression for specific heat is given by equation (7a). 

𝐶𝑣 =
𝜕𝐸

𝜕𝑇
                     (7a) 

Hence, 𝐶𝑣 =
𝛤(𝛶−𝛺)

𝛳
 

 

Where, 

𝛤 =
4𝑣

𝐾𝑇2 𝑒𝑥𝑝(− 4𝑣
𝐾𝑇⁄ ) +

2∅

𝐾𝑇2 𝑒𝑥𝑝 (−
∅

𝐾𝑇
)  

𝛶 = 4𝑣𝑒𝑥𝑝(− 4𝑣
𝐾𝑇⁄ ) − 𝑡𝑒𝑥𝑝 (

𝑡

𝐾𝑇
) + 2∅𝑒𝑥𝑝 (−

∅

𝐾𝑇
) + 𝑡𝑒𝑥𝑝 (−

𝑡

𝐾𝑇
)  

𝛺 =
16𝑣2

𝐾𝑇2 𝑒𝑥𝑝(− 4𝑣
𝐾𝑇⁄ ) +

𝑡2

𝐾𝑇2 𝑒𝑥𝑝 (
𝑡

𝐾𝑇
) +

2∅2

𝐾𝑇2 𝑒𝑥𝑝 (−
∅

𝐾𝑇
) +

𝑡2

𝐾𝑇2 𝑒𝑥𝑝 (−
𝑡

𝐾𝑇
)  

𝛳 = 𝑒𝑥𝑝 (−
8𝑣

𝐾𝑇
) + 4𝑒𝑥𝑝 (−

(4𝑣+∅)

𝐾𝑇
) + 4𝑒𝑥𝑝 (−

2∅

𝐾𝑇
)               (7c) 

Results And Discussion 

We show specific heats as a function of J. Two regions are considered 

for J, that is the antiferromagnetic region (J>0) and the ferromagnetic region 

(J<0).  

In fig.1, J is set to run from J=-10 to J=9 to enable the easy observation 

of the behavior of the specific heat under these two regions. This result is 

obtained by exact diagonalization of systems with up to 4 sites. We worked 

with a low temperature of T=1.0k. Under these conditions, the specific heat is 

found to be negative in nature for J>0. Although naturally, negative specific 

heat have few materials on earth expressing this rare phenomenon. It is readily 

observed in stars [Rennie, 2014]. 

 
Fig 1: Cv vs J as v ranges from 0.0 to 0.5 for t=1 
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From the graph, the increase in hybridization, v from 0.1 to 0.5 pushes 

the specific heat into this rare natural occurrence of negative specific heat. 

However, we obtained positive specific heat for J<0. Although, increase in v 

tends to reduce the specific heat at T=1.0k.  

This can be explained thus: the ferromagnetic interaction between the 

c and f electrons tend to produce parallel spins after interactions at the various 

sites and this keeps away spins according to the Pauli principles. This 

arrangement lowers the total energy of the system and increases the specific 

heat. However, hybridization between the localized and extended orbital 

weakens this arrangements and more localized spins become excited. This 

leads to a suppression of the parallel spin arrangement, and a lowering of the 

specific heat by extension. 

 
Fig 2: Cv vs J as T ranges from 2k to 7k  for t=1 

 

For the higher temperature case (T>1K), Fig. 2 shows functions of J<0 

and J>0. As in the T=1k case, the specific heat for T=2k is been weakened by 

v, but the temperature range plays more role in the emergence of the properties 

of the system. Apart from T=2k, that shows similar result under the 

ferromagnetic and antiferromagnetic regimes, higher temperatures i.e. T>3k 

recorded positive specific heat for J > 0 and negative specific heat for J < 0.  

This result is due to the destruction of the Curie-Weiss condition at 

higher temperature leading to the suppression of the heavy fermion behavior. 

Under a constant hybridization of v=0.1, increase in temperature decouples 

the c and f electrons at each site under the ferromagnetic limit thereby 

suppressing the specific heat. While in the antiferromagnetic limits (J > 0) the 

specific heat increases with temperature. 
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Fig 3: Cv vs J for v=0, 0.7, 2.0 for t=1 

 

Fig. 3 shows the effects of higher temperature (T=20k), with an 

increase in hybridization. Apart from v=0 and v= 0.7, v=2 shows an all 

position specific heat with its values lower in the J < 0 limit compared  to the 

J  > 0 limit. The interplay between temperature and hybridization at higher 

values presents a near linear curve for the specific heat. A further increase upto 

T=100k and V=10 leads to a stabilization of the linear increase in specific heat 

as seen in fig. 4. 

 
Fig 4: Cv vs J for v=10.0 and T=100k for t=1 

 

Summary And Conclusion 

In this paper, we have studied systematically the specific heat of the 

1D Kondo lattice model with hybridization interaction between the f and c 

orbital by using the exact diagonalization for both J<0  and J>0. Our analysis 

showed the effects of temperature on the specific heat with varying 

hybridization values v. An increase in v generally suppresses the specific heat 

of the Kondo system. The ground state of the system is a singlet for J> 0 limit 

and the specific heat has an increasing negative value while J<0 favors a 

positive specific heat under a low temperature regime of T=1k. However, at 

the high temperature regime, a negative specific heat was observed for J<0 

and a positive value for specific heat was observed for J > 0. This is due to the 

destruction of the Curie Weiss condition at higher temperature (Marcano et al, 
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2005; Trebst et al, 2006). One of the important result of this research is the 

stability of the stability of specific heat at higher temperature (T>20k) and 

hybridization. Although, specific heat under J>0 is usually higher than that of 

J<0. Coqblin, (2010) used the kondo model for studying magnetism in Cerium 

and Uranium compounds. The introduction of the hybridization potential in 

the model is novel including its use in the study of specific heat. The use of 

the density matrix renormalization group techniques on the model is currently 

on going to test the results obtained here. 
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