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Abstract
In this work, the fractional calculus methods are used to solve essential problems in

conservative and non-conservative oscillatory systems. Regarding the non-conservative
systems, the key factor is to modify the standard fractional Lagrange equations by including
the fractional Rayleigh’s dissipation function with a time fractional derivative of the
displacement. The results are tested by applying them to well known Oscillatory systems
under conservative and non-conservative forces. The calculations reveal that, the equations of
motion are controlled by the fractional order derivative (alpha), as (alpha) goes to unity the

equations of motion become as those for ordinary oscillatory systems.
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Introduction
The idea of fractional calculus has been known since the development of the regular

calculus, with the first reference probably being associated with Leibniz and L’Hospital in
1695. Fractional calculus is employed in several fields: Mathematics, physics, engineering,
biology, and other scientific fields [1-5].

Fractional calculus is a generalization of integration and differentiation to non-

integer order, being the fundamental operator is , Dta where a and t are the limits of the

operation [6-9]. Fractional calculus was employed to describe several physical phenomena
such as heat flow, electricity, magnetism, and fluid dynamics. As an example of that, the
electromagnetic theory adopted the fractional calculus to describe the charge distribution of a
dipole.

In last decade, many studies have brought fractional calculus into attention revealing

that many physical phenomena are modeled by fractional differential equations [4-5]. The
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importance of fractional order mathematical models is that it can be used to make a more
accurate prediction and to give a deeper insight into physical processes.

Riewe [10,11] constructed a complete mechanical description of nonconservative
systems including Lagrangian and Hamiltonian mechanics, canonical transformations,
Hamilton-Jacobi theory, and quantum wave mechanics by using fractional derivatives. He
showed that the formalism can be applied to a classical fractional force proportional to the
velocity.

On the other hand, Rabei et al [12] found a method to obtain potentials for
nonconservative forcecs in order to introduce dissipative effects to the Lagrangian and
Hamiltonian mechanics.

Recently, the fractional constrained Lagrangian and Hamiltonian were analyzed [13-
14]. The notion of the fractional Hessian was introduced and the Euler-Lagrange equations
were obtained for a Lagrangian linear in velocities.

Fractional-order circuits and systems have witnessed an increasing interest lately
[15]. Capacitors are one of the crucial elements in integrated circuits and are used extensively
in many of them, such as sample and holds, radio-frequency oscillators, mixers [16,17].

The paper is organized as follows: In section 2, fractional calculus of conservative
forces is reviewed briefly. In section 3, the fractional calculus of nonconservative forces is
introduced. Applications on conservative and nonconservative systems are introduced in
sections 4 and 5 respectively. The paper closes with some concluding remarks in section 6.

Fractional Calculus of Conservative Forces
In Agrawal’s work [18-20], the problem is formulated in terms of the

left and right Riemann-Louville fractional derivatives, which are defined as:
The left Riemann-Louville fractional derivative reads as

n-a-1

. 1 d\'}f
aDXf(x):m[&M(x—r) f@de

which is denoted as the LRLFD and the right Riemann-Louville

fractional derivative reads as

n-a-1

3 1 d '
« Dy f(X):m(—&) _[(T—X) f(z)dz (2)
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which is denoted as the RRLFD. Here « is the order of the derivative

such that N=1< @ <N and is not equal to zero. If & is an integer, these

derivatives are defined in the usual sense, i.e.,

Dr100=( 2] 1005 100=(- 5] 100; =t o

The Euler-Lagrange equations for the fractional calculus of variations

problem is obtained as

oL ., OL oL
_+tDb p +aDtﬂ 3 =0. 4)
oq 0 ,D/'q 0.Dyq
Here L is a function of the form
L=L(q, .D{a, DJa,1), ©)
a d a
For a = B =1, we have ,D; =aand Dy =40 and Eq.(4) reduces to

the standard Euler-Lagrange equation.

Fractional Calculus of Nonconservative Forces
Another point regarding Lagrange’s equations must be noted. Only if some of the

forces acting on the system are derivable from the potential, can Lagrange’s equations assume

the form

oL, e L o L

4

—+.D .
oq ' " a,Dfq "' 8,Dfqg

where the Lagrangian L contains only those forces that are conservative while Q;

+Q; =0 (6)

includes the forces that are not derivable from potential. An illustration of this letter type of
force is the frictional force that is proportional to fractional time derivative of position which
may be written as
(04
where k is a constant.

