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Abstract 

 The determination of Phonon dispersion of alkali metals was 

unsuccessful using the parameter n=1/2 or 2/3 in the past two decades. In this 

study the parameter n has been consistently determined for the different alkali 

metals, the force constant has been determined up to the fourth next nearest 

neighbour. The result showed that the TB-SMA dispersion curves were in 

good agreement with experiment. This good agreement with experiment of 

the TB-SMA Phonons counters the prevailing notion in the literature that the 

TB-SMA model fails for alkali metals.
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Introduction 

 An efficient and accurate method of calculating the total energies is 

desirable   for the study of methods of interest to the materials scientist. Due 

to the enormous computation burden posed by these methods, empirical  

potentials, that  include  many-body  interaction  terms,  beyond  a  pair  

potential  term,  have  been  developed [Daw and Baskes, (1984), Cleri and 

Rosato, (1993)].  These semi-empirical  approaches  have  been  found  to  

provide fairly  accurate  results  with  considerable  increased  computational  

efficiency  compared  to  ab-initio  methods [Daw and Hatcher, 

(1985),Ozdemir et al, (2008)]  or  fast self consistent  calculation  techniques 

which  are  the  ideal  theoretical  framework  for  handling  these  systems.  In 

general,  semi-empirical  approaches  tackle  the  many-body  problem  by  
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determining  a  functional  form  for  the  cohesive  energy  based  on  some  

physical  model [Jun and Jian-Sheng, (2002), Idiodi, (2000)].   

 The  main  advantage  of  a  many-body  potential  treatment  over  the  

traditional  and  practically  simple  pair-potential  treatment  is  the  ability  to  

better  reproduce  some  basic  features  of  metallic  systems. Once these  

parameters  have been determined,  the functional  form  may  then  be  used  

to  calculate  other  properties  such  as  defect  energies. 

 Another test of the TB-SMA model potential is the calculation of 

phonon dispersion curves obtained by diagonalization of the dynamical matrix 

in the purely harmonic approximation [Guevara et al, (1995), Carlsson, 

(1991), Johnson, (1988)].   

 

Materials and Methodology 

2.1    The Basic Equations of the EAM  

 Idiodi [Idiodi, (2000)] high-lighted that the TB-SMA scheme is 

formally analogous to the embedded-atom method (EAM). Empirical 

potentials such as the EAM also describe the atomic interactions by several 

analytical functions   

 However, we give below  the  seven (7)  basic  equations  that  regularly  

arise  when  working practically with  the  EAM for BCC metals are as follows: 
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In the equations above, Uo is the equilibrium energy per atom, Bo and 

Cij are, respectively, the bulk modulus, and elastic constants written in Voigt 
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notation. Ωo is the volume per atom in the solid, ro is the equilibrium nearest–

neighbour distance, and a is the equilibrium lattice constant. 

1  is a repulsive pair potential whose first and second derivatives with 

respect to the radial distance r are respectively, 1 and 1  ( all quantities being 

evaluated at r = ro ), while F is the embedding function with respect to the 

density, ρ, with F   and F   being the first two derivatives; again all quantities 

being evaluated at the equilibrium density 
e . F

IVE  is the mono vacancy 

formation energy, while V11 , W11 and W12 are EAM parameters. 

 In all the previous applications of the EAM, V11, W11 and W12 have 

been considered as free parameters to be consistently determined so that the 

basic equations of the EAM are satisfied. Such an approach enables us to 

surmount the problem of the elastic constants not being correctly reproduced 

theoretically. Here, we shall introduce a slightly different approach since it is 

often desirable to predict several physical quantities from a minimum set of 

parameters. 

For BCC lattice, ro =
 
2

3a
 , 

2

3a
o    and expressions for   V11, W11 

and W12 in terms of the derivatives of the density are in the form  

 
311
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It is obvious from equation (2.1) to (2.7) above that the EAM has three 

basic functions, i.e.;     Fr ,1 and  r  which generate the 8 EAM 

parameters:  or1 ,  or


1 ,  or


1 ,  eF  ,  eF  ,  eF  ,  or , and 

 or  . All other parameters such as V11, W11 and W12 are dependent on the 8 

EAM parameters.  

