
European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

1

An Efficient Method for Pivoting Free Variables in

Linear Programming: A Computational Approach

Syed Inayatullah,

Asma Rani,

Tanveer Ahmed Siddiqi,

Hina Zaheer,

Muhammad Imtiaz,

Hafsa Athar Jafree,
Department of Mathematics, University of Karachi, Karachi, Pakistan

Doi: 10.19044/esj.2019.v15n9p1 URL:http://dx.doi.org/10.19044/esj.2019.v15n9p1

Abstract

Commonly used simplex method to solve linear programming

problem do not allow variables to be negative during solution process and

suggest to break each free variable (variable allowed to be negative) into

difference of two non-negative variables. This transformation significantly

increases the number of variables as well as after this the problem leaves its

original variable space. , thus making the geometry of problem (during

solution process) difficult to handle and understand. In this paper, we

developed a natural generalization of simplex pivots for free variables.

Described approach is capable of handling any general linear programming

in its original variable space. In our computational study, the primary results

showed that the new method outperforms simplex method on general LPs.

Keywords: Linear programming, unrestricted variables, simplex method,

decomposition

Introduction

Since 1947, after World War II, linear programming has gained

importance amongst the researchers of different fields (Dantzig, 1963). Today

because of its tremendous impact in various disciplines, it has become a core

research area of many Mathematicians, Economists and Decision Scientists.

Linear programming is the optimization of an outcome based on some set of

constraints using a linear mathematical model. It deals with maximizing

(minimizing) of a linear function over a convex polyhedron specified by a set

of linear constraints. The origin of developing algorithms to solve a given

http://dx.doi.org/10.19044/esj.2019.v15n9p1

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

2

system of linear inequalities actually goes back to the 19th century, where they

were first studied by Fourier (Grattan-Guinness, 1970). Later, several

mathematicians such as Dines (1918) and Motzkin (1952) rediscovered these

algorithms. Simplex method developed by Dantzig (1963), which is specially

designed to solve LPs with non-negative variables and so far, the most

preferred method for solving LPs because of its efficiency (Shamir, 1987).

We categorize the variables in an LP in two kinds, first kind is non-

negative variables, i.e. the variables having explicit non-negativity

restrictions and the second kind is free/unrestricted variables, i.e. variables

having no explicit non-negativity restriction.

Just a few versions of simplex algorithm presented in the literature

and textbooks for solving LPs with free variables, which mostly initiated by

decomposing the free variables as a difference of two non-negative variables

thus converting it into an LP with explicit non-negativity restrictions on all

variables. Dantzig stated in (Dantzig, 1963) another decomposition

technique, which requires insertion of a single additional variable to the

problem, and attributed this decomposition to A. W. Tucker. Later on,

Schechter (1991) has presented geometrical interpretation of above

technique, but in 1985, Gass (1985) had already proven that defining free

variables as difference of two nonnegative variables is computationally

inefficient.

For larger LPs, implementation of the simplex method with the

decomposition of free variables increases the number of variables and

importantly loses the geometry of problem in the original variable space.

Furthermore, this makes a technically incorrect impression on the reader that

linear programming with free variables is perhaps a special case of linear

programming with non-negative variables. Actually linear programming with

unrestricted variables is a generalization of linear programming with non-

negative variables, so there must be a generalized way of choosing entering

and leaving basic variables that can directly deal unrestricted variables and as

well as non-negative variables.

Orchard-Hays (1968), Spivey and Thrall (1970), Gass (1985) and

Dantzig and Thapa (1997) discussed a way of handling free variables in

terms of explicit representation within a simplex tableau format. But that

method lacks reliability from the perspective of efficiency on large LPs,

because of the randomness involved in the selection of initial explicit

representations.

Here, this paper would reveal a similar but systematic and efficient

procedure that could directly handle unrestricted variables in solving general

LPs.

