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Abstract 

Commonly used simplex method to solve linear programming 

problem do not allow variables to be negative during solution process and 

suggest to break each free variable (variable allowed to be negative) into 

difference of two non-negative variables. This transformation significantly 

increases the number of variables as well as after this the problem leaves its 

original variable space. , thus making the geometry of problem (during 

solution process) difficult to handle and understand. In this paper, we 

developed a natural generalization of simplex pivots for free variables. 

Described approach is capable of handling any general linear programming 

in its original variable space. In our computational study, the primary results 

showed that the new method outperforms simplex method on general LPs. 

 
Keywords: Linear programming, unrestricted variables, simplex method, 

decomposition 

 

Introduction 

Since 1947, after World War II, linear programming has gained 

importance amongst the researchers of different fields (Dantzig, 1963). Today 

because of its tremendous impact in various disciplines, it has become a core 

research area of many Mathematicians, Economists and Decision Scientists. 

Linear programming is the optimization of an outcome based on some set of 

constraints using a linear mathematical model. It deals with maximizing 

(minimizing) of a linear function over a convex polyhedron specified by a set 

of linear constraints. The origin of developing algorithms to solve a given 
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system of linear inequalities actually goes back to the 19th century, where they 

were first studied by Fourier (Grattan-Guinness, 1970). Later, several 

mathematicians such as Dines (1918) and Motzkin (1952) rediscovered these 

algorithms. Simplex method developed by Dantzig (1963), which is specially 

designed to solve LPs with non-negative variables and so far, the most 

preferred method for solving LPs because of its efficiency (Shamir, 1987). 

We categorize the variables in an LP in two kinds, first kind is non-

negative variables, i.e. the variables having explicit non-negativity 

restrictions and the second kind is free/unrestricted variables, i.e. variables 

having no explicit non-negativity restriction.  

Just a few versions of simplex algorithm presented in the literature 

and textbooks for solving LPs with free variables, which mostly initiated by 

decomposing the free variables as a difference of two non-negative variables 

thus converting it into an LP with explicit non-negativity restrictions on all 

variables. Dantzig stated in (Dantzig, 1963)  another decomposition 

technique, which requires insertion of a single additional variable to the 

problem, and attributed this decomposition to A. W. Tucker. Later on, 

Schechter (1991)  has presented geometrical interpretation of above 

technique, but in 1985, Gass (1985) had already proven that defining free 

variables as difference of two nonnegative variables is computationally 

inefficient. 

For larger LPs, implementation of the simplex method with the 

decomposition of free variables increases the number of variables and 

importantly loses the geometry of problem in the original variable space. 

Furthermore, this makes a technically incorrect impression on the reader that 

linear programming with free variables is perhaps a special case of linear 

programming with non-negative variables. Actually linear programming with 

unrestricted variables is a generalization of linear programming with non-

negative variables, so there must be a generalized way of choosing entering 

and leaving basic variables that can directly deal unrestricted variables and as 

well as non-negative variables. 

Orchard-Hays (1968), Spivey and Thrall (1970), Gass (1985) and 

Dantzig and Thapa (1997)  discussed a way of handling free  variables  in  

terms  of explicit  representation  within a simplex  tableau  format. But that 

method lacks reliability from the perspective of efficiency on large LPs, 

because of the randomness involved in the selection of initial explicit 

representations.  

Here, this paper would reveal a similar but systematic and efficient 

procedure that could directly handle unrestricted variables in solving general 

LPs.  
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A Linear Programming Problem 

A general LP problem with mix kind of variables could be defined as, 

n
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where, U as index set of  variables that have no explicit bound,   and O as 

index set of variables that have explicit non-negativity conditions, 
nmnmA  

cb ,,  and nm  . It is assumed that A is full rank. 

Let B be the set of indices of the variables in the basis, and N be the set 

of indices of variables in the non-basis, such that 
BA is invertible, and non-

basis BnN \},,1{:  . We may write 

bxx  NNBB AA  

bxx
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                                               (2) 

 

Now by substituting the value of 
Bx  from equation (2), the objective 

of system (1) can be reformulated as  
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The following collection of equations along with non-negativity 

condition on variables Ox , 
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are termed as dictionary of the LP system (1) for basis B. 

The dictionary data, for any basis B, may be elementwise represented 

in the following collection of equations, denoted by D(B), which is slightly 

modified form of (Chvatal, 1983) (Kaluzny, 2001). 
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Where B

Bi A    vector ofcomponent   theis 1
b representing value of 

the basic variable ix , ij is the element of 
NB

NB AA   1
denoting the 

coefficient of the non-basic variable jx in the equation containing basic 

variable ix , j is the component of 
NT

NB

T

B

T

N AA   )( 1
cc representing the 

coefficient of  non-basic variable jx in the objective function of the current 

dictionary, and  
bc

1ˆ
B

T

B Az  is the objective scalar value associated with 

current basis B. A basis B (or a dictionary D(B)) is said to be feasible if 0i  

for all Oi . 

