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Abstract 

Survival analysis is the analysis of time-to-event data. Two important 

functions in the analysis of survival data are the survival function and the 

hazard function. The Kaplan-Meier method is widely used to estimate the 

survival function. One of the objectives of the analysis of survival data might 

be to examine whether survival times are related to other features. A popular 

regression model for the analysis of survival data is the Cox proportional 

hazard regression model. The most commonly used approaches, for the 

baseline survival function, are the Breslow and Kalbfleisch-Prentice methods. 

These methods provide a step function estimate of the survivor function and 

in many instances a continuous estimate would be preferable. For these 

reason, in this paper we proposed a kernel smoothing technique for baseline 

estimator, based on Kalbfleisch-Prentice method. We start with kernel 

smoothing of baseline hazard function, based on Kalbfleisch-Prentice 

estimator and epanechnikov kernel, than we use it to calculate the baseline 

survival function. To evaluate the usefulness of the kernel estimator of the 

baseline function, in the case of right censoring, based on Kalbfleisch-

Prentice estimator we conduct simulation studies across a range of conditions, 

by varying the sample size and censoring rate. We compare it with the 

smoothing of the Breslow estimator regarding bias.

Keywords: Kernel smoothing of Breslow estimator, Kernel smoothing of 

Kalbfleisch Prentice estimator, Survival analysis, Cox model, Simulations 

 

Introduction 

Survival analysis is generally defined as a set of methods for analyzing 

data where the outcome variable is the time until the occurrence of an event 

of interest, or known as the analysis of time-to-event data. The outcome is 

often referred to as a failure time, survival time, or event time. In survival 
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analysis exist the possibility of not observing the event of interest for some 

individuals, this is called censoring. These incomplete observations cannot be 

ignored, but need to be handled differently. Censoring is an important issue in 

survival analysis, representing a particular type of missing data. Censoring that 

is random and non informative is usually required in order to avoid bias in a 

survival analysis. Survival methods correctly incorporate information from 

both censored and uncensored observations in estimating important model 

parameters. 

Two important functions in the analysis of survival data are the 

survival function and the hazard function. They are key concepts for 

describing the distribution of event times. The survival function gives, for 

every time, the probability of surviving (or not experiencing the event) up to 

that time. The hazard function gives the potential that the event will occur, per 

time unit, given that an individual has survived up to the specified time. There 

are parametric, nonparametric and semiparametric approaches to estimate the 

survival function and the hazard function. The Kaplan–Meier (or product-

limit) estimator (Kaplan and Meier, 1958) is a non-parametric estimator of the 

survival function and Nelson-Aalan estimator is a non-parametric estimator of 

the cumulative hazard function. These two estimators are the most useful 

methods in survival analysis. 
One of the objectives of the analysis of survival data might be to 

examine whether survival times are related to other features. A number of 

models are available to analyze the relationship of a set of predictor variables 

with the survival time. A popular regression model for the analysis of survival 

data is the Cox proportional hazard regression model (Cox, 1972). The Cox 

regression model provides useful and easy to interpret information regarding 

the relationship of the hazard function to predictors (Choi et al., 2014; Mao 

and Wang, 2010). The regression parameter and the baseline function are the 

two unknown parameters in this model. The regression coefficients can be 

estimated using the partial likelihood without specifying the baseline hazard 

function. The partial likelihood estimator can be obtained through Newton-

Raphson method easily when there are no ties among exact failure time in the 

recorded data. If ties are presented, Breslow (1974), Efron (1977), and 

Kalbfleisch and Prentice (1973) have proposed several approximated partial 

likelihood functions, for handling ties in the Cox proportional hazard model. 