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

3

A Linear Programming Problem

A general LP problem with mix kind of variables could be defined as,

n

O

O

U

T

A

z















xx
x

x
x

bx

xc

,0,where

tosubject

Maximize

 (1)

where, U as index set of variables that have no explicit bound, and O as

index set of variables that have explicit non-negativity conditions,
nmnmA  

cb ,, and nm  . It is assumed that A is full rank.

Let B be the set of indices of the variables in the basis, and N be the set

of indices of variables in the non-basis, such that
BA is invertible, and non-

basis BnN \},,1{:  . We may write

bxx  NNBB AA

bxx
11   BNNBB AAA

 (2)

Now by substituting the value of
Bx from equation (2), the objective

of system (1) can be reformulated as

bcxcc

xcxbc

xcxc

11

11

)(

0)(

0)(











B

T

BNNB

T

B

T

N

N

T

NNNBB

T

B

N

T

NB

T

B

AAAz

AAAz

z

The following collection of equations along with non-negativity

condition on variables Ox ,

bcxcc

bxx
11

11

)(







B

T

BNNB

T

B

T

N

BNNBB

AAAzMax

AAA

 (3)

are termed as dictionary of the LP system (1) for basis B.

The dictionary data, for any basis B, may be elementwise represented

in the following collection of equations, denoted by D(B), which is slightly

modified form of (Chvatal, 1983) (Kaluzny, 2001).






























zxzMaximize

Bixx

BD

Nj

jj

i

Nj

jiji

ˆ

,

)(




 (4)

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

4

Where B

Bi A  vector ofcomponent theis 1
b representing value of

the basic variable ix , ij is the element of
NB

NB AA   1
denoting the

coefficient of the non-basic variable jx in the equation containing basic

variable ix , j is the component of
NT

NB

T

B

T

N AA  )(1
cc representing the

coefficient of non-basic variable jx in the objective function of the current

dictionary, and  
bc

1ˆ
B

T

B Az is the objective scalar value associated with

current basis B. A basis B (or a dictionary D(B)) is said to be feasible if 0i

for all Oi .

Selection of entering and leaving variables:

The foremost requirement in solving a linear programming problem by

simplex method is an initial basic feasible solution. Geometrically, it lies at

the origin. The simplex method then iterates along edges to adjacent corner

points of the feasible region in search of a better objective value.

Algebraically, step of the selection of moving edge is known as the selection

of entering basic variable.

Consider the following LP,

0,,,,,

122343

606542

244843

205

122332

110910010

876543

94321

84321

74321

64321

54321

4321















xxxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

tosubject

xxxxZMaximize

Here 1x , 2x and 9x could be treated as unrestricted variables because there are

no bounds on their values mentioned explicitly, set  9,2,1U . Whereas 3x ,

4x , 5x , 6x , 7x and 8x are termed as non-negative variables because of an

explicit description of zeros as their lower bounds, set  8,7,6,5,4,3O .

For the initial feasible basis B, setting  9,8,7,6,5B , is the easiest

choice. Therefore corresponding  4,3,2,1N , the initial solution

(0,0,0,0,12,20,24,60,12) with 0Z is obtainable by plugging in the values of

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

5

non-basic variables equal to zero. From the expression of objective function it

is clear that any increase in values of the non-basic variables 1x and 3x have

positive impact and 2x and 4x have negative impact on objective value Z. In

other words, one could say that to increase the value of Z the non-basic 1x and

3x could be increased while 2x and 4x could instead be decreased. But 4x

already on its non-negativity lower bound so could not be decreased any more.

In short, 1x , 2x and 3x are candidate entering variables of which 1x and 3x

are candidate increasing and 2x
 is candidate decreasing (here 4x is not

considered as candidate decreasing variable).

The rules of selecting an entering basic variable among all candidate

entering variables are usually known as Pricing Rules. So far many pricing

rules have been developed for non-negative variables, some of which are,

Dantzig’s largest coefficient rule (Dantzig, 1963), steepest edge rule (1977),

Devex rule (Harris, 1973), Minimum angle method (Inayatullah, Khan, Imtiaz,

& Khan, 2010), Largest-distance rule (Pan, 2008), Nested Pricing rule (Pan,

2008) Nested largest-distance rule (Pan, 2010). Here in this paper we are using

a generalization of Dantzig’s largest coefficient method. According to this

criterion, most preferred entering variable is the variable along which Z has

highest increasing rate. In contrast to Dantzig’s original method here entering

variable would not be necessarily increasing and may be decreasing as well.