 

Selection of entering and leaving variables: 

The foremost requirement in solving a linear programming problem by 

simplex method is an initial basic feasible solution. Geometrically, it lies at 

the origin. The simplex method then iterates along edges to adjacent corner 

points of the feasible region in search of a better objective value. 

Algebraically, step of the selection of moving edge is known as the selection 

of entering basic variable.  

Consider the following LP, 
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Here 1x , 2x  and 9x could be treated as unrestricted variables because there are 

no bounds on their values mentioned explicitly, set  9,2,1U . Whereas 3x ,

4x , 5x , 6x , 7x  and 8x are termed as non-negative variables because of an 

explicit description of zeros as their lower bounds, set  8,7,6,5,4,3O . 

For the initial feasible basis B, setting  9,8,7,6,5B , is the easiest 

choice. Therefore corresponding  4,3,2,1N , the initial solution 

(0,0,0,0,12,20,24,60,12) with 0Z is obtainable by plugging in the values of 
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non-basic variables equal to zero. From the expression of objective function it 

is clear that any increase in values of the non-basic variables 1x  and 3x  have 

positive impact and 2x  and 4x  have negative impact on objective value Z. In 

other words, one could say that to increase the value of Z the non-basic 1x  and 

3x  could be increased while 2x  and 4x  could instead be decreased. But 4x

already on its non-negativity lower bound so could not be decreased any more. 

In short, 1x , 2x and 3x are candidate entering variables of which 1x  and 3x
 

are candidate increasing and 2x
 is candidate decreasing (here 4x is not 

considered as candidate decreasing variable).  

The rules of selecting an entering basic variable among all candidate 

entering variables are usually known as Pricing Rules. So far many pricing 

rules have been developed for non-negative variables, some of which are, 

Dantzig’s largest coefficient rule (Dantzig, 1963), steepest edge rule (1977), 

Devex rule (Harris, 1973), Minimum angle method (Inayatullah, Khan, Imtiaz, 

& Khan, 2010), Largest-distance rule (Pan, 2008), Nested Pricing rule (Pan, 

2008) Nested largest-distance rule (Pan, 2010). Here in this paper we are using 

a generalization of Dantzig’s largest coefficient method. According to this 

criterion, most preferred entering variable is the variable along which Z has 

highest increasing rate. In contrast to Dantzig’s original method here entering 

variable would not be necessarily increasing and may be decreasing as well. 

In the example defined above 2x  is a preferred entering variable, because one 

unit decrease in its value results a 100 units increase in the value of Z, which 

is highest with respect to other candidate variables.                

For any increasing (decreasing) variable ix , a variable jx is said to be 

leaving variable if jx  provides most stringent bound on the increase 

(decrease) of variable ix . 

As in the example defined above,  

 if 1x  is entering variable then 5x would be the leaving variable, 

because as 1x  increased to value 6, 5x  get struck with its zero lower 

bound firstly among other basic variables.  

 If 2x  were selected as entering variable then 8x would be the leaving 

variable, because as 2x  decreased to -15, 8x reached its zero lower 

bound quicker than other basic variables.   
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 If 3x  were selected as entering variable then 7x  is the leaving variable 

because as 3x  increased to value 3, 7x get struck with its zero lower 

bound firstly among other basic variables. 

 

Note: Unrestricted variables would never become a leaving variable because 

they didn’t have any upper or lower bound. 

 

General rule: 

For Dictionary 0, let 1R  be index sets of increasing variables in Nx , 

Clearly,  NjjR j  ,0::1  . Let 
2R  is the index set of decreasing 

variables in UNx . Clearly  UNjjR j  ,0::2  . So, index set of 

preferred entering variables among all the non-basic variables would be 

defined by, }},max{arg:{
21 RRjjR   . If R gets only a single element, 

say k, then kx  would be preferred entering variable and if R gets multiple 

elements then choice could be arbitrary.   

For leaving variable, since the variables in UBx  has no upper or lower 

bound, they have no reason to leave the basis. So the leaving variable is chosen 

from OBx only, by performing the following ratio test: “If 1Rk  then index of 

the leaving variable is obtained by  OBir ikiki  ,0:minarg  , 

while if 
2Rk  then  OBir ikiki  ,0:minarg  ”. 

