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Abstract 

In a specific way, the dynamic hierarchical model has been presented 
alongside with the derivation of the final formula of the Kalman filter. The 
filtering coefficient used along with the equations necessary for the filtering 
process has also been determined. Most of the related works were studied 
which gave rise to the problem statement of filtering problems placed under 
the case of s t= . Most of the basic concepts of the dynamic hierarchical linear 
model were also displayed based on some previous works. A mathematical 
formula was also formulated and derived to calculate the dynamic hierarchical 
Kalman filter model, which results in a repetitive measure to estimate the 
model parameters. The proposed derived formula reduces the error associated 
with the model and achieves a successful optimal estimation of the parameters. 
This proves that the Kalman coefficient is the best filtering for any normal 
probability distribution and provides the least variance among the estimates. 
This study also provides an illustrative example of the model with the filtering 
process concerned. It was further illustrated that the findings can be used in 
practical applications, which reveals the fields that can be investigated in this 
area. 

 
Keywords: Deterministic Dynamic Hierarchical Model, Kalman filter gain, 
Multivariate Gaussian Distribution, Bayesian inference 
 
Introduction 

With the applied problems of dynamic linear models, an interesting area of 
researchers' concerns was noted which makes an inference on the unobserved 
states 

tθ  or predicts future observations tY based on a part of the observations. 
Usually, estimation and forecasting problems are solved by computing the 
conditional distributions of the interest quantities by considering the available 
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information. In order for the estimation and forecasting recursions to do this, 
the state vector 

Sθ needs to be estimated by computing the conditional 
densities ( )1 2\ , ,...,s tp y y yθ , where the densities ( )\t tp Y θ  and ( )1\t tp θ θ −

 
have been specified. 

On the other hand, computing ( )1 2\ , ,...,s tp y y yθ  is totally dependent on 
the values of S  which is often called filtering when S t= , state prediction 
when S t> , and smoothing when  S t< .  

However, most of the related works were studied which gave rise to the 
problem statement of filtering problems placed under the case of S t= (Petris, 
et al., 2009). Also, most of the basic concepts of the dynamic hierarchical 
linear model were displayed based on some previous works (Melsa, 1978; 
Gamerman & Migon, 1993; Migon et al., 2005; Da-Silva et al., 2016; Mohn et 
al., 2015; Aktekin et al., 2018; Taylor, 2009; Terui & Ban, 2014; Berry & 
West, 2019; Chen et al., 2019;  McAlinn & West, 2019). 
In this paper, a mathematical formula will be formulated and derived to 
calculate the Kalman filter for a dynamic hierarchical model, which will 
represent a repetitive measure to estimate the model parameters. The proposed 
derived formula reduces the error associated with the model and achieves a 
successful optimal estimation of the parameters. This proves that the Kalman 
coefficient is the best filtering for any normal probability distribution, which 
provides the least variance among the estimates. 
 
Model Specification 

The dynamic hierarchical linear model consists of three equations. The 
first is the observation equation, the second is the structural equation, and the 
third is the system equation. It is expressed as follows: 

1 1 1t t t tY F θ ν= +           ,     1 1~ (0, )t tN Vν  
1 2 2 1t t t tFθ θ ν= +         ,      2 2~ (0, )t tN Vν  
1 2, 1t t t tG wθ θ −= +        ,       ~ (0, )t tw N W  

All the disturbance terms  1 2,t tν ν  and  tw are independent with known 
variance matrices.  

1 2,t tF F  are known matrices, tG  is known as matrix, and 

1 2,t tθ θ are unknown vectors (Mohn et al., 2015). 

The values { }1 2 1 2, , , , ,t t t t t tF F G V V W  indicated may change or may not 
change over time but with the intention of generalization. In this study, all 
these values represent constant values at each time t, and the model is, then, 
referred to as the static-dynamic hierarchical model.  
Where, 
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tY  is ( )1n ×  the observations vector of the model at the time t . 

1tF  is a known ( )n n×   matrix at the time t  . 

2tF is a known ( )n r× ) matrix at the time t  . 