In particular, and in contrast with parametric models, it makes no assumptions 

about the shape of the baseline hazard function. This is why the Cox 

proportional hazards model is referred to as a semi-parametric method, that is, 

a method in which survival times are assumed to be related to the explanatory 

variables in a particular way, but no assumptions are made on the overall shape 

of the survival times, that is the shape of the hazard function need not be 

specified. 
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After obtaining the estimators, we may interest in estimating the 

baseline survival function. In the discussion followed by Cox’s paper, all these 

estimators reduce to the product limit estimate (Kaplan and Meier, 1958) when 

there are no covariates. In previous works, more attention has been paid to the 

estimation of the regression parameter than to the estimation of the baseline 

function. Oakes (1972) suggested a step-function estimate instead of the point-

wise estimate for baseline hazard function. To estimate the baseline function, 

the Breslow estimator (Breslow, 1974) or the Kalbfleisch-Prentice (KP) 

estimator (Kalbfleisch and Prentice, 1973; 1980) can be used. The Breslow 

estimator uses the profile likelihood approach by extending the Nelson-Aalan 

estimator (Lin, 2007; Breslow and Wellner, 2007; Huang and Strawderman, 

2006). Kalbfleisch-Prentice (1973) proposed a step function estimate, where 

the baseline hazard function is assumed to be a constant between convenient 

(but arbitrary) subdivisions of the time scale, which is analogous to the 

Kaplan-Meier estimator. 

Another known estimator of the baseline function is a kernel estimator, 

introduced by Ramlau-Hansen (1983a; 1983b), which is obtained by 

smoothing the Breslow estimator of the cumulative baseline function. 

Guilloux et al., (2016) introduced an adaptive kernel estimation of the baseline 

function in the Cox model with high-dimensional covariates. Selingerova et 

al., (2016) proposed kernel estimator of the conditional hazard function, in the 

Cox model. In this work we propose a method by smoothing the Kalbfleisch-

Prentice estimator. We compare the smoothing of Breslow estimator with the 

proposed estimator, running a series of simulations. Some specified models 

are used to see the finite sample performance of them. 
The paper is organized as follows. Section 2 introduces the smoothing 

of the Kalbfleisch-Prentice estimator function for right-censored data, based 

on kernel techniques. The finite sample properties of the new estimator and 

the comparison with the smoothing of Breslow estimator are investigated in 

Section 3 and Section 4 concludes.  

 

Methodology 

Let Y be a variable of interest with density f and distribution function 

F, and we denote by 
1,.....CnC  a nonnegative random right censoring variable 

with continuous distribution function G. We assume that Y is independent of 

C. In the case when we consider the random right censoring, the variable is 

not completely observed. One can only observe ( , )i iT   where 

min( , )i i iT X C  and ( )i i iI X C    with ( )I   being the indicator function, 

such that is equal to 1 when observation is complete and 0 when it is censored. 

The survival function can be estimated using the well-known Kaplan-Meier 

estimator (Kaplan and Meier, 1958), given as: 
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The Kaplan-Meier estimator is the simplest way of computing the 

survival probabilities and graphical presentation. 

The Cox proportional hazard model, introduced by Cox (1972), is a 

regression model that specifies the conditional hazard function of the failure 

time for a given set of covariates. The hazard function is then defined by 

 
0( | ) ( )exp( )Th t h t X X                                    (2) 

where 1( ,..., )T

pX XX  a p-dimensional vector of covariates is, 

1( ,..., )T

p    is the vector of regression coefficients and 0( )h t  is the 

baseline hazard function. The Cox proportional hazards model assumes that 

the hazard function at time t for a given covariate vector is the product of an 

arbitrary baseline hazard function and an exponential function of the linear 

combination of the covariates. The Cox model is a semiparametric model, 

because the baseline hazard function is left unspecified. If the model is correct, 

then the hazard at time t for an individual with covariate vector
* * *

1( ,..., )T

px x x X  is  

* *

0( | ) ( )exp( )Th t h t xx X                               (3) 

The primary method of analysis in estimating the regression 

coefficients is called partial likelihood method. It formed the basis of the Cox 

(1972) analysis of proportional hazards model, and was discussed further in 

Cox (1975). Efron (1977) and Oakes (1977) developed asymptotic efficiency 

formulae for maximum partial likelihood estimators within Cox’s (1972) 

regression model, while Tsiatis (1981) was the first to prove consistency of 

such estimators. 

The full likelihood function of the data  , ,i i it x , conditional on 

1,..., px x , and considering that the censoring time is noninformative, can be 

written as: 
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where 
( )( )itR is the set of patients who are still at risk of experiencing the event 

at time it . Partial likelihood has also been used by Peto and Peto (1972) for 

constructing asymptotically efficient rank test statistics in the two-sample 

problem with censored survival data.  