 

Theorem 1: Optimality condition 

A feasible basis B is said to be optimal if in associated dictionary 0j

Oj and 0j Uj .  

Proof: 

0j  for all Oj  implies that there is no non-negative non-basic variable 

available that could be used to increase the value of Z without violating its 

zero lower bound, and  0j  for all Uj implies that there is no free non-

basic variable available. Hence it shows optimality of current basis. 
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Theorem 2: Unboundedness condition 

The linear program (1) is unbounded if it has a feasible basis B and in 

the associated dictionary there exists either , 0γ j Nj  such that 0Bj  or 

 0γ j , UNj  such that 0Bj . 

Proof: 

Consider the case of , 0γ j Nj  and 0Bj  which implies that from current 

(feasible) basis one can increase the value of jx   indefinitely and the objective 

value will increase in direct proportion to jx . 

Now consider the case of  0γ j , UNj  and 0Bj which implies that 

from current (feasible) basis one can decrease the value of jx  indefinitely  and 

the objective value will increase in direct proportion to decrease in jx . 

Description of the procedure: 

Problem 

Given a dictionary D(B), with index set U of free variables and the 

index set O of nonnegative variables. Obtain an optimal basis. 

 

Algorithm 

Step 1: Let  NR 1 such that  NjjR j  ,0::1  , 

 UNR 2 such that  UNjjR j  ,0::2   

  If 21 RR  then D(B) is optimal. Exit. 

 

Step 2: Set }},max{arg:{:
21 RRjjR   . If R gets only a single element, 

say k, then kx  would be entering basic variable and if R gets multiple elements 

then choice could be made on maximum of these.   

 

Step 3:   if 1Rk  ,  

    OBir ikiki  ,0:minarg   

 Otherwise, 

    OBir ikiki  ,0:minarg   
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Step 4: If r does not exist, then the given problem is unbounded. Exit. 

Otherwise make a pivot on  kr, . 

Set     rkBB \ ,      krNN \  and update D(B).Go to step 1 

 

Example 1: 

Consider the following LP, 
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On insertion of non-negative slack variables 4x , 5x , 6x  and 7x  problem 

becomes, 

0,0,0,0
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Initial dictionary for basic variables 4x , 5x , 6x  and 7x will be, 
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Here all the non-basic variables are decreasing variables, according to criteria 

defined above in section 4, 2x  is most preferred choice to enter in to the basis 

and then 6x  would leave the basis.      
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After performing the change of basis operations, we would get following 

system, 
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Here 1x  is decreasing and 3x  is increasing variable, in which 3x is our 

preferred choice (see section 4). Then leaving variable would be 4x .  

69
2033

4635
1674

61270
591

197
12632

139
12715

4635
778

61270
3

1347
6146

7

635
233

4635
21

6635
2

1635
391

2

635
62706

4635
32

6635
759

1635
13447

5

1270
347

4635
17

61270
27

1635
377

3

*











xxxZMax

xxxx

xxxx

xxxx

xxxx

 

Here 1x is only choice for entering variable. Leaving variable is 7x .  
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Since all the variables are in their allowable range (implies feasibility) 

and there is no one which could be used to increase Z without violating any 

constraint. Therefore optimality achieved and the optimal solution is 

   
489

1633
978
3469

407
2102

321 ,,,, xxx  with 28
19657z . 
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Example 2: 

Now consider another example, 
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Initial Dictionary: 
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Iteration 1: 
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Iteration 2: 
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Iteration 3: 
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203
20875

4475
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Here 5x  is entering variable but there is no leaving variable, which is 

indication of unbounded optimal solution.  

 

Computational Results: 

Following table presents a comparison of average number of iterations 

of our algorithm (USM) with Danzig’s simplex method (SM) (Dantzig, 1963). 

Using random models suggested by Kaluzny (2001), 
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We generated 250 linear programs with the coefficients ij bc ,  and ija chosen 

randomly from the integer interval  50,50 , and used MATLAB to generate 

the following results.  The results depict that on average USM take much lesser 

number of iterations than SM, especially on higher order problems. 
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Table 1: Average number of iterations on random LPs. 