 

2.2     The Basic Functions of the TB-SMA Scheme 

 In an obvious correspondence with the EAM scheme, the expressions 

for the cohesive energy Uo, in the TB-SMA scheme is the sum of the two terms 

[Mehl and Papacontantopoulos, (1996), Karolewski, (2001), Idiodi and 

Aghemenloh, (1998), Willaime and Massobrio, (1989)]  

 

Uo = ER  + EB        (2.9) 
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And 

EB = - ξ 
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Density as a function of the atomic distance ij. 

 Equations (2.10), (2.11), and (2.12) are the equations for the three basic 

functions of the TB-SMA scheme. 

 The sum over j in equations (2.10) to (2.12) is actually a sum over 

neighbours, rij, being the distance between atoms i and j and ro is the bulk 

nearest neighbour distance. 

 The TB-SMA expressions for the functions ɸ1(r), F(ρ) and ρ(r) as 

contained in the equations (2.9) to (2.12) are governed by only five (5) 

parameters  (A, p, ξ, q, and n), instead of the eight (8) parameters 

              ooeeooo randrFFrrr   ,,,,, 111  which are encountered in 

the EAM scheme (Equations (2.1) to (2.7)). In the initial development of the 

TB-SMA scheme, the five (5) basic parameters were determined by fitting 

results from ab initio calculations for high symmetry structures, the only 

experimental input being the lattice constant. The fitting procedure is quite 

cumbersome since the ab initio results are not easily available. Physical 

quantities like the elastic constants, the vacancy formation energy, etc. were 

subsequently predicted by the theory. Unfortunately, this ambitious 

programme [Sigalas and Papaconstantopoulos, (1991), Strich et al, (1991)] is 

yet to reach the much desired perfection stage, since several predicted 

quantities are in conflict with experiment. 

 In several applications of the TB –SMA scheme the parameter n is 

specified. In this situation the four remaining free parameters of the TB-SMA 

scheme can be determined from the EAM equations either using equations 

(2.1), (2.2), (2.3), and (2.7) or equations (2.1), (2.2), (2.3) and any one of (2.4) 

to (2.6). 

 The determined TB-SMA parameter p, for the BCC metals (see Table 

1), though is very large compared to typical values in the literature 

[Li et al, (2003)] satisfy the formulas 

  2qp
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given by Cleri and Rosato (1993). 

where Ec is the cohesive energy and z is the coordination number for Alkali  

metals. 

 In practice, determing the phonons or lattice dynamics for a given 

crystal system consists in calculating a force-constant matrix to each of the 

neighbours of a given atom. In the embedded-atom semi-empirical method, 

the force constants matrix can be derived from the expression for the total 

energy E given by 

  



i ji

ii jiRFE ,(
2

1
)(        (2.30) 

 Here Fi  is the embedding energy of the atom i which depends on the 

superposition of electronic charge densities  ),(/ jiaiiji   at site i from 

the surrounding atoms j, and   jiR ,  , a screened pair potential is between 

atoms  

i and j. The functional forms are chosen for Fi and 
i , and the parameters in 

these functions are determined by fitting to a limited number of bulk 

properties. We use in our calculation the simple exponentials for both the 

charge densities and the pair potentials.  

 In equation (2.30), If R (i, j) is the vector between atoms i and j, 

R=|R(i,j)| is the  

Vector length, 
oj
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   denotes the corresponding  component of the unit 

vector, then the force-constant tensor between atom (i is atom at the origin o) 

and another. Atom j can be written as [18 – 19]. 
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Where       FRRA j
 0
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And  is the Kronecker delta. 
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 The expressions (2.31) to (2.33) agree exactly with expressions given 

by Daw and Hatcher (1985) but differ slightly from the expression by Karimi 

and Mostoller (1992). 

 Equation (2.31) applies for monoatomic crystals with inversion 

symmetry. A(R) and B(R) in equation (2.31) represent the radial and 

tangential force constants, which involve the derivatives of the embedding 

function F and the electron density ρ as well as the pair potential  . 

 In the calculation of the TB-SMA and the modified term contributions 

to the atomic force constants of atom i, we take into account only those atoms 

located at distances less than rcf (cutoff distance) from atom i. In this paper, 

the atomic electron density  ijr  is truncated at a specific cutoff distance. 

When the separation rij  between atoms i and j is larger than cfr that is  cfij rr 

, both  ijr  and  ijr  are equal to zero [Xiao-jun and Chang, (2013), Wilson 

and Riffe, (2012)]. 

 The first two terms in Eq. (2.31) have exactly the form that occurs with 

central pair potentials alone, with radial and tangential force constants A(R) 

and B(R).  

