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Abstract 

The ordinary and extraordinary uncoupled Cyclotron radiation mode intensities, +I  

and −I  respectively, are being calculated for radiative accretion shocks onto magnetic binary 

AM-Her systems.  The calculation is being performed for accretion onto a primary white 

dwarf star having a 0.3 solar mass; radius cm  x101.23  R 9
* = .  The calculation corresponds to 

the accretion rate Edd
-3

acc L 3.2x10  L = .  Here EddL  is the Eddington accretion luminosity.  At 

a given instant of time, variation of both modes intensities with harmonic numbers is 

investigated for various angles of observation.  This is done for on axis accretion; where the 

geometric factor 500a 0 = .  The field on the pole is taken to be MG 12 B* = .  Also for a 

certain direction and harmonic number, the time dependent intensities are being calculated 

for various fields; MG  23 17, 15, B* = . 
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Introduction 

Magnetic CVs (AM-Her systems) are semi-detached binary systems consisting of a 

secondary normal late-type red dwarf companion donor; transfering matter to a compact 

strongly magnetic accreting white dwarf primary star (Patterson 1984; Smith and Dihllon 

1998; Liebert and Stockman 1985; Cropper 1990; Mennickent and Diaz 2002; Katysheva and 

Pavlenko 2003; Littlefair et al. 2003).  For a thorough review of CVs, see Warner (1995).  

The strong magnetic field of the primary usually synchronizes the white dwarf spin to the 

orbital period (Mukai et al. 2003).  The magnetic white dwarf primary acts like a particle 

accelerator.  Electrons and ions of the fully ionized plasma in the preshock region spiral out 

along broken magnetic field lines and accrete directly onto the magnetic white dwarf along 
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narrow accretion funnels; where the strong magnetic field of the white dwarf (10-100 MG) 

does not allow the formation of an accretion disk (Chanmugam and Wagner 1977, 1978; 

Stockman et al. 1977; Katysheva and Pavlenko 2003; Hessman et al. 1997).  Some of the 

AM-Her systems (or Polars) contain highly magnetic white dwarfs with field strengths of (6-

240 MG) (Warner 1995).  Up to the year 1999, more than 80% of the ~ 65 known polars 

were discovered in the ROSAT All-Sky Survey (RASS; Voges et al. 1999), with typical 

count rates for 15th -19th optical magnitudes in the range of 0.2-2.5 counts s-1 (Beuermann and 

Burwitz 1995).  The selection criteria of high X-ray count rate and strong optical emission 

lines resulted in the discovery of polars in the intermediate-to-high accretion rate regimes 

(Szkody et al. 2003). 

Among the many products of the Sloan Digital Sky Survey (York et al. 2000; 

Stoughton et al. 2002) will be thousands of new white dwarfs extending to fainter than 20th 

magnitude and distances greater than 1 kpc. 

At intermediate accretion rates (1 gm cm-2 s-1), a strong standoff (standing) shock is 

formed above the surface, and the shocked gas cools mainly by 10-30 keV bremsstrahlung 

emission (Szkody et al. 2003; Mukai et al. 2003).  The bulk of emission from the magnetic 

white dwarf primary is presumably produced in strong shocks; formed as the plasma merges 

onto the magnetic white dwarf, whose surface acts as lower boundary cold stationary wall for 

the shock region (Aizu 1973; Somova, Somova, and Najdenov 1998; Wu and Cropper 2001).  

The accretion shock is formed near the white dwarf surface when the supersonicly accreting 

plasma becomes subsonic, and is thereby driven to oscillate with a typical oscillation times-

cale similar to the cooling time-scale of the shock-heated plasma.  The formed shocks are 

observed to emit hard x-rays and strongly polarized cyclotron optical emission, both of which 

are modulated on the orbital period (Cropper 1990, Somova, Somova, and Najdenov 1998).  

The orbital separation of the binaries is small; that the radius of the normal star exceeds its 

Roche lobe, and thus loses mass through the inner lagrangian point to the compact magnetic 

white dwarf primary star (Watson and Dhillon 2001).  These studies stimulated searches for 

fast photometric variabilities in accreting magnetic white dwarfs and led to the discovery of 

optical quasi-periodic-oscillations (QPOs); for example in the AM-Herculis systems: V834 

Cen, AN UMa, EF Eri, VV Pup and BL Hydri (Middleditch 1982, Mason et al. 1983, Larsson 

1985, 1987; Middleditch et al. 1991; Ramseyer et al. 1993; Beardmore et al. 1997; 

Middleditch et al. 1997; Wolff et al. 1999).  For steady gas accretion at a rate M
.

 onto a 

magnetic white dwarf star of mass *M  and radius *R , the accretion luminosity is 
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MR
GM  M |g| L

.

