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Abstract 

The development of bio-analytical methods for monitoring 

microorganisms have created opportunities for applications in biosensors, 

bioprocess monitoring, assessment of cell signalling, analysis of drug 

responses, among several others. The voltammetric sensing system employed 

for studying the electrode behavior of the fungus Fusarium oxysporum 

comprised working (gold) electrode (0.2 cm2) platinum as counter electrode 

(0.2 cm2) and a saturated calomel as the reference, where the electrochemical 

response corresponded to the growth phases (lag, log, stationary and decline) 

of the fungus. The electrochemical method based on voltammetric response 

matched well with the response obtained through conventional methodology, 

where the dry weight of the fungus is estimated against time. The peak 

potential is a function of scan rate, which is one of the characteristic features 

of a totally irreversible electrode process. It is important to mention here that 

this dependence is true regardless of reversibility for any diffusing redox-

active species. The proposed electrochemical method is less cumbersome and 
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more accurate. Furthermore, the proposed electrochemical method captures 

the decline phase of fungal growth, which is generally difficult using the 

conventional method of assessment of the growth curve. Further experiments 

confirm that the anodic peaks were not due to the biomass or the fungal spores 

and only due to the extracellular metabolites. However, at this stage it is 

difficult to exactly determine the metabolite or the group of metabolites that 

are responsible for the anodic peak. In conclusion this cytosensor is capable 

of accurately and rapidly quantifying fungi with Fusarium oxysporum as a 

model organism. 

 
Keywords: Fusarium oxysporum; Cyclic voltammetry; Anodic peak; 

Cytosensor; Bio-electrochemistry 

 

Introduction 

Various activities of life and electron behavior have intimate 

relationship in living cells, which makes the study of physiological and 

biochemical characteristics an important area in analytical chemistry and 

bio-electrochemistry. (Okhi S 1985, Benjamin et al, 2018, Kizling & 

Bilewicz 2018). Bio-electrochemistry has increased our understanding of 

research areas such as electroporation (Hjouj et al. 2012; Zhan et al. 2012), 

direct electron transfer to enzymes and their applications in the areas of 

cloning (Mozzicafreddo et al. 2009, Cotter et al. 2011), drug discovery, 

(Hillard et al. 2008, Pauza et al. 2014) and biosensors (Tan et al., 1997, 

Subrahmanyam et al. 2001a, Shanmugam et al. 2001), and Enzymatic fuel 

cells (Bollella 2018). Potential applications of natural receptors in 

biosensors, drug discovery and bioassays (Subrahmanyam et al. 2002) have 

revealed novel opportunities for characterization of enzymes and 

antibodies. Advanced analytical methods have created opportunities such 

as ATP bioluminescence (Griffiths 1993), antibody-direct epifluorescent 

filter technique (Tortorello and Stewart 1994), enzyme immunoassays 

(Park et al. 1994, Watanabe & Hashida 2018), Polymerase Chain Reaction 

(PCR) based detection tools (Bej et al. 1994), Shi et al. 2018), microbial 

characterizations (Subrahmanyam et al. 1999, 2001d), and biosensors 

(Ding et al. 2011, Wang et al. 2012). Analysis of morphological changes in 

adherent cells  using electric impedance sensing systems (Yang et al. 2003), 

and detection of viable microbes (Nakamura et al. 1991), Bajwa et al. 2013) 

have variety of applications. This is important because microbes when left 

undetected can cause a host of complications (Ba et al. 2011). Timely 

detection of microbes can be aided greatly by the use of appropriate sensors 

that can alleviate the progression of the disease (Balakrishnan et al 2006). 

Rapid real-time detection, high sensitivity, direct electron transfer and 

transfer of binding event into a signal are areas that need improvement for 
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the development of advanced analytical and detection tools. Cytosensors 

could address some of these issues and prove to be important analytical 

devices in future.  

