
European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

92

ESJ Natural/Life/Medical Sciences

Jeremiah O. Abimbola,
Department of Computer Science, Changchun
University of Science and Technology,Jilin, China

Chen Zhangfang,
Department of Computer Science, Changchun
University of Science and Technology,Jilin, China

Submitted: 18 August 2020
Accepted: 02 December 2020
Published: 31 December 2020

Corresponding author:
Jeremiah O. Abimbola

DOI: 10.19044/esj.2020.v16n36p92

Copyright 2020 Abimbola J.O,
Distributed under Creative Commons
BY-NC-ND 4.0 OPEN ACCES

Cite as:
Abimbola J.O, Zhangfang C.(2020). Prevention of
SQL Injection Attack Using Blockchain Key pair
based on Stellar. European Scientific Journal, ESJ,
16 (36), 1.
https://doi.org/10.19044/esj.2020.v16n36p92

Prevention of SQL Injection
Attack Using Blockchain Key
pair based on Stellar

Abstract
Currently, SQL injection is the most
common attack on web applications where
malicious codes are injected into the
database by unauthorized users using user
input fields and this could lead to data loss
or in a worst case, to database hijacking; a
situation no database administrator or web
developer ever wants to experience. Two
of the most recent types of these attacks
are first-level and second-order attacks. A
lot of researches have been done in this
area, some of which are outstanding and
capable of preventing first level attack but
not second order attack. In order to
improve the quality of protections, a new
method is proposed in this paper to
minimize the level of attack on databases
by using stellar blockchain keypair. Using
string manipulation on user inputs, the
client application randomized the SQL
query and sends it to the proxy server, the
proxy server, in turn de-randomizes it with
the help of the private key and sends the
de-randomized query to the database
server for processing and the overhead
time is estimated and analyzed. This
method proved to be more than 50%
effective compared to previous methods
using the same model. It also shows
strengths in terms of processing and
computational time. Experimental
implementation and simulation using the
stellar keypair demonstrates that the
model presented is capable of detecting
and preventing SQLIA all forms of SQL
injection attacks including the second-
order injections.

Subject: Computer Science

Keywords: SQL Injection, Attack,
Database, keypair, Security

https://doi.org/10.19044/esj.2020.v16n36p92

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

93

Introduction
Many institutions use dynamic database web applications to build a

collaborative environment and provide better services to their customers.
For example, educational institutions rely heavily on databases containing
very sensitive student records to make informed decisions. A single bridge
of any record caused by an attack can potentially result in a wrong or bad
decision ultimately. There are many attacks threatening database security
such as static leakage, linkage leakage, dynamic leakage, spoofing and the
most common one; SQL injection attacks. (Khaleel Ahmad, 2010), tagged
SQLIA in this study. SQLIA endangers the confidentiality, integrity,
functionality and availability of databases of any web application. In
addition, they are the most effective method for illegally collecting data
from the database, through which hacker can get access to the database
and steal sensitive information(Md. Fazlul Haque, 2017). Consider an
example of a login page where a legitimate user enters the username and
password to enter a secure page to view personal details or upload his
comments on a social media site. When the user submits the data, the SQL
query is generated and submitted to the database for verification. If it is
valid, the user is allowed access to the system. This means that there is a
communication between the login page and the database to verify the
combination of the username and password which results to access granted
upon verification. Using SQL Injection, the hacker may enter specially
created SQL commands to bypass the validation of the login form to view
the script. (Panda & Ramani, 2013; Singh, 2017; Wang Degao, 2019). This
is only possible if the inputs are not properly sanitized (i.e. made
invulnerable) and sent directly to the database via the SQL query. SQL
Injection vulnerabilities provide an attacker with the means to expose a
database. (Faker, Muslim, & Dachlan, 2017; Lawal, Sultan, & Shakiru,
2016; M. & Amsaveni, 2016). The impacts of SQLIA are very high which
includes but not limited to:

I.Confidentiality: Most time, databases contain very sensitive data
such as user credit card details, social security number and so on.
Therefore loss of confidentiality is a major problem with SQL injection
vulnerability as unauthorized users can gain access to crucial information

II.Integrity: Successful SQL injection attack permits unauthorized
external sources to make modifications that is, private information can be
read, changed or deleted by the attacker.