*

*.

 acc =Φ=  (1) 

The magnitude of the gravitational potential of the magnetic White dwarf is 

-11817 g erg 10 - 10 ~ |g| Φ .  For the modest accretion rates, 1-1814.
s gm 10 - 10~M , the 

calculated luminosities are consistent with those observed. 

Magnetic field calculations are based on the interpretation that polarized light is due 

to cyclotron emission (Chanmugam and Dulk 1981; Meggitt and Wickramasinghe 1982).  In 

some systems, the field strength has been found from Zeeman spectroscopy.  AM-Her has B* 

= 13 MG (Schmidt, Stockman and Margon 1981; Latham Liebert and Steiner 1981; Patterson 

and Price 1981; Young, Schneider and Shectman 1981; Hutchings, Crampton and Cowley 

1981; Wickramasinghe and Martin 1985; Bailey et al. 1991).  In AM Hers (Beuermann and 

Burwitz 1995): about 12- 14 MG in AM Her itself (Bailey et al. 1991), EF Eri (¨ Ostreicheret 

al. 1990), and RXJ1957-57 (Thomas., Beuermann, Schwope., Burwitz 1996).  The white 

dwarf in the BL Hyi system is believed to have a relatively weak magnetic field B* = 12 MG 

(Schwope et al. 1995; Wolff et al. 1999).  ST LMi has B* = 19 MG (Schmidt, Stockman and 

Grandi 1983), and V834 Cen has B* = 22 MG ( Beuermann, Thomas and Schwope 1989).  

V2301 Oph has B* = 7 MG (Ferrario et al. 1995). 

The isolated white dwarf PG 2329+267 has B* = 23 MG (Moran, Marsh and Dhillion 

1998).  For RX J0453.4-4213, the analysis of the phase dependent movement of the maxima 

for Cyclotron harmonics leads to a magnetic field strength in the accretion region of B* = 36 

MG (Burwitz, Reinsch, Schwope, Beuermann, Thomas, and Greiner 1996).  Optical studies 

of AX J2315-592, indicates that the main contribution to optical flux during the bright phase 

is from optically thin cyclotron emission in a relatively low magnetic field, B* < 17 MG 

(Thomas and Reinsch 1996).  The improved sample statistics and uniformity indicate that the 

distribution of magnetic white dwarfs has a broad peak in the range ~ 5 – 30 MG (Schmidt 

and et al. 2003).  Cataclysmic variables (CVs) have strong magnetic fields, B* ~ 10-100 MG 

(Cropper 1990, Katysheva and Pavlenko 2003).  A relatively large number of them have B* ~ 

20-40 MG, which is one of the reasons that motivate the choice of B* for our calculations. 

The centered dipole configuration is able to fit the spectra for some stars.  However, 

some others require longitudinally offset dipoles or even quadrupoles to obtain satisfactory 

fits (Schmidt et al. 1986).  Also some like WD1953-011 have peculiar field structure 

consisting of a high-field region covering about 10 percent of the surface area of the star, 

superimposed on an underlying relatively weak dipolar field (Maxted et al. 2000).  The 
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structure and shape of the accretion region, and hence the magnetic field topology, are 

probably more complicated than typically assumed. 

Physical Picture and Numerical Model 
The model assumes that a fully-ionized solar-composition-plasma flows from the 

companion star to the primary magnetic white dwarf star.  Plasma flows along presumably 

dipolar magnetic field lines (Imamura et al. 1991).  Thus, the one-fluid, one-dimensional 

time-dependent hydrodynamic equations are solved for plasma constrained to flow along 

individual dipolar field lines: 

The mass continuity, momentum and energy equations, and equation of state are 

solved to generate the time-dependent temperature and density structure of the hot post-shock 

plasma for independently oscillating magnetically confined flux tubes: 

Mass continuity equation: 0).( =∇+
∂
∂ →

V
t

ρρ
  (2) 

Equation of motion: radg FPVV
t

ρρρ +Φ∇−−∇=∇+
∂
∂ →→

).(   (3) 

Energy equation: . .( )e
I P V I V q

t
ρ ρ

→ → →∂
= − ∇ −∇ + −Λ

∂
  (4) 

Equation-of-state: IP ργ )1( −=   (5) 

The adiabatic index has the value 3/5=γ . 