Several applications of cytosensors already exist. For example, 

cytosensors have had recent applications in oncology. Screening and 

recognition of two markers for breast cancer cells MCF-7 (Li et al. 2010) 

on the surface immobilizing an aptamer molecule on a gold surface have 

made it possible to conduct quick, sensitive and accurate detection and 

monitoring of cancer. Detection of overexpressing receptors have 

showcased interesting possibilities. Polyaniline-nanofiber (PANI-NF)-

Gold nanoparticles (AuNPs), glutathione (GSH) and folic acid (FA) were 

sequentially self-assembled and immobilized for the detection of folate 

receptors (FR) overexpressed in cancerous cells using human cervical 

carcinoma HeLa cells as a testing system (Wang et al. 2012). Detection of 

bio-chemicals on cell surfaces are another interesting possibility. 

Overexpressing carbohydrate present on the cell surface was quantified 

using gold nanoparticles indicating metastasizing cancer cells. Leukemia 

cells (K562) were quantified using specific recognition of mannosyl on a 

cell surface to concanavalin–A (Con–A) and the signal amplification of 

gold nanoparticles (NPs) (Ding et al. 2011). 

Cytosensors have been used to identify receptor ligands in tissue 

extracts and for examining signal transduction of neurohormones (Lenkei 

et al. 2000). Other applications of cytosensors include detection of fungi 

(Subrahmanyam et al. 2000b) & eukaryotic cells (Eldefrawi et al. 1998), 

assessment of compound toxicities, (Cooke & O'Kennedy 1999, Liu et al. 

2013), sensing of glomerular inflammation and subsequent control of 

transgenic activity (Kitamura 1999), and cancer cells (Jiang et al. 2018, 

Zhang et al. 2018, Tang et al. 2018, Dervisevic et al. 2017). While the above 

examples are useful, development of cytosensor for detection of whole cells 

will have better applications, including detection of contamination, 

identification of cell cultures and understanding competitive inhibition in 

mixed cultures. 

While previous cytosensor work have largely targeted yeast cells 

(Saccharomyces cerevisiae) and fresh water ciliate (Tetrahymena 

shanghaiensis), there has been no work reported on development of 

cytosensors for pathogenic fungi. The aim of this work therefore, is to 

demonstrate a novel cytosensor based on cyclic voltammetric response for 

the fungus Fusarium oxysporum. 

 

 

 

 



European Scientific Journal July 2018 edition Vol.14, No.21 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 

 

45 

Materials and Methods 

Materials 

 

Fungal strain 

The fungus was isolated from soil collected from an industrial site 

where waste polyurethane (PU) scraps are disposed near Vellore, India. 2 

mg of surface soil were collected. Serial dilution technique was employed 

for the isolation. Several rounds of sub-culturing and dilutions were done 

until a pure culture of Fusarium oxysporum was obtained. The fungus was 

identified and confirmed to be Fusarium oxysporum at the Mycology 

Division, Indian Agricultural Research Institute, India. 

 

Culture media and buffer 

Czepek-Dox media containing KH2(PO4)2 (1g), NaNO3 (2g), 

MgSO4 (0.5g), KCl (0.5g) and glucose (30g) dissolved in a liter of distilled 

water with pH adjusted to 7.2 were used for the culture. Phosphate buffer 

(pH 7.2), 100mM was used for washing the fungal media. 

 

Fungal culture 

The fungal media was autoclaved at 121oC at 15 psi for 15 minutes 

and cultured in 500ml flasks with 100 ml of culture medium. After 

inoculation the culture was maintained at 27oC in an aerated condition. The 

fungus was isolated from the broth by centrifuging the broth at 3400 rpm 

for 45 minutes, at 4oC. 

 

Methods 

The voltammetric sensing system 
The voltammetric sensing system employed for studying the 

electrode behavior of the fungus  comprised gold as working electrode (0.2 

cm2) platinum as  counter electrode (0.2 cm2) and a saturated calomel as the 

reference. The working electrode was polished well before dipping into the 

fungal broth. All measurements were done at room temperature (27oC  

2oC). The electrode was cleaned well and was cyclically scanned several 

times from 0.0 to 1.0V (vs Saturated Calomel Electrode [SCE]) for baseline 

qualification. The fungus was washed well with buffer before 

experimentation. 