In the example defined above 2x is a preferred entering variable, because one

unit decrease in its value results a 100 units increase in the value of Z, which

is highest with respect to other candidate variables.

For any increasing (decreasing) variable ix , a variable jx is said to be

leaving variable if jx provides most stringent bound on the increase

(decrease) of variable ix .

As in the example defined above,

 if 1x is entering variable then 5x would be the leaving variable,

because as 1x increased to value 6, 5x get struck with its zero lower

bound firstly among other basic variables.

 If 2x were selected as entering variable then 8x would be the leaving

variable, because as 2x decreased to -15, 8x reached its zero lower

bound quicker than other basic variables.

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

6

 If 3x were selected as entering variable then 7x is the leaving variable

because as 3x increased to value 3, 7x get struck with its zero lower

bound firstly among other basic variables.

Note: Unrestricted variables would never become a leaving variable because

they didn’t have any upper or lower bound.

General rule:

For Dictionary 0, let 1R be index sets of increasing variables in Nx ,

Clearly,  NjjR j  ,0::1  . Let
2R is the index set of decreasing

variables in UNx . Clearly  UNjjR j  ,0::2  . So, index set of

preferred entering variables among all the non-basic variables would be

defined by, }},max{arg:{
21 RRjjR   . If R gets only a single element,

say k, then kx would be preferred entering variable and if R gets multiple

elements then choice could be arbitrary.

For leaving variable, since the variables in UBx has no upper or lower

bound, they have no reason to leave the basis. So the leaving variable is chosen

from OBx only, by performing the following ratio test: “If 1Rk  then index of

the leaving variable is obtained by  OBir ikiki  ,0:minarg  ,

while if
2Rk  then  OBir ikiki  ,0:minarg  ”.

Theorem 1: Optimality condition

A feasible basis B is said to be optimal if in associated dictionary 0j

Oj and 0j Uj .

Proof:

0j for all Oj implies that there is no non-negative non-basic variable

available that could be used to increase the value of Z without violating its

zero lower bound, and 0j for all Uj implies that there is no free non-

basic variable available. Hence it shows optimality of current basis.

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

7

Theorem 2: Unboundedness condition

The linear program (1) is unbounded if it has a feasible basis B and in

the associated dictionary there exists either , 0γ j Nj such that 0Bj or

 0γ j , UNj  such that 0Bj .

Proof:

Consider the case of , 0γ j Nj and 0Bj which implies that from current

(feasible) basis one can increase the value of jx indefinitely and the objective

value will increase in direct proportion to jx .

Now consider the case of 0γ j , UNj  and 0Bj which implies that

from current (feasible) basis one can decrease the value of jx indefinitely and

the objective value will increase in direct proportion to decrease in jx .

Description of the procedure:

Problem

Given a dictionary D(B), with index set U of free variables and the

index set O of nonnegative variables. Obtain an optimal basis.

Algorithm

Step 1: Let NR 1 such that  NjjR j  ,0::1  ,

 UNR 2 such that  UNjjR j  ,0::2 

 If 21 RR  then D(B) is optimal. Exit.

Step 2: Set }},max{arg:{:
21 RRjjR   . If R gets only a single element,

say k, then kx would be entering basic variable and if R gets multiple elements

then choice could be made on maximum of these.

Step 3: if 1Rk  ,

  OBir ikiki  ,0:minarg 

 Otherwise,

  OBir ikiki  ,0:minarg 

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

8

Step 4: If r does not exist, then the given problem is unbounded. Exit.

Otherwise make a pivot on  kr, .

