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Abstract 

In this paper, we considered the estimation of  R=P(Y<X), dubbed as 

Stress-Strength Model (SSM), in a framework of gamma distribution with 

unknown scale and shape parameters. This is not an easy computing problem 

in conventional mathematics. For such problems, a very important option is 

using a Mathematica software, which has been employed to obtain solutions 

to this problem.
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Introduction 

Every physical component or system possesses an inherent strength 

against applied stress. The quantity R=P(Y<X) is often used in mechanical 

reliability theory, and it is termed as the Stress-Strength Model (SSM) 

(Johnson, 1988; Kotz & Pensky, 2003). Stress-Strength reliability is of 

interest in many fields such as economics, engineering, biology, medicine, 

agriculture, computers, etc. (Tamura, 2002; Koga & Aoyama, 2005; Ghosh 

et al., 2011; Otsuka et al., 2011; Otsuka et al., 2012; Stojković et al., 2017; 

Popov et al., 2018; Kobayashi et al. 2018). In most studies, it is accepted that 

X and Y are continuous, independent, and have the same univariate family of 

distributions. The explicit expressions for R and its properties have been 

derived for majority of useful distributions, e.g. normal, uniform, exponential, 

gamma, Pareto, Weibull, etc. (Kotz & Pensky 2003; Min & Sun, 2013). 

Constantine and Karson (1986) and Ismail et al. (1986) studied R 

when X and Y are from gamma distributions with known shape parameters. 

However, limited results are available in the case where X and Y are 

independent gamma variable. 

http://dx.doi.org/10.19044/esj.2019.v15n9p177


European Scientific Journal March 2019 edition Vol.15, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 

178 

The two parameters gamma distribution is a computationally complex 

distribution; its distribution function, inverse distribution function, and 

maximum likelihood estimators (MLEs) are not in closed forms. This is the 

reason why conventional arithmetic computations are tedious. Recently, 

several user-friendly softwares are available to handle these types of 

problems. Mathematica (Wolfram, 2000) is one of the leading software 

among them. 

In this paper, we explored the estimation of R=P(Y<X) in the 

framework of gamma distribution with unknown scale and shape parameters 

using Mathematica version 10.2. 

The two-parameter gamma distribution represents the scale (β) and 

shape (α) parameters. As a result of these parameters, it has become a flexible 

model (from skew exponential to quasi symmetrical) in many physical 

situations. Unfortunately, some of its properties are mathematically 

intractable which make this distribution less popular in modelling as 

mentioned above. The quantity R=P(Y<X) cannot be computed in closed 

form for arbitrary shape parameter (α). 

 

The Stress-Strength Model 

The Stress-Strength Model has been widely used for reliability 

analysis of mechanical components. Stress-Strength Model is defined as the 

variation in “stress” and “strength” which results in a statistical distribution. 

If X denotes continuous random variable strength with probability density 

function f(x) and Y denotes continuous random variable stress with probability 

density function f(y), X and Y are independent and then the reliability model 

is given by:  

 

                                     (1) 

                                           (2) 

 

The Gamma Distribution 

A random quantity X is said to have a gamma distribution with shape 

α and scale β if its pdf is given by: 

   x>0   (3) 

The cumulative distribution function is given by: 

                                   (4) 

Unfortunately, for an arbitrary α, there is no closed form for the distribution 

function p = F(x) and inverse distribution function x = F-1(p). Further, its 
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maximum likelihood estimators (MLEs) equations and SSM expression are 

not evaluated analytically. 

 

Gamma Stress-Strength Model 

Let Y(stress) and X(strength) be independent gamma variables whose 

means are their variance. 

The pdf of Y with parameters,  and , is given by: 

 
The above pdf can be generated through the following Mathematica 

command: 

 
In addition, the mean and standard deviation can be found using the following 

commands: 

 

 

 

 

The pdf of X with parameters,  and , is given by:  

f(x)=  

 

 

If   and  are not necessarily integers, Kapur and Lamberson (1977) 

showed:  

               (5) 

Where ,  is gamma function and  is incomplete beta function. 