 

Apparatus 

The measurements were performed using a Wenking potentiostat, 

(Tokyo, Japan) model POS 88 with a Rikadenki (Tokyo, Japan) X–Y–t 

recorder (RW–201 T). 
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Measurement of growth using voltammetric sensing system 

The working electrode was thoroughly polished and was cleaned 

before it was put into the sensing system. It was treated by cyclic scan 

several times from 0.0 to 1.0 V vs SCE before immersing in the broth 

containing the fungus. 

 

Measurement of the fungal growth in the media 

For measurement of fungal growth using the ‘conventional 

method’, the fungus was harvested from the culture medium after thorough 

filtration on tarred filter paper after washing it at least three times with 

petroleum ether, hexane and methanol Ci et al. (1997). After harvesting, the 

biomass was dried to constant weight at 95oC and replicate tests were 

conducted to obtain average values. 

 

Results 

 
Figure 1: Cyclic voltammogram of Fusarium oxysporum, (Scan rate of 50 mV/s)  

Figure - 1a) Fusarium oxysporum in broth, 38 mg/250 ml  

Figure - 1b) Background electrolyte only 

 

Cyclic voltammogram generated for the broth containing the fungi is 

presented in Figure—1a and b (The scan rate of 50 mV/s vs SCE was 

employed).  At 0.7 V vs SCE, anodic wave was obtained.  The current on the 

anodic peak increased with increase in time. The anodic peak seen in Fig—1a, 

could be attributed either due to fungal mycelia, or extracellular metabolite 

secreted by the fungus. A control experiment was performed to ascertain the 

reason for the anodic peak. The fungus was isolated from the broth by 

centrifugation and the clear supernatant was collected. The conditions for 

centrifugation including rate and time are presented in section 2.1.3. The 

fungus was then filtered in a Whatman 40 filter paper and washed thoroughly 

with phosphate buffer (pH 7.2, 100mM) to remove any metabolite that 
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adhered to the fungus. Centrifugation was done again to confirm that the 

metabolite was completely devoid of any fungal biomass that can possibly be 

found in the supernatant. The isolated fungus was suspended in phosphate 

buffer and the cyclic voltammograms were generated (See Fig—1b). 

 

Discussion 

Reasons for the anodic peak 

As can be seen from Fig—1b, CV peak characteristics are similar to 

that of the background electrolyte confirming that the fungal mycelia are not 

responsible for the anodic wave. Similarly we also recorded the CV of the 

supernatant using the same experimental conditions. The solution containing 

the metabolites provided the anodic wave. The results confirm that the anodic 

peaks were not due to the biomass or the fungal spores and only due to the 

extracellular metabolites. However, at this stage it is difficult to exactly 

determine the metabolite or the group of metabolites that are responsible for 

the anodic peak. Unfortunately, the metabolite or the mixture of metabolites 

that is/are responsible for the anodic peak could not be identified. While this 

is most certainly a limitation of this research, the fact that we are able to 

characterize an anodic peak and deduce scientific explanation for it, has 

tremendous potential in the near future. 

 

Correlation between peak current and the fungal growth 

 
Figure 2: Growth of Fusarium oxysporum in culture media characterised by peak current 

 

Peak current values were calculated for several days during the 

growth phase of the fungus. A graph was plotted with the peak current 

values against the growth period (See Fig—2). The cytosensor was able to 

evaluate all the three metabolically active phases of the growth curves, 

namely the lag, log, stationary phases, and one metabolically inactive 
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decline phase. Earlier authors have reported a similar trend for the microbial 

species of Saccharomyces cerevisiae Feng et al. (1997), and Tetrahymena 

shangaiensis Cofone et al. (1973). In our earlier study, our group 

demonstrated similar responses for Aspergillus niger Subrahmanyam et al. 

(2001c); Fusarium solani. Subrahmanyam et al (2000a) and Aspergillus 

terreus Subrahmanyam et al (2001b). The results have clear advantages in 

terms of the bioanalytical application. Conventional growth curve can be 

estimated easily for bacteria, whereas it is difficult, cumbersome and 

unreliable for fungi, because colony counting cannot be used as in the case 

of bacteria. Estimation of dry weight for fungi and colony counting for 

bacteria make it especially difficult to capture the decline phase. These 

limitations of the ‘conventional’ colony counting methods are exactly the 

ones that the electrochemical technique proposed here aims to overcome. 