 However, these central force Constants involve derivatives of the 

embedding function F and the electron density ρ as well as the pair potential 

 . The last term in Equation (2.31) goes beyond a central pair potential model, 

and represents the three-body contributions to the force-constants in the EAM 

[Aigbekaen, (2018),Hwang et al,(2010), Andrea, (2013), Mason, (2009)]. 
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FORCE CONSTANT MATRIX ,  27,0 .  
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The dynamical matrix can written in 3x3 matrix form as shown below. 
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 Once the force constant matrices have been determined, the elements 

of the dynamical matrix can be evaluated up to fourth neighbours using: 

  𝐷𝛼𝛼 =
1

𝑚𝐴
(𝐴 − 8𝛼1𝐶𝑜𝑠(𝑎𝑞𝛼)𝐶𝑜𝑠(𝑎𝑞𝛽)𝐶𝑜𝑠(𝑎𝑞𝛾) − 2𝛼2𝐶𝑜𝑠(2𝑎𝑞𝛼) −

2𝛽2 (𝐶𝑜𝑠(2𝑎𝑞𝛽) + 𝐶𝑜𝑠(2𝑎𝑞𝛾)) − 4𝛼3𝐶𝑜𝑠(2𝑎𝑞𝛼) (𝐶𝑜𝑠(2𝑎𝑞𝛽) +

𝐶𝑜𝑠(2𝑎𝑞𝛾)) − 4𝛽3𝐶𝑜𝑠(2𝑎𝑞𝛽)𝐶𝑜𝑠(2𝑎𝑞𝛾) −

8𝛼4𝐶𝑜𝑠(3𝑎𝑞𝛼)𝐶𝑜𝑠(𝑎𝑞𝛽)𝐶𝑜𝑠 (
𝑎

2
𝑞𝛾) −

8𝛽4𝐶𝑜𝑠(𝑎𝑞𝛼) (𝐶𝑜𝑠(3𝑎𝑞𝛽)𝐶𝑜𝑠(𝑎𝑞𝛾) + 𝐶𝑜𝑠(3𝑎𝑞𝛾)𝐶𝑜𝑠(𝑎𝑞𝛽)))  (2.75)  

𝑊ℎ𝑒𝑟𝑒 𝛼 = 𝑥, 𝑦, 𝑧; 𝛼 ≠ 𝛽 ≠ 𝛾  
          

  

4433221 16848428  A
    

  (2.76) 

𝛼1, 𝛽1, 𝛼2, 𝛽2  𝛼3𝛽3,  𝛼4  𝛽4,𝛾1,𝛾2,𝛾3, 𝛾4, and 𝛿3are elements of the force 

constant matrix. are  

𝑞𝛼  ,𝑞𝛽, 𝑞𝛾the coordinates. 𝑎 is the lattice parameter of metals. A is often called 

the self-energy  

term.  

 

Also; 

𝐷𝛼𝛽(�⃖�) =
1

𝑚𝐴
(8𝛽1𝑆𝑖𝑛(𝑎𝑞𝛼)𝑆𝑖𝑛(𝑎𝑞𝛽)𝐶𝑜𝑠(𝑎𝑞𝛾) +

4𝛾3𝑆𝑖𝑛(2𝑎𝑞𝛼)𝑆𝑖𝑛(2𝑎𝑞𝛽) + 8𝛾4𝐶𝑜𝑠(𝑎𝑞𝑧) (𝑆𝑖𝑛(3𝑎𝑞𝛼)𝑆𝑖𝑛(𝑎𝑞𝛽) +

𝑆𝑖𝑛(3𝑎𝑞𝛽)𝑆𝑖𝑛(𝑎𝑞𝛼)) + 8𝛿4𝑆𝑖𝑛(𝑎𝑞𝛼)𝑆𝑖𝑛(𝑎𝑞𝛽)𝐶𝑜𝑠(3𝑎𝑞𝛾))  

(2.77) 
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 𝑊ℎ𝑒𝑟𝑒 (𝛼 ≠ 𝛽 ≠ 𝛿) .       

   

where; 𝑚𝐴  denotes the atomic mass of the given metal atom.  

  

 Where; D(q) is often termed the dynamical matrix, is the Eigen value. 

Once the Eigen values are known up to fourth order, we plot the Eigen values 

against the K-points, to get the phonon dispersion curve of the crystal. 