1tθ  is ( )1n × the parameters vector of the model at the time t ,  it is also called 
the state vector which is not exactly known.   

2tθ  is ( )1r ×   the structure parameters vector of the model at the time t . 

tG  is a known ( )r r×  system matrix at the time t .  

1tν  is ( )1n ×  the observation error vector at the time t . It is normally 
distributed with zero mean and variance matrix 1tV  is known at time t.  

2tν  is ( )1n ×  the structure error vector at the time t . It is normally distributed 
with zero mean and variance matrix 2tV  is known at time t.  

tw  is ( )1n × the system error vector at time t . It is normally distributed with 
zero mean and variance matrix tW  is known at the time t. 

The model is composed of three parts: the observation equation, the structural 
equations, and the system equation. The observation equation describes the 
distribution of observations, the structural equations describe the structure of 
parameter hierarchy, and the system equation describes the form of the 
evolution of the parameters through time.  
Kalman Filter for Dynamic Hierarchical Models 

In general, the computations of the conditional densities when solving 
filtering and forecasting problems may not be easy. The dynamic hierarchical 
models are of relevant cases where the general recursions simplify 
considerably. This is due to the fact that the dynamic hierarchical model 
includes a Gaussian distribution on the random error, and it has nice properties 
such as closure under marginalization and conditioning distribution. This 
implies that if the random vector ( )/

1 2, ,..., ty y y has a Gaussian distribution 
for any 1t ≥ , it follows the marginal and conditional distributions of any sub-
vector of ( )/

1 2, ,..., ty y y which are also Gaussian distribution. Since all the 
relevant distributions are Gaussian, it suffices to compute their means and 
covariances. The following theorem of Kalman shows the algorithm to find 
filter densities (Petris et al., 2009; Mohn et al., 2015). 

 Therefore, through the equations of the model stated above and the 
statistical description of some components of the model, as well as the 
information indicated around it, it is possible to find a candidate of Kalman 
filter by the following theorem. The idea of this theorem was taken from the 
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research of Gamerman and Migon (1993), but the formulation of this theorem 
and proof are based on the researcher's method. 
Theorem 3.1: The initial information about the parameter (at the time 0t = ) 
is : 

                       ( ) ( )20 0 20 20\ ~ ,D N m Cθ                                                            (3.1) 
Suppose that at a certain time 1t − , all the relevant information available 

up to that time is denoted as 1tD −
, i.e., 1tD −

 is the set of all observations up to 
time 1t − . In the forecast value of some scalar quantity, it is denoted by tY
with observed values of this quantity as ty . It follows that { }1,t t tD Y D −= . 
This means that { }1,t t tD Y D −=  represents the available information until time 
t. Thus, the information at a certain time 1t −  can be expressed as follows: 

- The probability distribution of the parameter 2, 1tθ −  given 1tD −
 is 

                       ( ) ( )2, 1 1 2, 1 2, 1\ ~ ,t t t tD N m Cθ − − − −
                                   (3.2) 

      Thus 
- Prior distribution at time t is 

For the parameter 
2tθ is ( ) ( )2 1 2 2\ ~ ,t t t tD N a Rθ −

                                      (3.3) 
Where 

2 2, 1t t ta G m −=            and             /
2 2, 1t t t t t tR G C G W−= +  

For the parameter 1tθ  is ( ) ( )1 1 1 1\ ~ ,t t t tD N a Rθ −
                                      (3.4) 

Where 

1 2 2t t ta F a=       and       /
1 2 2 2 2t t t t tR F R F V= +  

- Predictive Distributions (one-step ahead) at time t is 
                    ( ) ( )1\ ~ ,t t t tY D N f Q−                                                                    (3.5) 
Where 

1 1t t tf F a=        and         /
1 1 1 1t t t t tQ F R F V= +  

Then, the posterior distribution at time t is 
1) For the parameter   1tθ  is    ( ) ( )1 1 1\ ~ ,t t t tD N m Cθ                                         

(3.6)      
Where 
     ( )/ 1

1 1 1 1t t t t t t tm a R F Q Y f−= + −                                                          (3.7) 
       / 1 /

1 1 1 1 1 1t t t t t t tC R R F Q F R−= −                                                             (3.8) 
Since 
                  / 1

1 1 1t t t tk R F Q −=                                                                    (3.9) 
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In Equation (3.9), 1tk  is called the Kalman factor (or filter gain) of 1tθ  and 
equation (3.7) is called the filtering equation 1tθ . 