The oscillating shock cools off via bremsstrahlung, Compton cooling, and cyclotron 

emission as it settles onto the white dwarf (Imamura & Steiman-Cameron 1998)).  The 

electron volume loss rate; Λ ; is a sum of three contributions: The electron-ion and electron-

electron bremsstrahlung, and Compton cooling (Kylafis and Lamb 1982). 

The electron thermal conductive flux is given by: 

( )e eeq K T T
→

= − ∇   (6) 

Where the electrons conductive coefficient is 

Kscmerg
Tx

Tx
TK

e

e
e ../

)1011.1ln(
108.1

)( 2/15

2/55

−−

−

=
ρ

 (7) 

Equations (2) to (7) are solved together using a modified version of SOLASTAR; a 

semi-implicit Lagrangian numerical code which uses artificial viscosity to model strong flow 

discontinuities (Ruppel and Cloutman 1975; Cloutman 1980; Imamura et al. 1991).  The code 

performs the hydrodynamic calculations based on the assumption that bremsstrahlung 

strongly dominates cyclotron cooling, and the later is not capable of damping shock 
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oscillations.  However, for strong fields ~ 50 MG, the cyclotron cooling strongly stabilizes all 

modes of the shock harmonic oscillation (Saxton, Wu, and Pongracic 1997; Saxton and Wu 

1999; Wu et al. 1996), and its effect is even more profound for sufficiently low accretion 

rates (Lamb and Masters 1979, King and Lasota 1979).  Only in the weak cyclotron case one 

can decouple the radiative transfer equation from the hydrodynamic equations.  So the 

calculations in this work aim at examining the the cyclotron intensities for shocks onto white 

dwarfs having field values: MG 23 17, 15, B* = , which is typical for most of the magnetic 

white dwarfs in binary systems. 

The first step is to generate the time dependent hydrodynamic structures based on the 

assumption that bremsstrahlung strongly dominates cyclotron cooling.  We choose to study 

the first overtone (1O) mode because it does not damp, and its period corresponds to the 

period of QPOs that are suggested to be cyclotron emission associated with the 1O 

oscillations (Imamura et al. 1991; Rashed 1997).  The second step is to use the generated 

time-dependent structures to solve the radiative transfer problem for the cyclotron emission. 

In terms of the spectral intensity, νI , the monochromatic energy, νΕ , flowing across 

an area element of dA  located at 
→

r  in time dt  in the solid angle Ωd  about the direction 
∧

S  

(Figure 1) in the frequency interval ν  to νν d+  is:  

dt dA) d (d  cos  t),S ,r(I ΩΨ=Ε
∧→

νννd  (8) 

In cgs-system, the unit of the spectral intensity is -1-1-2-1 ·Hz·sr·cms erg  . Ψ  is the 

angle the line of sight (
∧

S ) makes relative to the normal (
∧

n ) to the area element of the slab 

(Figures 1, 2). 

The monochromatic cyclotron intensity from uncoupled radiation modes is 

determined through a solution of the time-independent, static radiation transport equation for 

a hot plasma in the limit of large Faraday rotation (Ramaty 1969): 

±±
±

± −= SI
d
dI
τ

  (9) 
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Fig. 1:  Flowing across an area element of dAn
∧

 in the solid angle 
∧

S Ωd , where 
∧

n  is the normal to the slab 

and Ψ  is the angle of the line of sight (
∧

S ) with respect to 
∧

n . 

A time-independent formulation for the cyclotron transfer can be used; where the bulk 

of the emission comes from within an optical depth 1=±τ , i.e. photons escape essentially 

unscattered.  The optical depth ∫ ±± −= dsκτ  increases as one goes inward through the 

accretion funnel.  The minus sign is to indicate that optical and geometrical depths increase in 

opposite directions.  Plus and minus signs stand for the ordinary (O) and extraordinary (X) 

modes; respectively.  The Robinson and Melrose formula for the opacity; ±κ ; is being used 

(Robinson 1985; and Robinson and Melrose 1984).  The optical depths ( ±,iτ ) from the 

surface of the funnel to the exterior surface of the ith. layer is being calculated for the 

ordinary and extraordinary modes. 

For a plasma in local thermodynamic equilibrium, the source function ±S  is given by 

the local value of the Planck function: 

1)exp(

/),(
23

−
==±

iB

i

Tk
h

chTBS
ν

νν  (10) 

Plank function, is calculated for various frequencies and positions across successive 

layers of the accretion funnel.  The ith layer of the funnel is characterized by an average 

temperature iT . 