Set     rkBB \ ,     krNN \ and update D(B).Go to step 1

Example 1:

Consider the following LP,

7853341

142344

97504225

1142719

98782

321

321

321

321

321











xxx

xxx

xxx

xxx

tosubject

xxxzMaximize

On insertion of non-negative slack variables 4x , 5x , 6x and 7x problem

becomes,

0,0,0,0

7853341

142344

97504225

1142719

98782

7654

7321

6321

5321

4321

321













xxxx

xxxx

xxxx

xxxx

xxxx

tosubject

xxxzMaximize

Initial dictionary for basic variables 4x , 5x , 6x and 7x will be,

098782

7853341

142344

97504225

1142719

321

3217

3216

3215

3214











xxxZMax

xxxx

xxxx

xxxx

xxxx

Here all the non-basic variables are decreasing variables, according to criteria

defined above in section 4, 2x is most preferred choice to enter in to the basis

and then 6x would leave the basis.

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

9

After performing the change of basis operations, we would get following

system,

34
87

317
1674

634
87

117
1220

34
2685

317
778

634
33

117
763

7

34
1

317
21

634
1

117
2

2

17
1670

317
32

617
21

117
341

5

34
347

317
635

634
27

117
377

4











xxxZMax

xxxx

xxxx

xxxx

xxxx

Here 1x is decreasing and 3x is increasing variable, in which 3x is our

preferred choice (see section 4). Then leaving variable would be 4x .

69
2033

4635
1674

61270
591

197
12632

139
12715

4635
778

61270
3

1347
6146

7

635
233

4635
21

6635
2

1635
391

2

635
62706

4635
32

6635
759

1635
13447

5

1270
347

4635
17

61270
27

1635
377

3

*











xxxZMax

xxxx

xxxx

xxxx

xxxx

Here 1x is only choice for entering variable. Leaving variable is 7x .

28
19657

4256
2981

6596
267

7295
2169

407
2102

41489
103

67498
1

76146
347

1

978
3469

4489
37

6326
1

7489
17

2

17
3538

4623
944

62411
2875

7501
599

5

489
1633

42329
158

63749
80

711247
377

3











xxxZMax

xxxx

xxxx

xxxx

xxxx

Since all the variables are in their allowable range (implies feasibility)

and there is no one which could be used to increase Z without violating any

constraint. Therefore optimality achieved and the optimal solution is

   
489

1633
978
3469

407
2102

321 ,,,, xxx with 28
19657z .

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

10

Example 2:

Now consider another example,

24340

75253720

418436

2610330

93515

321

321

321

321

321











xxx

xxx

xxx

xxx

tosubject

xxxzMaximize

Initial Dictionary:

093515

243140

75253720

418*436

2610330

321

3217

3216

3215

3214











xxxZMax

xxxx

xxxx

xxxx

xxxx

Iteration 1:

35330

2549

38*353

19

233

32
332

54
35

1

32
15

54
1

17

32
283

54
37

16

32
9

54
1

12

32
47

54
3

14











xxxZMax

xxxx

xxxx

xxxx

xxxx

Iteration 2:

166
11707

3706
24159

51412
145

6353
330

131
3966

3353
4286

5353
365

6353
49

7

353
38

3706
283

51412
37

6353
1

1

353
695

3353
315

5353
5

6353
9

2

353
8233

3195
4817

5706
585

6353
3

4 *











xxxZMax

xxxx

xxxx

xxxx

xxxx

Iteration 3:

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

11

203
20875

4475
658

510632
1111

61611
1525

249
4684

41473
724

51744
1093

64360
587

7

1093
296

417440
283

56976
89

617440
47

1

599
1684

41744
63

53488
55

61744
45

2

949
896

44817
195

53488
117

68720
3

3











xxxZMax

xxxx

xxxx

xxxx

xxxx

Here 5x is entering variable but there is no leaving variable, which is

indication of unbounded optimal solution.

Computational Results:

Following table presents a comparison of average number of iterations

of our algorithm (USM) with Danzig’s simplex method (SM) (Dantzig, 1963).