Mathematica, provides single command to evaluate Г(.) by Gamma[x] and 

incomplete Beta[x, , ]. In Table I, II and III, true values of R=P(Y<X) 

computed from equation 5 with the help of Mathematica are displayed for 

some selected values of a set of parameters (r, , ). 
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Table I. The Gamma Stress-Strength Model R=P(Y<X) with r = 1.0 

r = 1.0 

 

 

 

 
 

 1 1.5 2.0 2.5 3.0 

1.0 0.5 0.353553 0.25 0.176777 0.125 

1.5 0.646447 0.5 0.381282 0.287793 0.215553 

2.0 0.75 0.618718 0.5 0.397748 0.3125 

2.5 0.823223 0.712207 0.602252 0.5 0.408903 

 3.0 0.875 0.784447 0.6875 0.591097 0.5 

 

Table II. The Gamma Stress-Strength Model R=P(Y<X) with r = 1.5 

r = 1.5 

 

 

 

 
 

 1.0 1.5 2.0 2.5 3.0 

1.0 0.6 0.464758 0.36 0.278855 0.216 

1.5 0.747018 0.62647 0.519334 0.426868 0.348571 

2.0 0.84 0.743613 0.648 0.55771 0.4752 

2.5 0.898807 0.826072 0.747018 0.66639 0.587639 

 3.0 0.936 0.88304 0.8208 0.752908 0.68256 

 

Table III. The Gamma Stress-Strength Model R=P(Y<X) with r = 2.0 

r = 2.0 

 

 

 

 
 

 1 1.5 2.0 2.5 3.0 

1.0 0.666667 0.544331 0.444444 0.362887 0.296296 

1.5 0.80755 0.708209 0.6151 0.530368 0.454725 

2.0 0.888889 0.816497 0.740741 0.665294 0.592593 

2.5 0.93585 0.886049 0.828933 0.767489 0.704197 

 3.0 0.962963 0.929899 0.888889 0.841697 0.790123 

 

From the tables (I, II, and III), it is evident that if shape parameter ( ) for 

strength distribution increases, the reliability of the component also increases. 
 

Maximum Likelihood Estimators (MLEs) of α, β 

In the following section, we discussed the estimation of scale and 

shape parameters through maximum likelihood. 

If a random    with pdf  is given in equation 3, then 

the likelihood function is given by: 

     (6) 

Taking partial derivatives of ln(L) with respect to α, β , we get:
 

 
1

( , ) log ( ) log ( 1) log /
n

i ii
l X X      
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Setting the second partial derivative equal to zero gives an estimate of scale 

parameter β as: 

 
A nonlinear equation for the MLE of shape parameter α is obtained if value of 

estimator β is used. 

 

Mathematica provides closed solution by following single command (Built-in 

Wolfram Language Symbol). 

 

 
 

Maximum Likelihood Estimator of R 

The MLE of Gamma Stress-Strength Model can be obtained by finding 

MLE from strength random sample    and stress random sample

respectively. 

If two independent random samples, 

, from two gamma distributions are available, then MLE  of (a1, b1, a2,b2) are 

given by . However, from the invariance property of MLE’s, the 

MLE of R is found to be; 

                                 (7) 

 

Monte Carlo Simulation 

In the absence of real data, Monte Carlo Simulation (MCS) is 

commonly used. It provides artificial data by maintaining the statistical 
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properties and behavior of real data. The case of gamma distribution 

simulation is not an easy job due to unavailability of closed form of its inverse 

function. Following Mathematica command directly provides gamma 

distributed random samples for a given set of parameters and sample size 

n. 

 
 

Therefore, random strength and stress data can easily be generated for 

different set of parameters under the assumption of gamma distribution. From 

these generated data, MLE of a set of parameters are obtained 

by the following command: 

 

 
 

Three different sample sizes (n = 15, 20, 25) were used and MLE 

estimate of R is obtained. The process is repeated 1000 times for each of the 

sample sizes. In order to see the sample behavior of each of these 1000 

estimates of R for various sample sizes, a goodness of fit is performed. 

Mathematica commands are used to find the goodness of fit. The results for a 

sample size 20 are shown in Table IV, and it is shown that the R in gamma 

case follows the beta distribution. Similar results are obtained when simulation 

is performed for different sets of parameters and sample sizes. 

 

 

 
 

Table IV. The best fit results for R 

Strength 

parameters   

Stress 

parameters  

R E(R) n Simulation 

(2.5,3) (1.5,2) 0.8260 0.8234 20 1000 

 

The Kolmogorov-Smirnov distribution fit test give p-value = 0.473653, where 

the value of test statistics is 0.0265417. 

 

Conclusion 

In conclusion, the Stress-Strength reliability has been estimated in 

gamma case through Monte Carlo Simulation by implementing Mathematica 

software.  By applying simulation method, it has been found that maximum 

likelihood estimation of R is unbiased. The sampling distribution of R is Beta 

distribution, and R lies between 0 and 1. The Beta distribution is a flexible 

model for the events constrained in an interval (0, 1). 
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