The magnetic field is assumed to be dipolar, and its magnitude at position r  is 

)Rr/(4a 3 - [1 /r)(R B  )a ,R B(r, *0
3

*00* =  (11) 



European Scientific Journal    May 2013 edition vol.9, No.15    ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 
 

148 
 

Here *R  is the radius of the magnetic white dwarf star, 0B  is the magnitude of the 

field at the polar surface of the star, *eq0 /Rr  a ≡  is a geometrical factor that measures; in units 

of *R ; the radius eqr  at which field lines strike the equatorial plane (Omari et al. 2002).  

Various values of eqr  can be taken, since the cyclotron emission region is seen to extend 

over a large range in magnetic latitude (Potter et al. 2000). 

At surface of the accretion funnel, the solution to the radiative transfer equation gives 

intensities from uncoupled radiation modes: Ordinary mode intensity +I  and extraordinary 

mode intensity −I  according to following expressions 

∑
−

=
±+±± )]−)=

1

1
1ii /,exp(-/,[exp(- ),(),,0(

n

i
iTBI µτµτνµν  (12) 

The time-dependent surface intensity ),,0( µν±I  is evaluated for a variety of both 

photon frequencies ν  and direction cosines Ψ= cosµ  with respect to the magnetic axis Bi , 

which is almost normal to the slab.  The calculations correspond to the narrow funnel (thin 

ring) accretion region having 500/Rr  a *eq0 =≡ .  For several directions and frequencies, the 

time dependent monochromatic intensities from uncoupled radiation modes are being 

calculated: 
∧∧

±± Ψ=Ψ .) , ,' ,' ,(  ) , , , ,(' , ntrItrI eqieq νφθνθ   (13) 

where 
∧

n  is the normal to the slab, and Ψ  is the angle of the line of sight (
∧

S ) with 

respect to 
∧

n , and θ  is the angle of the line of sight relative to polar axis of the star (Figures 1 

and 2). 

The extended funnel can be thought of as composed of concentric independently 

oscillating narrow funnels (rings); with each having its own shock structure (Imamura et al. 

1991; Ramseyer et al. 1993).  Intensities from an extended funnel can be calculated by adding 

the common frame transformed contributions (i.e. those having matched directions of 

observations) from all observable parts of the extended funnel to form the resultant intensity: 

i
i

ieq AtrItI ∆Ψ= ∑ ±±  ) , , , ,(') , ,( , νθνθ  . 

Narrow funnel intensities ) , , , ,(' , trI ieq νθΨ± are being calculated for the harmonic 

numbers 201  /  cycS −=≡ νν , and for 15 different direction cosines: ) 0, ,-1 ( 2 ωω .  The 

values of θω  cos≡  are presented in Table 1. 
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Table 1: Fifteen different directions of observation characterized by θω  cos= ; the cosine of the angle of the 

line of sight, 
∧

S , relative to polar axis of the star. 
 

Direction d1 d2 d3 d4 d5 d6 d7 d8 

θω  cos=  0.006 0.0314 0.076 0.138 0.215 0.303 0.399 0.5 

Direction d9 d10 d11 d12 d13 d14 d15 

θω  cos=  0.601 0.697 0.786 0.8622 0.924 0.969 0.997 

 

 

Fig. 2:  Directions of observation characterized by θω  cos≡ ; the cosine of the angle of the line of sight, 
∧

S  , 

relative to polar axis of the star.  Field B is normal to the surface of the shock. 

 
Results 

The following reults show monochromatic cyclotron spectral intensity from 

uncoupled radiation modes in units of -1-1-2-1 ·Hz·sr·cms erg .  Figure 3 shows the calculated 

time dependent ordinary (O) and extraordinary (X) cyclotron intensities; weighted by 
∧∧

B.S , 

for direction cosines: ω  = 0.006 (d1), 0.215 (d5), 0.601 (d9).  Results correspond to 

geometric factor 500  a 0 ≡ , and magnetic field MG 12 B* = , and harmonic number S=10. 
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(3-a) 

 
(3-b) 

 

Fig.3: Time dependent ordinary (O) and extraordinary (X) cyclotron intensities; weighted by 
∧∧

B.S , for direction 

cosines: θω  cos=  = 0.006 (d1), 0.215 (d5), 0.601 (d9).  Results correspond to 500  a 0 ≡ , MG 12 B* = , 

and harmonic number S=10. 
 