Using random models suggested by Kaluzny (2001),

nj

mia

c

j

i

n

j

jij

n

j

jj

,...,2,1,0

,...,2,1,

subject to

Maximize

1

1











x

bx

x

We generated 250 linear programs with the coefficients ij bc , and ija chosen

randomly from the integer interval  50,50 , and used MATLAB to generate

the following results. The results depict that on average USM take much lesser

number of iterations than SM, especially on higher order problems.

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

12

Table 1: Average number of iterations on random LPs.

Order USM SM

Average Number of

Iterations to be saved

in USM (in %)

3 x 3 1.58566 1.79283 11.55547

3 x 5 1.64542 1.73705 5.275035

3 x 7 1.5259 1.58566 3.768778

5 x 3 2.53386 2.80876 9.787237

5 x 5 2.7012 3.17928 15.03737

5 x 7 2.60159 2.79681 6.980095

7 x 5 3.98008 4.75697 16.33161

7 x 7 3.83665 4.36255 12.05488

7 x 10 3.67331 3.98805 7.892078

10 x 10 5.77689 6.77689 14.75603

10 x 15 5.41434 6.0757 10.88533

15 x 10 9.0757 11.988 24.29346

15 x 15 8.54183 10.2032 16.28283

20 x 20 12.0518 14.9841 19.56941

20 x 30 11.3586 13.2789 14.46129

30 x 20 19.9562 29.3426 31.98899

30 x 30 18.0598 22.7888 20.75142

30 x 40 17.5777 21.9681 19.98534

40 x 40 24.3984 33.0279 26.12791

40 x 50 23.9801 31.4143 23.66502

50 x 50 30.8446 42.3347 27.14109

50 x 70 30.3825 40.9482 25.8026

50 x 100 29.6175 39.4701 24.96219

70 x 50 47.0199 76.9044 38.85929

70 x 70 43.6614 64.3984 32.20111

70 x 100 43.6175 60.8008 28.26163

100 x 70 69.749 125.833 44.57018

100 x 100 64.5498 100.251 35.61181

100 x 200 62.4064 91.4223 31.73832

200 x 100 205.163 403.558 49.16146

200 x 200 133.769 250.06 46.50524

200 x 300 130.661 231.869 43.64878

300 x 200 223.02 533.534 58.19948

300 x 300 204.243 418.183 51.15942

300 x 400 202.279 399.147 49.32218

400 x 300 289.347 699.709 58.64752

400 x 400 275.598 611.841 54.95594

400 x 500 273.084 589.139 53.64693

500 x 400 355.96 881.558 59.62149

500 x 500 348.578 823.964 57.695

Furthermore, the comparison between USM and SM illustrates by the graphs

between “number of elements in coefficient matrix” versus “average number

of iterations” plotted below.

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

13

Figure (1): Graphs showing the comparison of average iterations between USM and SM

with respect to number of elements in the coefficient matrix. Here numbers of elements in

coefficient matrix mentioned on horizontal axis and average number of iterations on vertical

axis.

From figure (1), it is clearly observable that USM has greater

efficiency for large coefficient matrices. To get a visualization of this

increasing trend of efficiency, we also plotted the following graph between

relative efficiency of USM and the number of elements in coefficient matrices.

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

14

Figure (2): Trend of relative efficiency of USM with respect to number of elements in

coefficient matrix. Total number of elements in coefficient matrix mentioned on horizontal

axis and fraction of number of average saved iterations mentioned on vertical axis.

Now, to further analyze the trend behavior with respect to order of the

coefficient matrices, we observed relationship between % relative efficiency

and the row-column ratio 








n

m
of coefficient matrices, for m= 40,60,80, and

100.

Figure (3): The data obtained by taking m=40 and   Zpppn  ,70,1|5 .

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

15

Figure (4): The data obtained by taking m=60 and   Zpppn  ,70,1|5 .

Figure (5): The data obtained by taking m=80 and   Zpppn  ,70,1|5 .

Figure (6): The data obtained by taking m=100 with   Zpppn  ,70,1|5 .