Forces of this type are derivable from fractional Rayleigh’s dissipative function, f,
defined by

f =%k(a Dx, ) ®)

It is obvious that the frictional force can be written as
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of

F=——

' 0,Dfx ©)
Component of Q; of the generalised force arising as a result of fractional force is given by
Q ZF@ _D&x. __y of o ,DIx of

- . == : 10
~"5.Dfq,” 49,07% 0,D/q,  0.brg,
Substituting this value of Q; into Eq.(6), we can write Lagrange’s equation of motion as
oL . oL ., aL of
a0 5 pigt G pfq oD (1)
q a tq t bq a tq

Thus, if fractional forces of friction are acting on the system, we must specify two
scalar functions — the fractional Lagrangian and fractional Rayleigh’s dissipative function to
derive the fractional equations of motion.

Applications on Conservative Systems
Harmonic Oscillator
As a first example of conservative systems consider a harmonic oscillator of

stiffness k attached to a block of mass m. If the block is displaced a distance x from

equilibrium, the fractional Lagrangian of this oscillatory system is

L= %m(a D) —%kxz. (12)

Making use of Eq.(4), the fractional Lagrange’s equation of motion can be obtained as

—kx+m Df(,Dx)=0. 13)

In the limit @ — 1, equation (13) reduces to the equation of motion of the
undamped harmonic oscillator:
mX+kx =0.

U-tube
Consider now a shaped U-tube of length | filled with a liquid of density p, if the

liquid in one level is initially displaced vertically a distance 2x from the other level, the
fractional Lagrangian has the form

1 02
L=~ PAI(, Dyx) - pAgK?. 14)

Following Eq.(4), the Lagrange’s equation of motion reads
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—2pAgx+ pAl DZ(,Dx)=0. (15)
Or

— 20X JrItD{j‘(a Df’x)=0, (16)
If &' goes to one, then we must require that

IX+2gx =0,

Applications on Non-conservative Systems
Damped Harmonic Oscillator
As a first example of nonconservative systems consider the damped harmonic

oscillator. The fractional Lagrangian and the fractional Rayleigh’s dissipation function

describing this motion are
1 > 1 1 2
L=—m(a Dt‘"x) —=kx?. f :—c(a Dt‘"x) (17)
2 2 2
Substituting Eq.(17) into Eq.(11), we get
—kx+m thf(a Dt“x)—caDt“x:O, (18)
In the limit & — 1, we obtain the equation of motion of the damped harmonic oscillator

mX+cx+kx=0.

RL Circuit
Consider now an electric circuit consisting of a resistor, inductor, and battery. The

fractional Lagrangian for this circuit is

L:%I(anq)z—gq, (19)

and the Rayleigh’s fractional dissipation function is

f =%R(a Dt“q)2_ (20)

The Lagrange’s equation of motion reads

~¢+1 DZ(,D%q)-R ,Dfq=0. (21)

For @ — 1, we get the equation of the electrical driven forced oscillator in the form

I+ Rq+&=0,
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RLC Circuit
We now turn our attention to more realistic circuit consisting of an indicator,

capacitor, and a resistor connecting in series. The fractional Lagrangian and the fractional

Rayleigh’s dissipation function for this circuit are

1 2 Q° 1 2
L==I(.Dq) - . f ==R(.D?
2 (a t q) 26 2 (a t q) . (22)
The Lagrange’s equation of motion can be obtained as
_%_'_I tDba<a Dtaq)_R aDtaq:O. (23)

As o —> 1, we arrive at the equation of the electrical damped harmonic oscillator
m+Rq+3=0,
C

Conclusion

As a result of this work, fractional calculus is a powerful method to solve mechanical
energy issues related to oscillatory systems. For conservative oscillatory systems with
ordinary potential energy and fractional kinetic energy, the Lagrangian’s equations are
obtained. Similarly, modified Lagrangian’s equations are obtained for non-conservative
oscillatory systems with quadratic time dependant fractional Rayleigh’s dissipation function.
For both conservative and non-conservative cases, the equations of motion result by this
method return to the ordinary differential equations as the fractional order derivative (alpha)
goes to unity.
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