One of the primary quantities desired from a survival analysis point of 

view is estimated survival curve. If no model is used to fit survival data, a 

survival curve can be estimated using a Kaplan-Meier method. When a Cox 

model is used to fit survival data, survival curves can be obtained that adjust 

for the explanatory variables used as predictors (Kleinbaum and Klein, 2005). 

These are called adjusted survival curves. For a random individual with 

covariates 
* * *

1( ,..., )T

px x x X , the conditional survival function of time can 

be estimated as:  
*ˆ* exp( )

0
ˆ ˆ( | ) ( )

T xS t X x S t                                     (6) 

where 0
ˆ ( )S t  is the estimated baseline survival function and ̂  is the regression 

coefficients that can be estimated using the partial likelihood without 

specifying the baseline hazard function (Cox, 1972; 1975). Because of the 

relationship of hazard to survival  

0 0
ˆ ˆ( ) exp{ ( )}S t H t                                        (7) 

we can write  
*

0
ˆ ˆexp( ) ( )*ˆ( | )

T x H t
S t X x e


                                 (8) 

where 0
ˆ ( )H t  is an estimator for the cumulative baseline hazard function. Then 

the estimate of conditional survival function can be taken from estimating 

either the estimated baseline survival function, or the cumulative baseline 

hazard function. To estimate the baseline survival function, the Breslow 

estimator (Breslow, 1974), or the Kalbfleisch Prentice estimator (Kalbfleisch 

and Prentice, 1973; 1980) can be used.  

 

The Breslow estimator and kernel smoothing 

To obtain the baseline hazards function, Breslow (1972) starts by the 

full likelihood function in equation (4) with    replace by ̂ . Breslow 

proposed a nonparametric maximum likelihood estimator for the cumulative 

baseline hazard function, which in the situation of no ties between the 

observed event times can be written as: 

( )
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Thus, the Breslow survival function estimator for a subject with 

covariate vector can be derived as: 
**

0
ˆ ˆˆ exp( ) ( )* exp( )

0
ˆ ˆ( | ) ( )

TT x H txS t X x S t e
 

                    (10) 

Another known estimator of the baseline function is a kernel estimator, 

introduced by Ramlau-Hansen (1983a; 1983b), which is obtained by 

smoothing the Breslow estimator of the cumulative baseline hazard function. 

Kernel estimator of baseline hazard function has the form: 

0, 0 ˆ

1
1
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where K is a kernel function, 0 nb b   is a bandwidth sequence. Then, the 

smoothing baseline survival function estimate is given by substituting in 

equation (10) the cumulative baseline hazard function taken from equation 

(11). The choice of the bandwidth in kernel estimation is crucial, in particular 

when one is interested in establishing non-asymptotic adaptive inequalities. 

Ramlau-Hansen (1981) has suggested the cross-validation method to select the 

bandwidth but without any theoretical guarantees.  

 

The Kalbfleisch-Prentice estimator and the proposed kernel smoothing 

The Kalbfleisch-Prentice estimator, proposed by Kalbfleisch and 

Prentice (1973; 1980), for survival functions uses the discrete failure time to 

approach a continuous function. Assume that baseline survival function has 

only jump points on the k distinct failure times (1) ( ),..., kt t . Then, replacing 

( | )S t x  by 
ˆ

0 ( )
T xS t   to the full likelihood function (Weng, 2007) we have 
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Here, iD  is the set of individuals who failed at time it  and iC  is the 

set of individuals censored in ( ) ( 1)[ , ), 0,...,i it t i k  . Let 

(i) (i)(T t | T t , 0)i P x      denote the conditional survival probability at 

time it  for a baseline subject. The Kalbfleisch-Prentice baseline survival 

function can be estimated as: 
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This leads to the following likelihood function 
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Taking the estimated regression coefficients from the partial likelihood 

and differentiating the logarithm of the last equation with respect to i  gives 

the maximum likelihood estimate of i . The maximum likelihood estimate of 

the contribution 0 ( ) ( )
ˆ ˆ( ) 1i i ih t dt    to the hazard at 

( )it t  is given by 
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If there are no ties, the solution ˆ
i , an estimate of i is  
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Accordingly, the Kalbfleisch-Prentice estimated survival function for 

a subject with covariates is: 
*ˆexp( )