At a given instant of time and for geometric factor 500  a 0 ≡ , and magnetic field 

MG 12 B* = , figures 4-5 show a log-log plot of the calculated cyclotron intensities; weighted 

by 
∧∧

B.S ; versus harmonic numbers.  Figure (4-a) shows the three directions: θω  cos= = 

0.006 (d1), 0.0314 (d2), and 0.076 (d3).  While Figure (4-b) shows the three directions: =ω  

0.138 (d4), 0.215 (d5), and 0.303 (d6).  Figure (5-a) shows the three directions: =ω  0.399 

(d7), 0.5 (d8), and 0.601 (d9).  While figure (5-b) shows the three directions: =ω  

0.697(d10), 0.786 (d11), and 0.8622 (d12). 
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(4-a) 

 
(4-b) 

 

Fig.4: Log cyclotron intensities; weighted by 
∧∧

B.S ; versus log harmonic numbers at a given instant of time.  

Results correspond to 500  a 0 ≡ , MG 12 B* = .  Upper figure (4-a) shows the three directions: θω  cos=
= 0.006 (d1), 0.0314 (d2), and 0.076 (d3).  While lower figure (4-b) shows the three directions: θω  cos= = 

0.138 (d4), 0.215 (d5), and 0.303 (d6). 
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(5-a) 

 
(5-b) 

 

Fig.5: Log cyclotron intensities; weighted by 
∧∧

B.S ; versus log harmonic numbers at a given instant of time.  

Results correspond to 500  a 0 ≡ , MG 12 B* = .  Figure (5-a) shows the three directions: θω  cos= = 

0.399 (d7), 0.5 (d8), and 0.601 (d9).  While figure (5-b) shows the three directions: θω  cos= = 0.697(d10), 
0.786 (d11), and 0.8622 (d12). 
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(6-a) 

 
(6-b) 

 

Fig. 6: Log intensity; weighted by 
∧∧

B.S ; versus θω  cos= . Results correspond to 500  a 0 ≡ , 

MG 12 B* = . Upper figure for the harmonic number S = 8, and lower figure for the harmonic number S = 
9. 
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Fig. 7: Log Intensity versus log harmonic number for 0.215 cos == θω  (d5), 50  a 0 = , and fields

MG  23 17, 15, B* = . 
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Fig. 8: Ordinary and extraordinary modes intensities versus time for the harmonic S = 9, and direction 
0.303  cos == θω  (d6).  50  a 0 = , and values of field strength: B = 15, 17, 23 MG. 

 
Discusion and Conclusions 

The X mode intensity is larger than the O mode intensity for all the opticaly thin 

harmonics, and for all directions of observation (Figures 3 - 6).  This remains true even as the 

shock structure varies with time (Figures 3, 8).  Also this is true for all values of the magnetic 

field (Figure 8).  Thus, the O mode becomes opticaly thin at a lower harmonic number as 
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compared to the X mode, which is true for all directions (Figures 4-5).  This is also tru for all 

field values (Figure 7).  This is clear from the fact that the O mode peaks at a alower 

harmonic as compared to the harmonic number corresponding to X mode maximum intensity. 

For plasma constrained to flow along a single narrow magnetically confined flux tube, 

intensities show shoulders and sharp peaks due to areal projection effects.  This causes a dip 

in the spectrum near 0 cos =θ  (Figures 6).  This is also due to the decrease in the absorption 

coefficient in the ordinary mode so that the funnel becomes optically thin as θ cos  goes to 

zero, while remaining optically thick in the extraordinary mode.  This causes a sharp increase 

in linear polarization as θ cos  goes to zero. Due to large area projection effect; 
∧∧

B.S  has small 

value; both modes intensities increase with θ cos  for the first three directions ( 0.138 cos <θ

) (Figures: 4-a, 6).  While for the remaining directions ( 1 cos0.138 <≤ θ ), both modes 

intensities are found to stay constant for the optically thick harmonics (Figure: 8), and 

decrease with θ cos  for the optically thin harmonics (Figures:4-6, 5, 6).  This can be 

explained as follows: As θ cos  increases, the funnel becomes optically thick in both modes (

1>±τ ) and the largest contribution to the intensities is from the shock front which has a 

higher temperature;  ii TTBI 2),(),,0( ννµν ∝∝± .  A further increase in θ cos  makes the 

ordinary mode optically thin.  A further more increase in θ cos  makes both modes optically 

thin (but +− >> ττ ). 

Both modes intensities increase mainly with field strength.  This is true for all 

harmonic numbers (Figure 7 and 8), and at all times (Figure 8).  This behavior is expected; 

where in the Rayleigh–Jeans limit, the source function is equal to Planck function: 
22 /),( cTkTBS iBi νν ≅=± , and the surface intensities, ),,0( µν±I , are proportional to 

iicycii TBTTTB 222),( ∝∝∝ ννν . 
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