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

16

One can notice in figures (3) to (6), as the value of m increases, the

relative efficiency of USM also increases, and gradually attain a maximum

value when number of constraints are nearly double the number of variables (

nm 2), afterwards the trend is approaching to a limiting value for a long run.

Applications

Although every LP with explicit non-negativity conditions on

variables could also be considered as a special case of LP with free variables,

besides free variables exclusively arise in a wide number of practical

situations too, e.g. production smoothing applications in which decision

variables are defined to include periodical differences in production levels

which could be positive or negative (Gass, 1985). A linear-programming

formulations of zero-sum two-person games that define the unrestricted

value of the game as a variable (Gass, 1985) and numerical and statistical

problems that utilize linear-programming methods for their solution

(Rabinovitz, 1968) etc.

Conclusion

In this paper we have developed an approach that could be applied to

generalized LPs having either free or non-negative variables. By introducing

the new rules for entering and leaving variables, the presented approach

obviates the need of transforming a given LP involving unrestricted variables

into an LP with non-negativity restrictions. Consequently this algorithm saves

a lot of computational efforts for larger problems. Computational results,

discussed in the end, showed that USM is generally more efficient than SM

and works exceptionally well when ratio of number of constraints with number

of variables lies near 2 i.e, 2
n

m .

References:

1. Chvatal, V. (1983). Linear Programming. United States of America:

W.H. Freeman and Company.

2. Dantzig, G. (1963). Linear Programming and Extensions. Princeton

University Press.

3. Dantzig, G., & Thapa, M. (1997). Linear Programming, 1:

Introduction. (P. Glynn, Ed.) Springer Verlag.

4. Dines, L. (1918). Systems of inequalities. Annal of Mathematics, 20

(2), 191-198.

5. Gass, S. (1985). Linear Programming Methods and Application. New

York: McGraw-Hill.

6. Gass, S. (1985). On the solution of Linear-programming Problems

with free variables. Comput. & Ops. Res., 12, No.3, 265-271.

European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431

17

7. Goldfarb, D., & Reid, J. (1977). A practicable steepest edge simplex

algorithm. Mathematical Programming, 361-371.

8. Grattan-Guinness, I. (1970). Joseph Fourier's Anticipation of Linear

Programming. Operational Research Quarterly, 21(3) , 361-364.

9. Harris, P. (1973). Pivot Selection methods of the Devex LP code.

Mathematical Programming, 1-28.

10. Inayatullah, S., Khan, N., Imtiaz, M., & Khan, F. H. (2010). New

Minimum Angle Algorithms for Feasibility and Optimality. Canadian

Journal on Computing in Mathematics, Natural Sciences, Engineering

& Medicines., 22-36.

11. Kaluzny, B. (2001). Finite Pivot algoirthms and Feasibility. MS thesis,

Faculty of Graduate Studies and Reseach, School of Computer

Science, McGill University, Montreal, Quebec, Canada .

12. Motzkin, T. (1952). Contributions to the theory of linear inequalities.

RAND Corporation Translation 22.

13. Orchard-Hays, W. (1968). Advanced Linear-Programming Computing

Techniques. New york: McGraw-Hill.

14. Pan, P.-Q. (2008). A largest-distance rule for the simplex algorithm.

European Journal of Operational Research, 187, No. 2, 393-402.

15. Pan, P.-Q. (2008). Efficient nested pricing in the simplex algorithm.

Operations Research Letters, 36, No. 3, 309-313.

16. Pan, P.-Q. (2010). A Fast Simplex Algorithm for Linear Programming.

Journal of Computational Mathematics, 28, No.6, 837-847.

17. Rabinovitz, P. (1968, April). Application of linear programming to

numerical analysis. SIAM Review, 10.

18. Schechter, M. (1991, June). Unrestricted variables in Linear

Programming. Journal of Optimization Theory and Applications, 69.

19. Shamir, R. (1987). The efficiency of simplex method:A survey.

Management Science, 301-334.

20. Spivey, W. A., & Thrall, R. M. (1970). Linear Optimization. New

York: Holt, Rinehart & Winston.