*

:

ˆ ˆ( | ) i

i

x

KP i

i t t

S t X x






 
   

 
                            (17) 

Equation (17) is a step function estimate of the survivor function and 

in many instances a continuous estimate would be preferable, especially for 

suggesting a parametric form for 0( )h t . Kalbfleisch and Prentice focused on 

the probability of survival, 0 01 h   , rather than on that of failure, 0h . For 

these reason, in this paper we proposed a kernel smoothing technique for 

baseline estimator, based on Kalbfleisch-Prentice method. We start with 

kernel smoothing of baseline hazard function, based on Kalbfleisch-Prentice 

estimator and epanechnikov kernel, than we use it to calculate the cumulative 

baseline hazard function. 
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For the kernel we have used the Epanechnikov kernel proposed by 

(Muller and Wang, 1994) with boundary correction, given by  

                   
23

(t) (1 ),  1
4

K t t                                      (19) 

Then, the smoothing baseline survival function estimator can be taken by 

substituting in equation (10) the cumulative baseline hazard function taken 

from the baseline hazard function of equation (18). For randomly censored 

survival data, Marron and Padgett (1987) have shown that the cross-validation 

method gives the optimal bandwidth for estimating the density: the ratio 

between the integrated squared error for the cross-validation bandwidth and 

the infimum of the integrated squared error for any bandwidth almost surely 

converges to 1. The bandwidth selected by cross-validation is defined by: 
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Simulation Results 

The aim of this section is to illustrate the behavior of the kernel 

estimator of the baseline function in the case of right censoring, based on 

Kalbfleisch-Prentice estimator (KPK)(the proposed method) and to compare 

it with the smoothing of the Breslow estimator (BRK), with a bandwidth 

selected by cross-validation introduced by Ramlau-Hansen (1983b). We 

compare the performance of the proposed method with that of the smoothing 

of the Breslow estimator. The comparison is based on Bias. Xia et al., (2018) 

compare the performance of Kalbfleisch-Prentice and Breslow estimators 

regarding bias, mean squared error and relative mean squared error. In most 

situations in their study, the Kalbfleisch Prentice estimator results in less bias 

and smaller mean squared error than the Breslow estimator. Their differences 

are especially clear at the tail of the distribution.  

Some specified models are used to see the finite sample performance. 

We present two scenarios under which to evaluate the relative performance of 

the smoothing of Breslow estimator and the kernel smoothing of KP estimator, 

considering two Weibull distributions. For the Weibull distributions, we 

include both cases of increasing and decreasing hazard functions. The survival 

and hazard functions of two scenarios are presented in Figure 1. 
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Figure 1. Weibull survival probability and hazard rate with shape parameters a = 0.8; 2 and 

scale parameter b = 0.7; 0.9. 

 

The survival time is generated using the Cox proportional model with 

one covariate x, x∼Unif (0,1), and for the regression coefficient β we set to be 

0.6. The censoring time iC  for 1,...,i n  are simulated independently from 

the survival times via an exponential distribution. The distribution of 

censoring time C is deliberately calibrated to obtain the desired censoring rate 

r. The simulation settings used to study the effect of sample size and the 

censoring rate. The scenarios are: for each example baseline survival 

distribution, we have taken three different sample sizes n=30, 60, 90, and two 

different censoring rate r=10% and r=40%. We assume that 
* 0.9x  . The 

associated baseline function has the form 1

0 ( ) a ah t ab t  , where a and b stand 

for the parameters in W(a, b), Weibull distribution. The estimators of the 

baseline hazard function are both constructed with the Epanechnikov kernel. 

We compare the performance according to the bias. Let
*( | )S t X x  denote 

the true survival function for a subject with covariate vector 
*X x  and N 

denote the number of simulations, which is 1000. The bias is calculated as 

follows: 
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                         (21) 

The two cases considered for Weibull distribution are with shape 

parameter a=2 and scale parameter b=0.9; and with shape parameter a=0.8 and 

scale parameter b=0.7. The Weibull distribution with a = 2 corresponds to an 

increasing hazard, and that with a = 0.8 corresponds to a decreasing hazard. 