 

2.3  Phonon thermodynamic properties of alkali metals 

 Once the phonon spectrum has been obtained over the entire Brillouin 

zone, one can now calculate and obtain the phonon free energy, ∆F, the 

internal energy, ∆E, the constant-volume specific heat, CV, at zero pressure 

and the entropy, S. 

 The Expressions used for phonon free energy, the internal energy, the 

constant-volume specific heat and the entropy are given as follows : 

 

1. HELMHOLTZ FREE ENERGY, ∆F.  
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2. INTERNAL ENERGY, ∆E.  
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3. CONSTANT-VOLUME SPECIFIC HEAT, CV. 

 

CV = 3NnkB∫ (
ℏ𝜔

2𝑇𝐾𝐵 
)

2

𝑐𝑠𝑐ℎ2 (
ℏ𝜔

2𝑇𝐾𝐵
)

𝜔𝐿

0
𝑔(𝜔)𝑑𝜔         (2.80) 

4. ENTROPY, S. 

 

S = 3NnkB∫ [
ℏ𝜔

2𝑇𝐾𝐵 
𝑐𝑜𝑡ℎ

ℏ𝜔

2𝑇𝐾𝐵 
− 𝐼𝑛 {2𝑠𝑖𝑛ℎ (

ℏ𝜔

2𝑇𝐾𝐵 
)}]

𝜔𝐿

0
𝑋 𝑔(𝜔)𝑑𝜔        (2.81) 

where KB is the Boltzmann constant, n is the number of atoms per unit cell, N 

is the number of unit cells, ωL is the largest  phonon frequency, ω is the phonon 

frequency and g(ω) is the normalized phonon density of states with 

∫ 𝑔(𝜔)𝑑𝜔 = 1
𝜔𝐿

0  , ∆ω is the frequency width. 
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3. Results and discussion 
Table 1: TB-SMA parameters and other input parameters 

 
Table 2:  Force-Constants for alkali metals 

FORCE-

CONSTAN

T (dyn/cm). 

METALS 

Li Na K Rb Cs 

1  452.4276 240.9389 136.7971 114.7673 85.2672 

2  261.8110 185.5323 146.9431 125.8242 107.2560 

3  203.6961 134.7058 105.7361 83.3440 70.9171 

4  201.5032 127.8249 101.6976 74.7862 63.7734 

1  362.4534 169.6712 56.6538 60.6007 36.6637 

2  284.3606 195.6712 152.1798 129.7258 110.0003 

3  212.0983 139.1377 108.0112 85.2570 72.3134 

PARAMETER

S 

Li Na K Rb Cs 

N 0.2836 0.2954 0.3537 0.3087 0.3163 

P 46.4200 48.4470 42.8100 45.8400 38.2970 

q  0.2836 0.2821 0.2909 0.4247 0.4237 

 (eV) 0.5798 0.3961 0.3325 0.3041 0.2874 

A 1.2524E-03 8.1485E-04 7.9876E-04 9.9593E-04 1.1243E-03 

U0(eV) 1.6300 1.1130 0.9340 0.8520 0.8040 
F

IVE  0.4800 0.3400 0.3400 0.2700 0.2600 

a (Å) 3.5092 4.2906 5.3200 5.7000 6.1400 

R (Å) 3.0391 4.2906 8.8222 9.4524 10.1820 

C11 (erg/cm2) 0.1440E+12 0.08160E+12 0.04150E+12 0.03120E+12 0.02470E+12 

C12 (erg/cm2) 0.1210E+12 0.06790E+12 0.03400E+12 0.02620E+12 0.02060E+12 

C44 (erg/cm2) 0.1070E+12 0.0570E+12 0.02840E+12 0.01860E+12 0.01480E+12 

BO (erg/cm2) 0.1160E+12 0.0680E+12 0.0320E+12 0.0310E+12 0.0200E+12 

Ρ 8.0000 11.4184 11.1455 7.7933 7.8136 

ρ/ (r)(1/(Å)) -1.4931 -3.7023 -2.9736 -2.4337 -2.2623 

ρ// (r)(1/(Å)2) 0.27867 0.8761 0.5834 0.6197 0.5337 
 (r) 2.5049E-03 9.1904E-23 -1.5644E-20 1.2198E-21 1.3674E-18 