2) For the parameter  
2tθ  is   ( ) ( )2 2 2\ ~ ,t t t tD N m Cθ  

Where 
( )/ / 1

2 2 2 2 1 1 1 1t t t t t t t tm a R F F R m a−= + −                                                         (3.10) 

              ( )/ / 1 1 /
2 2 2 2 1 1 1 1 1 1 2 2t t t t t t t t t t t tC R R F F R R C R F F R− −= − −                                    

(3.11) 
Since     / / 1

2 2 2 1 1t t t t tk R F F R −=                                                                                    (3.12) 
In equation (3.12), 2tk is called the Kalman factor (or filter gain) of 

2tθ  
and equation (3.10) is called the filtering equation 

2tθ . 

Proof: Validity posterior distribution is proven. The posterior distribution of 
the parameter  1tθ  at the time t  given tD  can be obtained by using Bayes 
theorem as follows: 

( ) ( ) ( )1 1 1 1\ \ \t t t t t tp D p Y p Dθ α θ θ −                                                           (3.13) 

Since ( ) ( )1
1 1 1 1\ ~ ,t t t t tY N F Vθ θ − , then 

( ) ( )1/
1 1 1 11

1
2

1 1( \ ) t t t t t tt
Y F Y F

t t
Vp Y e

θ θ
θ α

−−
− −

                                                                 (3.14) 

And since   ( ) ( )1
1 1 1 1\ ~ ,t t t tD N a Rθ −

− , then 

( ) ( ) ( )/ 1
1 1 1 1 1

1
2

1 1\ t t t t ta R a

t tp D e
θ θ

θ α
−−

− −

−                                                         (3.15) 
Put equation (3.14) and equation (3.15) in equation (3.13), the result 

obtained is 

  
( ) ( ) ( ) ( )/ /1 1

1 1 1 1 1 1 1 1 1 1
1

2
1( \ ) t t t t t t t t t t t tY F V Y F a R a

t tp D e
θ θ θ θ

θ α
− −−  − − + − −  

                                                 (3.16) 
Taking the natural logarithm and multiplying it with -2 for both sides of 

the equation (3.16) gives: 

( ) ( ) ( ) ( ) ( )/ /1 1
1 1 1 1 1 1 1 1 1 1 12 \t t t t t t t t t t t t t tLnp D Y F V Y F a R aθ α θ θ θ θ− −− − − + − −  

                        ( ) ( ) ( ) ( )/ / / 1 / / 1
1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t tY F V Y F a R aα θ θ θ θ− −− − + − −

/ 1 / 1 / / 1 / / 1
1 1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t t t t t tY V Y Y V F F V Y F V Fα θ θ θ θ− − − −− − +  

                  
/ 1 / 1 / 1 / 1

1 1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t tR R a a R a R aθ θ θ θ− − − −+ − − +  
( ) ( )/ 1 / 1 / 1 / 1

1 1 1 1 1 1 1 1 1 1 12t t t t t t t t t t t th R F V F R a F V Yθ θ θ− − − −= + + − +                               (3.17) 
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Where 1 / / 1
1 1 1 1 1 1t t t t t t t tY V F F V Yθ θ− −=  , / 1 / 1

1 1 1 1 1 1t t t t t tR a a Rθ θ− −= , and h is constant, 
all fixed quantities are included which do not contain 1tθ . 