To this end, we run 1000 simulations and for every generated data set we 

calculate the estimators at the point t = 0.8 for Weibull (2, 0.9) and t = 2 for 

Weibull (0.8, 0.7). We first study the case for Weibull(2, 0.9) and the bias plots 

are presented in Figure 2 and Figure 3. 

 
Figure 2. Bias for survival estimates of a Weibull baseline survival distribution with a = 2, b 

= 0.9, r=10% and 
* 0.9x  , the kernel smoothing of KP estimator (red curve) and the 

smoothing of Breslow estimator (blue curve) 

 
Figure 3. Bias for survival estimates of a Weibull baseline survival distribution with a = 2, b 

= 0.9, r=40% and 
* 0.9x  , the kernel smoothing of KP estimator (red curve) and the 

smoothing of Breslow estimator (blue curve). 

 

As expected, with both procedures, the Bias decreases when the 

sample size increases. Also the Bias increases when the censoring rate 

increases, and the sample size remain constant. Generally, the magnitude of 

the BRK estimator is larger than that of the KPK estimator. For all scenarios 

where the censoring rate is 10%, the bias reaches a plateau after t = 0.6. The 
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BRK estimator always overestimates the survival probabilities, particularly 

for small sample sizes. 

The bias plots for Weibull(0.8, 0.7) are presented in Figure 4 and 

Figure 5. 

Figure 4. Bias for survival estimates of a Weibull baseline survival distribution with a = 0.8, 

b = 0.7, r=10% and 
* 0.9x  , the kernel smoothing of KP estimator (red curve) and the 

smoothing of Breslow estimator (blue curve) 

Figure 5. Bias for survival estimates of a Weibull baseline survival distribution with a = 0.8, 

b = 0.7, r=40% and 
* 0.9x  , the kernel smoothing of KP estimator (red curve) and the 

smoothing of Breslow estimator (blue curve). 

 

In general, bias decreases as n increase, or r decreases. The magnitude 

of the bias for the BRK estimator is almost always larger than that for the KPK 

estimator. For all scenarios under Weibull (0.8, 0.7) the bias reaches a plateau 

after t = 3. 
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Table 1: Bias for BRK and KPK estimators, for Weibull (2, 0.9) and Weibull (0.8, 0.7) 

densities, with two censoring rates r= (10%, 40%) and three sample size n=30,60,90. 

 Weibull(2,0.9) 

t=0.8 

 Weibull(0.8,0.7) 

t=2 

BIAS for 

BRK 

BIAS for 

KPK 

 BIAS for 

BRK 

BIAS for 

KPK 

n=30 r=10% 0.03 0.02  0.12 0.1 

r=40% 0.15 0.13  0.12 0.08 

n=60 r=10% 0.018 0.014  0.07 0.054 

r=40% 0.07 0.06  0.074 0.059 

n=90 r=10% 0.0009 0.001  0.047 0.032 

r=40% 0.02 0.012  0.028 0.019 

 

Table 1 shows the results for the bias, with the two methods. The 

results are obtained with 1000 replications. Firstly the results of the table 

demonstrate that the bias for KPK estimator is significantly reduced with the 

increasing of the sample size. Secondly, when the degree of censoring 

increases, KPK estimator remains significantly better compared with the BRK 

estimator, even though the Bias increases as expected. We calculate the 

estimators at the point t = 0.8 for Weibull (2, 0.9) and t = 2 for Weibull (0.8, 

0.7). 

 

Conclusion 

In this paper, we developed a kernel smoothing estimator for baseline 

survival function, conditional on covariates, based on Kalbfleisch and Prentice 

method. This estimator is obtained by starting with a kernel smoothing of 

baseline hazard function, based on Kalbfleisch-Prentice estimator and 

epanechnikov kernel, we use it to calculate the cumulative baseline hazard 

function and then to estimate the baseline survival function. 

The simulation results confirm the bias reduction property compared 

to that of kernel smoothing of Breslow estimator. The scenarios were made 

using two weibull distribution, Weibull (2, 0.9) and Weibull (0.8, 0.7), with 

two censoring rates r= (10%, 40%) and three sample size n=30, 60, 90. In 

general, bias decreases as n increase, or r decreases. The proposed estimator 

remains significantly better compared with the smoothing of Breslow 

estimator.  
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