Order USM SM 

Average Number of 

Iterations to be saved 

in USM (in %) 

3 x 3 1.58566 1.79283 11.55547 

3 x 5 1.64542 1.73705 5.275035 

3 x 7 1.5259 1.58566 3.768778 

5 x 3 2.53386 2.80876 9.787237 

5 x 5 2.7012 3.17928 15.03737 

5 x 7 2.60159 2.79681 6.980095 

7 x 5 3.98008 4.75697 16.33161 

7 x 7 3.83665 4.36255 12.05488 

7 x 10 3.67331 3.98805 7.892078 

10 x 10 5.77689 6.77689 14.75603 

10 x 15 5.41434 6.0757 10.88533 

15 x 10 9.0757 11.988 24.29346 

15 x 15 8.54183 10.2032 16.28283 

20 x 20 12.0518 14.9841 19.56941 

20 x 30 11.3586 13.2789 14.46129 

30 x 20 19.9562 29.3426 31.98899 

30 x 30 18.0598 22.7888 20.75142 

30 x 40 17.5777 21.9681 19.98534 

40 x 40 24.3984 33.0279 26.12791 

40 x 50 23.9801 31.4143 23.66502 

50 x 50 30.8446 42.3347 27.14109 

50 x 70 30.3825 40.9482 25.8026 

50 x 100 29.6175 39.4701 24.96219 

70 x 50 47.0199 76.9044 38.85929 

70 x 70 43.6614 64.3984 32.20111 

70 x 100 43.6175 60.8008 28.26163 

100 x 70 69.749 125.833 44.57018 

100 x 100 64.5498 100.251 35.61181 

100 x 200 62.4064 91.4223 31.73832 

200 x 100 205.163 403.558 49.16146 

200 x 200 133.769 250.06 46.50524 

200 x 300 130.661 231.869 43.64878 

300 x 200 223.02 533.534 58.19948 

300 x 300 204.243 418.183 51.15942 

300 x 400 202.279 399.147 49.32218 

400 x 300 289.347 699.709 58.64752 

400 x 400 275.598 611.841 54.95594 

400 x 500 273.084 589.139 53.64693 

500 x 400 355.96 881.558 59.62149 

500 x 500 348.578 823.964 57.695 

 

Furthermore, the comparison between USM and SM illustrates by the graphs 

between “number of elements in coefficient matrix” versus “average number 

of iterations” plotted below.    



European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 

13 

Figure (1): Graphs showing the comparison of average iterations between USM and SM 

with respect to number of elements in the coefficient matrix. Here numbers of elements in 

coefficient matrix mentioned on horizontal axis and average number of iterations on vertical 

axis. 
 

From figure (1), it is clearly observable that USM has greater 

efficiency for large coefficient matrices. To get a visualization of this 

increasing trend of efficiency, we also plotted the following graph between 

relative efficiency of USM and the number of elements in coefficient matrices.  
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Figure (2): Trend of relative efficiency of USM with respect to number of elements in 

coefficient matrix. Total number of elements in coefficient matrix mentioned on horizontal 

axis and fraction of number of average saved iterations mentioned on vertical axis. 
 

Now, to further analyze the trend behavior with respect to order of the 

coefficient matrices, we observed relationship between  % relative efficiency 

and the row-column ratio 








n

m
of coefficient matrices, for m= 40,60,80, and 

100. 

 

Figure (3): The data obtained by taking m=40 and   Zpppn  ,70,1|5 . 
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Figure (4): The data obtained by taking m=60 and   Zpppn  ,70,1|5 . 

 

Figure (5): The data obtained by taking m=80 and   Zpppn  ,70,1|5 . 

 

Figure (6): The data obtained by taking m=100 with   Zpppn  ,70,1|5 . 
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One can notice in figures (3) to (6), as the value of m increases, the 

relative efficiency of USM also increases, and gradually attain a maximum 

value when number of constraints are nearly double the number of variables (

nm 2 ), afterwards the trend is approaching to a limiting value for a long run. 

 

Applications 

Although every LP with explicit non-negativity conditions on 

variables could also be considered as a special case of LP with free variables, 

besides free variables exclusively arise in  a wide number of practical 

situations too, e.g. production  smoothing  applications  in  which decision 

variables  are  defined  to  include  periodical differences in  production levels 

which could be positive or negative (Gass, 1985). A linear-programming  

formulations  of zero-sum  two-person  games that  define the  unrestricted 

value of the game as a variable (Gass, 1985) and numerical  and statistical  

problems that  utilize linear-programming  methods for their  solution 

(Rabinovitz, 1968) etc. 

 

Conclusion 

In this paper we have developed an approach that could be applied to 

generalized LPs having either free or non-negative variables. By introducing 

the new rules for entering and leaving variables, the presented approach 

obviates the need of transforming a given LP involving unrestricted variables 

into an LP with non-negativity restrictions. Consequently this algorithm saves 

a lot of computational efforts for larger problems. Computational results, 

discussed in the end, showed that USM is generally more efficient than SM 

and works exceptionally well when ratio of number of constraints with number 

of variables lies near 2 i.e, 2
n

m . 
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