.i e .,    / 1 / 1
1 1 1 1t t t t t th Y V Y a R a− −= +  

Now,  an equivalent formula can be derived for the first amount in equation 
(3.17) as follows: 

  ( )( )( ) 11 / 1 1 / 1 / 1 / / 1 /
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t t t t t t t t t tR F V F R F V F R R F Q F R R R F Q F R

−− − − − − −+ = + − −  

                           ( )( ) 1/ 1 / 1 / 1 / 1 / / 1 /
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t t t t t t t t t t t tI F Q F R F V F R F V F R F Q F R R R F Q F R

−− − − − −= − + − −  

                           ( )( )( ) 1/ 1 / 1 / 1 / / 1 /
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t t t t t t t t tI F V F R V F R F V F Q F R R R F Q F R

−− − − −= + − + − . 

                      ( )( ) 1/ 1 1 / 1 / / 1 /
1 1 1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t t t t t tI F V F R QV F Q F R R R F Q F R

−− − − −= + − −   

                     ( )( ) 1/ 1 / 1 / / 1 /
1 1 1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t t t tI F V F R F V F R R R F Q F R

−− − −= + − −  

                      ( ) 1/ 1 /
1 1 1 1 1t t t t t tR R F Q F R

−−= −  

                      
1

1tC −=                                                                                                (3.18) 
Also, an equivalent formula can be derived for the second amount in 

equation (3.17) as follows: 
1 / 1 1 / 1 / 1 / 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t t t t t t t tR a F V Y R a F V Y F V F a F V F a− − − − − −+ = + + −  

                      ( ) ( )1 / 1 / 1
1 1 1 1 1 1 1 1 1t t t t t t t t t tR F V F a F V Y F a− − −= + + −        

                            
( ) ( ) ( )( )11 / 1 1 / 1 / 1

1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t t tR F V F a R F V F F V Y f
−− − − − −= + + + −

 

                            
( ) ( ) ( )( )11 / 1 1 / 1 / 1 1

1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t t t t tR F V F a R F V F F V Q Q Y f
−− − − − − −= + + + −

   
                            ( ) ( ) ( ) ( )( )11 / 1 1 / 1 / 1 / 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t t t t t t t tR F V F a R F V F F V V F R F Q Y f
−− − − − − −= + + + + −  

                      
( ) ( ) ( ) ( )( )11 / 1 1 / 1 1 / 1 / 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1t t t t t t t t t t t t t t t t t tR F V F a R F V F R F V F R F Q Y f
−− − − − − − −= + + + + −

 

                      ( ) ( )( )1 / 1 / 1
1 1 1 1 1 1 1t t t t t t t t t tR F V F a R F Q Y f− − −= + + −  

                      
1

1 1t tC m−=                                                                        (3.19) 
This is because from equation (3.18),   

1 / 1 1
1 1 1 1 1t t t t tR F V F C− − −+ =   . 

Then substituting equation (3.18) and equation (3.19) in equation (3.17), the 
result obtained is given as: 

     ( ) / 1 / 1
1 1 1 1 1 1 12 \ 2t t t t t t t tLnp D h C C mθ θ θ θ− −− = + −  

                                 ( ) ( )/ 1
1 1 1 1 1t t t t th m C mθ θ−= + − −  
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By adding and subtracting the fixed quantity 1 /
1 1 1t t tm C m− , and conducting the 

analysis as well as the integration of the fixed quantity with the constant h , it 
gives: 

( ) ( ) ( )/ 1
1 1 1 1 1

1
2

1 \ t t t t tm C m

t tp D e
θ θ

θ α
−−

− −

 
.i e .,    ( ) ( )1 1 1\ ~ ,t t t tD N m Cθ         

This represents the posterior probability distribution of the parameter 1tθ given 

tD  . 