  (r) -3.8261E-02 -1.1904E-21 -1.4536E-20 -1.1327E-20 -9.8486E-18 

  (r) 0.5844 1.5623E-20 1.3507E-18 1.0519E-19 7.0946E-17 

F(ρ) -1.04573 -0.9101 -8.9099E-01 -0.6243 -0.6014 

F/(ρ) -3.7071E-02 -1.6050E-02 -1.9415E-02 -1.8739E-02 -1.8434E-02 

F//(ρ) 3.3197E-02 6.7517E-04 7.7303E-04 1.2595E-03 1.2214E-03 

A(R)(eV/(Å)2) 0.5741 -1.4061E-02 -1.1327E-02 -1.1612E-02 -9.8380E-03 

B(R)(eV/(Å)2) 5.6230E-03 8.3513E-03 6.5440E-03 4.8246E-03 4.0958E-03 
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4  211.5645 132.9763 104.3695 76.9268 65.3373 

3  -8.4022 -4.4319 -2.2751 -1.9130 -1.3964 

4  -3.7730 -1.9318 -1.0020 -0.8027 -0.5865 

4  -1.2577 -0.6439 -0.3340 -0.2675 -0.1955 

 

 
Fig.1: Phonon dispersion curves for Li 

 

- TB-SMA. 

X    EAM. 

O   EXPERIMENT.              

 
Fig. 2:  Phonon dispersion curves for Cs. 

- TB-SMA. 

X    EAM. 

O   EXPERIMENT. 
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Fig. 3: Phonon dispersion curves for K. 

- TB-SMA. 

X    EAM. 

O   EXPERIMENT. 

 
Fig. 4:  Phonon dispersion curves for Na. 
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Fig.5:  Phonon dispersion curves for Rb. 

- TB-SMA. 

X    EAM. 

O   EXPERIMENT. 

THERMODYNAMICS PROPERTIES 

 
Fig. 6: Showing the free energy of Alkali Metals 
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Fig.7: Showing the Internal energy of Alkali Metals. 

 
Fig.8: Showing the Specific Heat of Alkali Metals. 
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Fig.9: Showing the Entropy of Alkali Metals. 

 

4.    Discussion 

 We have performed the simulations for the Phonon dispersion curves 

along the high symmetry directions [0, 0, 0], [ξ, ξ, ξ] and [0, ξ, ξ] for the alkali 

metals. The notation Γ, H, P, and N are the special points in the first Brillouin 

zone of the bcc lattice, L and T are the longitudinal mode and transverse mode 

respectively. The results are shown in Fig.1 to Fig.5  

 

1  LITHIUM, Li. 

 A look at fig.1 shows that there is an agreement between TB-SMA 

phonon dispersion Curve, EAM phonon dispersion curve and experimental 

phonon dispersion Curve along the symmetry directions. TB-SMA phonon 

dispersion Curve  deviated slightly in the [ 0, ξ, ξ ] direction, there was an 

intersection of the LM and TM of the experimental phonon dispersion Curve, 

EAM phonon dispersion curve at a point in Γ to H points and in H to P of [ξ, 

ξ, ξ] direction ,TB-SMA dispersion Curve agree with experimental dispersion 

Curve but in  P to Γ points in the  [ξ, ξ, ξ] direction, TB-SMA phonon 

dispersion Curve agree with experimental phonon dispersion Curve and in Γ 

to N points in the [ξ, ξ, 0] direction, TB-SMA phonon dispersion Curve, EAM 

phonon dispersion curve are in excellent agreement with the experimental 

phonon dispersion Curve. 
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2  CAESIUM, Cs. 
 A close study of fig.2 reveals that there is close agreement between 

TB-SMA phonon dispersion Curve, EAM phonon dispersion curve and 

experimental phonon dispersion Curve for caesium for some wave vectors in 

all the three principal symmetry directions. For phonon dispersion Curve there 

is a little discrepancy between TB-SMA phonon dispersion Curve, EAM 

phonon dispersion curve and experimental dispersion Curve in the L modes 

and T modes of  [0, ξ, ξ] direction in  Γ to H points, TB-SMA phonon 

dispersion Curve and EAM phonon dispersion curve are in agreement with the 

experimental phonon dispersion Curve, and in H to P points of [ξ, ξ, ξ ] 

direction, TB-SMA phonon dispersion Curve and EAM phonon dispersion 

curve are in agreement with the experimental phonon dispersion Curve. In P 

to Γ points in the [ξ, ξ, ξ] direction, TB-SMA phonon dispersion Curve and 

EAM phonon dispersion curve are in agreement with the experimental phonon 

dispersion Curve, and in Γ  to N points in the [ξ, ξ, 0] direction, TB-SMA 

phonon dispersion Curve, and EAM phonon dispersion curve are in agreement 

with the experimental phonon dispersion Curve. 

