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Abstract 

In this work, the Hamilton-Jacobi formulation of fractional Caputo Lagrangians of 

linear velocities is investigated. The fractional Hamilton-Jacobi equations of motion for 

several potential systems are derived. Under certain conditions on the potential, it is shown 

that the action integral is independent on the fractional Caputo derivatives. 
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Introduction 

The classical Hamilton-Jacobi equation represents a reformulation of classical 

mechanics which is equivalent to other formulations such as Newton’s laws of motion, 

Lagrangian mechanics and Hamiltonian mechanics. In addition, the Hamilton-Jacobi equation 

is useful in finding the conserved quantities for mechanical systems, which may be possible 

even when the mechanical problem itself cannot be solved completely [1]. The Hamilton-

Jacobi theory represents the only formulation of mechanics in which the motion of a particle 

can be represented as a wave. 

On the other hand, the investigation of the fractional Hamilton-Jacobi equation is still 

at the beginning of its development. Fractional calculus deals with the generalization of 

differentiation and integration to non-integer orders [2-6]. For these reasons, a large body of 

mathematical knowledge on fractional integrals and derivatives has been constructed. 

More contributions and interesting applications of fractional calculus can be found in 

the references [7-13]. For examples, Riewe has used the fractional calculus to develop a 

formalism which can be used for both conservative and non conservative systems. Tarasov et 

al considered the fractional generalization of nonholonomic constraints defined by equations 

with fractional derivatives. They proved that fractional constraints can be used to describe the 



European Scientific Journal    May 2013 edition vol.9, No.15    ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 
  

287 
 

evolution of dynamical systems in which some coordinates and velocities are related to 

velocities through a power-law memory function. 

Recently, the fractional constrained Lagrangian and Hamiltonian were analyzed [14-

16]. The notion of the fractional Hessian was introduced and the Euler-Lagrange equations 

were obtained for a Lagrangian linear in velocities.  

Quantization of systems with fractional derivatives is a novel area in the theory of 

application of fractional differential and integral calculus. The path integral quantization of 

fractional mechanical systems with constraints is discussed in [17].  Schrödinger equation was 

considered with the first order time derivative modified to fractional Caputo ones in [18]. 

Moreover, Laskin studied some properties of the fractional Schrödinger equation. He proved 

the Hermiticity of the fractional Hamilton operator and established the parity conservation 

law for fractional quantum mechanics. As physical applications of the fractional Schrödinger 

equation he found the energy spectra of a hydrogenlike atom (fractional “Bohr atom”) and of 

a fractional oscillator in the semiclassical approximation [19].  

The aim of this study is to extend the Agrawal’s approach to classical fields with 

fractional derivatives. 

The plan of this paper is as follows: 

In Sec.2, the fractional Hamilton-Jacobi differential equations are investigated in 

terms of fractional Caputo derivatives. In Sec.3, three examples are studied. Finally, Sec.4 is 

dedicated to our conclusions.   

Fractional Hamilton-Jacobi Formulation  
 Consider the following fractional Caputo Lagrangian with n generalized coordinates: 

)()( qVqDqbL t
C
ai −= α

  ni ....,3,2,1= .   (1) 

 The generalized fractional Caputo momenta corresponding to this Lagrangian are: 

ii
t

C
a

i Hb
qD

Lp −≡=
∂
∂

= α .      (2) 

 Following [20,24], these equations represent constraint equations: 

)(qbpH iii −=′ .       (3) 

 The Hamiltonian H0 reads 

VLqDpH t
C
ai =−= α

0 .        

 The corresponding fractional Caputo Hamilton-Jacobi partial differential equations 

(HJPDEs) are 
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0000 =+=+=′ VSDHpH t
C
a

α ;       

0=−=+=′ iq
C
aiii bSDHpH

i

α .       

The total derivative of the fractional Caputo Hamilton-Jacobi function can be obtained 

as: 

dtSDdqSDtqdS t
C
aiq

C
a i

αα +=),( .     (4) 

Using the above fractional Caputo HJPDEs, we get 

VdtdqbdS ii −= ,       (5) 

which can be integrated to give  

∫∫ −= dtVdqbS ii .      (6) 

Now, using the fact hat 

∫∫∫ +== iiiiiiii dbqdqbqbqbd )( ,    (7) 

the above fractional Caputo Hamilton- Jacobi function Eq.(6) reduces to  

[ ] ∫∫∫ −−+= dtVdbqdqbqbS iiiiii2
1

.   (8) 

After some rearrangements, Eq.(8) becomes  

[ ]∫ +−−= VdtdqbdbqqbS iiiiii 2
2
1

2
1

.    (9) 

Assuming that the functions bi and V(q) satisfy the following conditions  

ijiq
C
a bqbD

j
=)( α

,    VqVD jq
C
a j

2)( =α
,    (10) 

 Eq.(9) then becomes 

])()([
2
1

2
1 ∫ +−−= dtVDdqbDdbqqbS

jj q
C
aiiq

C
ajjii

αα
.  (11) 

However, in order that S is an integrable function, the terms inside the brackets must 

be zero, i.e.  