Also, from equation (3.19) and equation (3.18), the following is obtained: 

( )/ 1
1 1 1 1t t t t t t tm a R F Q Y f−= + −                                                             (3.20) 

 / 1 /
1 1 1 1 1 1t t t t t t tC R R F Q F R−= −                                                                 (3.21)  

Equation (3.20) represents the Kalman filter which is called the filtering 
equation and the Kalman factor 1tθ  is        / 1

1 1 1t t t tk R F Q −= . 
Now,  the posterior probability distribution of the parameter 2tθ is as 

follows: 
The covariance between 1tθ  and 2tθ  given 1tD −  is  

( ) ( )( )1 2 1 1 2 2 1 2 1 2 1, \ , \t t t t t t t t t t tCov D Cov F F F V V Dθ θ θ θ− −= + +  
                           ( )1 2 2 2 1, \t t t t tF F Cov Dθ θ −=  
                           ( )1 2 2 1\t t t tF F Var Dθ −=  
                              1 2 2t t tF F R=  
                            / / /

2 2 1t t tR F F=  
Therefore, it can be written as: 

/ /
2 2 2 2 2 1

1 /
1 1 1 2 1 1

\ ~ ,t t t t t t
t

t t t t t t

a R R F F
D N

a F F R R
θ
θ −

      
     
       

        (Theorem) 

From this, the following is obtained: 
( ) ( )/ / 1

2 1 1 2 2 2 1 1 1 1\ ,t t t t t t t t t tE D a R F F R aθ θ θ−
− = + −  

( ) / / 1 /
2 1 1 2 2 2 1 1 1 2 2\ ,t t t t t t t t t t tVar D R R F F R F F Rθ θ −

− = −  
Then, the posterior probability distribution of the parameter 2tθ  given tD  is 
as follows 

 ( ) ( )( )2 2 1 1\ \ , \t t t t t tE D E E D Dθ θ θ −=  

 ( )( )/ / 1
2 2 2 1 1 1 1t t t t t t tE a R F F R aθ−= + −( )/ / 1

2 2 2 1 1 1 1t t t t t t ta R F F R m a−= + −2tm=                                                                         
(3.22) 



European Scientific Journal August 2020 edition Vol.16, No.24 ISSN: 1857-7881 (Print) e - ISSN 1857-7431 

143 
 

( ) ( )( ) ( )( )2 2 1 1 2 1 1\ \ , \ \ , \t t t t t t t t t tVar D Var E D D E Var D Dθ θ θ θ θ− −= +   
                  ( )( ) ( )/ / 1 / / 1 /

2 2 2 1 1 1 1 2 2 2 1 1 1 2 2t t t t t t t t t t t t t t tVar a R F F R a E R R F F R F F Rθ− −= + − + −   

                  ( ) ( )// / 1 / / 1 / / 1 /
2 2 1 1 1 2 2 1 1 2 2 2 1 1 1 2 2t t t t t t t t t t t t t t t t tR F F R C R F F R R R F F R F F R− − −= + −     

                  ( )/ / 1 / 1 /
2 2 2 1 1 1 2 2 1 1 1 2 2t t t t t t t t t t t t tR R F F R F F R C R F F R− −= − −  

                  ( )/ / 1 1 /
2 2 2 1 1 1 1 1 1 2 2t t t t t t t t t t tR R F F R R C R F F R− −= − −  

                   2tC=                                                                            (3.23) 
From equations (3.22) and (3.23), the following can be written as 
( ) ( )2 2 2\ ~ ,t t t tD N m Cθ . 
Where  

( )/ / 1
2 2 2 2 1 1 1 1t t t t t t t tm a R F F R m a−= + −  

        ( )/ / 1 1 /
2 2 2 2 1 1 1 1 1 1 2 1t t t t t t t t t t t tC R R F F R R C R F F R− −= − −  

Here,      / / 1
2 2 2 1 1t t t t tk R F F R −=  is called the Kalman factor of 2tθ .  

Thus, the proof is over. 
This is an explanation of the relationship between the sequence stages. Based 
on this, it is worthy to note that Bayesian inference provides results. Thus, this 
gives the opportunity to conduct the inference and recognition process of 
parameter 1tθ and parameter 2tθ  through a probability distribution. 
Example: Cross-section of Random Samples of Linear Growing 

Exchangeable Means. 
This example is a generalization of Cross-section of Random Samples with 
Steady Exchangeable Means with a non-trivial system equation given by 
Observation equation         ( )2\ ~ ,t t t nY N Iβ β σ ,               1, 2,...,t n=    
Structure equation             ( ) ( )2\ ~ ,t t t nN Iβ µ µ τ  

System equation                   1 1 1

1 2

t t t t

t t t

w
w

µ µ δ
δ δ

− −

−

= + +
= +

     ,              ( )1

2

~ 0,t
t

t

w
N W

w
 
 
 

 

This model represents a dynamic hierarchical model, which can be written in 
the general format as follows:  

1 1 11

2 2 12

1

1 0 ... 0
0 1 ... 0

,
...