 

3  POTASSIUM, K. 

 A close study of fig.3 shows that there is a slight agreement between 

TB-SMA phonon dispersion Curve, EAM phonon dispersion curve and 

experimental dispersion Curve along the symmetry directions. In the [0, ξ, ξ] 

direction, of Γ to H points of TB-SMA agrees with experimental Curve, while 

EAM phonon dispersion curve agree a great deal with experimental Curve, 

and in H to P points of [ξ, ξ, ξ] direction, TB-SMA agrees with experimental 

Curve, while EAM phonon dispersion curve agree with experimental Curve. 

In P to Γ points, in [ξ, ξ, ξ] direction, TB-SMA agrees with experimental 

Curves, while EAM phonon dispersion curve agree a great deal with 

experimental Curve, and in Γ to N points in the [ξ, ξ, 0] direction, TB-SMA 

disagree with EAM phonon dispersion curve and experimental dispersion 

curve.    

 

4  SODIUM, Na. 

 A critical study of fig.4 reveals that there is close agreement between 

the TB-SMA phonon dispersion Curve, EAM phonon dispersion curve and 

experimental phonon dispersion Curve for sodium for almost all wave vectors 

in all the three principal symmetry directions. For this study there is a little 

discrepancy between the TB-SMA phonon dispersion Curve, EAM phonon 

dispersion curve and experimental phonon dispersion Curve in the L modes 

and T modes of [0, ξ, ξ] direction in the Γ to H points and H to P of [ ξ, ξ, ξ ] 

direction, but its phonon dispersion curve agrees in the P to Γ points in the [ ξ, 

ξ, ξ ] direction, and also in Γ to N point in the[ ξ, ξ, 0 ] direction.  
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5  RUBIDIUM, Rb. 

 A look at fig.5 shows that there is an agreement between TB-SMA 

phonon dispersion Curve, EAM phonon dispersion Curve and experimental 

phonons dispersion Curve along the symmetry directions. TB-SMA phonon 

dispersion Curve and EAM phonon dispersion Curve agrees with 

experimental phonon dispersion Curve in the [0, ξ, ξ] direction i.e. (Γ to H) 

and in H to P of [ξ, ξ, ξ] direction, TB-SMA phonon dispersion Curve and 

EAM phonon dispersion Curve are in agreement with experimental phonon 

dispersion Curve but at P to Γ points in the  [ ξ, ξ, ξ ] direction, TB-SMA 

phonon dispersion Curve and EAM phonon dispersion Curve are  in 

agreement with the experimental  dispersion curve and in Γ to N points in 

the[ξ, ξ, 0] direction, TB-SMA phonon dispersion Curve, and EAM phonon 

dispersion curve and are in agreement  with experimental phonon dispersion 

Curve. 

 The thermodynamics properties of the alkali metals were calculated 

using equations (2.78) to (2.81)  and plotted as shown in Fig.6 to Fig.9. 

 

Conclusion 

 The five unknown parameters in the TB-SMA Scheme have been 

determined in this paper, But the parameter n is not constant for all the alkali 

metals, as usually assumed in literature. The use of the constant parameter, n 

= ½, by Cleri and Rosato (1993) in predicting the phonon dispersion curves 

for alkali metals was unsuccessful, despite adopting larger sets of free 

parameters and larger interaction ranges of the atoms. 

 The phonon dispersion curves obtained from TB-SMA have been 

reported in this study. For TB-SMA model (first nearest neighbour model to 

the fourth next nearest neighbour model), Sodium metal was found to give 

better agreement with experiment than the other alkali metals. 

 The results obtained in this paper, although fairly satisfactory; do not 

show the complete fine Structure characteristics found in the experimental 

phonon dispersion curves. 

 The thermodynamics properties of the alkali metals were calculated 

and plotted and the curves were in excellent agreement with those shown in 

literature. 

 This study has shown that the phonon dispersion  of alkali can be 

deduce, by consistently varying the TB-SMA parameter n instead of using a 

fixed value of n ( ½ or 2/3) as in literature. 
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