0)()( =+− dtVDdqbDdb
jj q

C
aiiq

C
aj

αα .    

 (12) 

In fact, this equation represents the equation of motion for the coordinate qj. 

Accordingly, Eq.(11) reduces to  
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cqbS ii +=
2
1

.       (13) 

Applications  

The fractional Caputo Lagrangian of a two dimensional quadratic potential of the form 

v = ( )2
2

2
12

1 qq +   is tested as shown below.  

( )2
2

2
12112 2

1 qqqDqqDqL t
C
at

C
a +−−= αα

,    (14) 

Here the functions b1 and b2 read  

21 qb =           12 qb −=  

Using Eq.(12), the fractional equations of motion for q1 and q2 are respectively  

0)(
2
1)( 2

1212 11
=++ dtqDdqqDdq q

C
aq

C
a

αα
,      (15) 

0)(
2
1)( 2

2121 22
=+−− dtqDdqqDdq q

C
aq

C
a

αα
.     (16) 

The left Caputo fractional derivative is defined as [6]  

      ττ
τ
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 Applying this definition for 1)( qxf =  and 2)( qxf = , we get  
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 Substituting these equations in equations (15) and (16), we obtain 
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1
1

1
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+ −− dtaqaqdqaqdq α
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  0)]1([)(
)3(
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1
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1
21

1
21 =−+−

−Γ
+−

−Γ
−− −− dtaqaqdqaqdq α

αα
αα .  (18) 

 As a special case if α = 1, we get  

02 12 =+ qq ;  02 21 =− qq .      (19) 

From Eq.(13), the action integral is 
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  cS = . 

 Which means that this action is independent on the fractional Caputo derevatives 

As a second application, the fractional Caputo Lagrangian is considered for a three 

dimensional potential of the form v = 2
331 2

12 qqq −  :  

2
33131132211 2

12 qqqqDqqDqqDqqDqL t
C
at

C
at

C
at

C
a +−−++= αααα

,  (20) 

The functions bi (i= 1,2,3) are  

 311 qqb += ,       22 qb = ,   13 qb −= .    (21) 

Using Eq.(12), the equations of motion for q1, q2 and q3 are respectively 

0)(2)()()( 31311131 111
=++−+ dtqqDdqqDdqqDqqd q

C
aq

C
aq

C
a

ααα ; (22) 

0)( 222 2
=− dqqDdq q

C
a

α ;      (23) 

0)(2)( 13131 33
=+−− dtqqDdqqDdq q

C
aq

C
a

αα .    (24) 

As α goes to one, we obtain  

033 =+ qq ;   022 311 =+− qqq .  

Eq.(13) gives the action integral as 

 ( ) cqqS ++= 2
2

2
12

1
.  

In the third case the four dimensional fractional Caputo Lagrangian for the arbitrary 

potential v =  ( )2
332

2
4 2

2
1 qqqq −−−  is applied. 

( )2
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2
434132 2

2
1)( qqqqqDqqDqqL t

C
at

C
a −−+++= αα

, (25)  

The functions bi (i=1,2,3,4) read  

321 qqb += ;       02 =b ;   43 qb = ,  04 =b .   (26) 

Using Eq.(12), the equations of motion for q1, q2, q3 and q4 are  

0)( 32 =+ qqd ;       (27) 

0)()( 2322 22
=+− dtqDqdqqD q

C
aq
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;   (29) 
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0)
2
1()( 2

434 44
=−+− dtqDdqqD q

C
aq

C
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If α = 1, these equations reduce to  

032 =+ qq  ;     031 =− qq ;     03214 =++− qqqq  ;     043 =+ qq . (31) 

The action integral is 

( ) cqqqqqqS +++= 4331212
1

. 

Despite the fact that the potential is three dimensional, the action S is four dimensional, 

but independent of the Caputo derivatives.  

Conclusion 
We studied the formulation of the Hamilton-Jacobi function with fractional Caputo 

derivatives for Lagrangians with linear velocities. The fractional Hamilton-Jacobi equations 

of motion for several Lagrangian systems with different potentials were investigated. It is 

shown that in the limit α goes to 1, the equations of motion are in agreement with the ordinary 

Hamilton-Jacobi equations of motion. Besides, The action integrals did not show an explicit 

dependence on fractional Caputo derivatives. 
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