In addition to the electrochemical estimation, another batch of experiments 

were performed in parallel to obtain the growth characteristics of the fungus 

using the “conventional technique”. 

 
Figure 3: Growth of Fusarium oxysporum, Conventional methodology of measurement 

of dry weight against time 

 

Cytosensor approach 

It is well established that in the conventional method of determining 

growth curve, the decline phase is not detected clearly for the fungus, as the 

increase in dry weight is monitored during fungal growth (see Fig—3).  We 

can also observe a marginal decrease in weight after 24 days of incubation. 

A comparison of Figures—2 and 3 confirms that the first three phases of 

the growth (lag, log and stationary growth phases) match well with the peak 

current values, confirming the fact that the electrochemical technique has 

potential applications as cytosensors. As has been shown the decline phase 
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is clearly defined only using the electrochemical cytosensor approach (see 

Fig—2). This is important for determining the growth characteristics of 

fungal species for the following reasons. Firstly, this approach is useful for 

capturing growth phases of microorganisms, whose growth phases run for 

several days rather than hours. The four growth phases for fungi run for a 

couple of weeks, when compared to that of bacteria, which require only 

about a few hours for their entire growth cycle. Secondly, using 

conventional techniques decline phases cannot be estimated accurately. 

This is because, the decay of the dead cells is not immediate, making it 

impossible for the conventional method to provide us with decrease in 

activity of the living cells. 

 
Figure 4: Peak potential of the fungus against different scan rates (Scale 1cm = 2uA). 

Dry weight (Fusarium oxysporum) of 32mg/250 ml of media; Scan rates of 5 mV/s, 10 

mV/s, 20 mV/s, 50 mV/s, 100 mV/s, and 200 mV/s 

 
Figure 5: Relation between peak current and square root of scan rate, Fusarium 

oxysporum, 40 mg dry weight in 250 ml of media 
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The electrode process and behavior 

The fungus (Fusarium oxysporum) was scanned for the peak 

potential against different scan rates. As has been shown in Fig—4 the peak 

potential is a function of scan rate, which is one of the characteristic features 

of a totally irreversible electrode process. It is important to mention here 

that this dependence is true regardless of reversibility for any diffusing 

redox-active species. This was also confirmed by studying the linearity 

between the square root of the scan rate and peak current (see Fig—5). The 

response is not due to the fungal biomass but due to the electroactive 

metabolites. 

 

Conclusion 

This work describes the development of a cytosensor capable of 

accurately and rapidly quantifying fungi with Fusarium oxysporum as a 

model organism. It is also clear that the anodic peak is a response 

exclusively due to the extracellular metabolites and not during the fungal 

mycelia. We believe that the electrochemical technique described here 

potentially has applications in a variety of areas such as biosensors, 

detection of extracellular metabolites, estimation of fungal contamination, 

bioprocess and pharmaceutical industries. 

Firstly, one of the immediate applications is in cell biology, where 

estimation of cells using conventional methods could be readily replaced 

saving both time and labour. 

Secondly, this technique could find applications in food industry. 

Food-borne illness typically arise due to improper handling, preparation 

and food storage Mead et al. (1999); McCabe-Sellers & Beattie, (2004); 

Scallan et al. (2011). Standardizing the detection of microbes could detect 

microbial toxins.  

Thirdly, the technique could be applied within bioprocess industry 

including in the production of antibiotics such as insulin, microbial 

enzymes, vitamins, vaccines, growth factors and steroids Madigan et al. 

(1997); Samaha et al. (2004). In order to estimate growth of fermenting 

microbes, samples are drawn at regular intervals. Incorporating a 

cytosensor within a bioreactor, would enable continuous estimation of the 

product with less probability of contamination. 

Lastly, drugs and their effectiveness on microorganisms could be 

easily researched using the proposed cytosensor, by analyzing the cells’ 

viable state in a culture media.  
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