0 0 ... 1n n n

y
y

y

β ν
β ν

β ν

      
      
      = +
      
      

      

  

              

( )
11

212

1

~ 0, n

n

N I

ν
ν

ν

σ

 
 
 
 
 
 


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1 21

2 22

2

10
10

,

10

t

t

n n

β ν
µβ ν
δ

β ν

    
         = +          

    

  

                             

( )
21

22 2

2

~ 0, n

n

N I

ν
ν

τ

ν

 
 
 
 
 
 



  

1 1

1 2

11
,

01
t t t

t t t

w
w

µ µ
δ δ

−

−

      
= +      
                                  

( )1

2

~ 0,t
t

t

w
N W

w
 
 
   

 In this model, it is noted that 
2,r =

  
( )/

1 1 2, ,..., ,t nθ β β β=   ( )2 2 1 ,0 ,t n nF F= =  ( )/
2 , ,t t tθ µ δ=   1 1 ,t nF F I= =  

 2
1 ,t nV Iσ=   2

2 ,t nV Iτ=   
11
01tG G  

= =  
 

  and  
2

2

0
0tW W µ

δ

σ
σ

 
= =  

 
 

    From the above, this model is described by the amounts 

( )
2

2 2
2

011
, 1 ,0 , , , ,

01 0n n n n nI I I µ

δ

σ
σ τ

σ
    
   
     

,     For each time t.  

Where 0p  is a p -dimensional vector of 0s . The parameter tδ  represents the 
unit growth experienced by the means of the observation levels. 
Thus, the filtering process can be done by building a computer program 
according to the mathematical steps in the above theory. 
 
Conclusion  

In this study, a problem statement was examined that stated the filtering 
problems placed under the case of S t=  (Petris et al., 2009; Mohn et al., 
2015). Furthermore, most of the basic concepts of the dynamic hierarchical 
linear model were displayed based on some previous works. A mathematical 
formula was also formulated and derived to calculate the dynamic hierarchical 
Kalman filter model. This resulted in a repetitive measure to estimate the 
model parameters that tried to proffer the solution. The dynamic hierarchical 
model has been presented alongside with the derivation of the final formula of 
the Kalman filter. The filtering coefficient used along with the equations 
necessary for the filtering process was also determined.  

The results derived so far were applied when the variance matrices were 
assumed as known. In fact, it is rare to happen. Therefore, appropriate 
measures in applications must be taken to allow variance estimation. The 
proposed study made a simple and effective knowledge assumption of the 
scalar factor variance and presented the model structure. Here, many 
applications allowed the same assumption  2

1t nV Iσ= , where n is the 
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dimension of tY . Also, a conjugate analysis was possible if all variances itV , 

tW and 0kC  were scaled by 2σ and the unknown factor with an inverted 
gamma prior distribution. Here, the result of this theorem remains valid except 
for the multiplication of all variances 2σ . 

The observed variance is studied due to its estimation, where the proposed 
method of application could be used for one set of data, .i e ., 1i =  and could 
be generalized to more than one set of data. The proposed derived formula 
reduced the error associated with the model and achieved a successful optimal 
estimation of the parameters. This proved that Kalman coefficient is the best 
filtering for any normal probability distribution and provides the least variance 
among the estimates. Furthermore, this study provided an illustrative example 
of the model with the filtering process concerned. Finally, it was illustrated 
that the findings could be used in practical applications, which reveals the 
fields that can be investigated in this area. 

 
Future work 

It is recommended that researchers should carry out studies in three areas: 
Variance estimation, Non–Linear models, and Non–normal observations. 
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