III.Authorization: Sensitive data stored in a vulnerable SQL database
may be altered or attacker can gain elevated privileges.

IV.Authentication: Poorly written server-side codes could open up the
database for attackers to gain access. For example, SQL codes that do not

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

94

properly validate username and passwords could give unauthenticated
access to attackers without prior knowledge of the password or username.

V.Functionality: SQL injection attack could partially or fully corrupt
the intended function of any SQL database. Every database must be able
to handle concurrent processing to enable simultaneous access, data
sharing and consistent updates for users.
There are many forms of these attacks, some of which are Bypass
Authentication - using tautology, Unauthorized Knowledge of Database -
using illegal/incorrect Queries, Unauthorized Remote Execution of
Procedure, Injected Additional Query - Using Piggy-Backed Queries and
Injected Union Query as discussed in (Elshazly, Fouad, Saleh, & Sewisy,
2014; Saravana, 2014; Shrivastava & Tripathi, 2012; Sun, Wei, Liu, &
Lau, 2007).

Second Order Attacks
Proxy Server Models
 (Elshazly et al., 2014) suggested a method to solve SQLIA by
introducing the concept of a proxy server. The proxy server is placed in
between the two communicating devices. This allowed for the filtering of
possible SQL-injection attempts.

Figure 1. Proxy server Architecture Model

The process involved; analyzing the structure of the SQL query
commands, building a parser that will check allowable patterns of SQL
statements, constructing a list of common SQL commands, creating a
proxy server that will alert the database administrator of possible SQL
injection commands, preventing SQL injection attack on the database
using the proxy server and proving that the SQL injection can be prevented
using the filter developed to work on the proxy server. While this method
seemed to work as at the time this research was carried out, there are
disadvantages with this method in that it can create false positives; this
means that legitimate words from variables can also be filtered out in the
filtering process. Also, this method cannot work if the data is encrypted
because the strings cannot be viewed in plain text without decryption. The
use of a randomized key on SQL keywords was later introduced by (Boyd

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

95

& Keromytis, 2004) and (Perkins et al., 2005). The random key length was
thirty-two bytes. The implementation of this technique involves building
a proof of concept; a proxy server that sits between the client and the
database server. If an SQL injection attack has occurred, the proxy’s parser
will fail to recognize the randomized query and will reject it. For example,
the query on the left side then becomes the query on the right once the
random key has been added to every SQL keyword in the query.

Select gender, avg(age) select123 gender, avg123(age)
From cs101.students from123 cs101.students

Where dept = %d where123 dept = %d
group by gender group123 by123 gender

Figure 2.SQLRand Model

The only setback for this technique is in the length of the key used as it is
very susceptible to brute force attack as also seen in (Patil, Laturkar, Athawale,
Takale, & Tathawade, 2017). A dynamic technique introduced by (Alazab &
Khresiat, 2016; Gupta et al., 2018) using Normal use model which is
straightforward, simple to execute and very compelling in avoiding SQL
injection attacks, however, there are two major challenges with this model;
decreasing the size of the achieved query repository and performing quick and
efficient comparison at runtime.
Recently, (Appiah, Opoku-Mensah, & Qin, 2017) proposed a solution for SQL
injection attacks by integrating the fingerprinting method and Pattern
Matching to distinguish genuine SQL queries from malicious queries. The
framework monitors and compares SQL queries to the database against a
dataset of signatures from known SQL injection attacks. If the fingerprint
method cannot determine the legitimacy of the query on its own, then the Aho
Corasick algorithm is invoked to ascertain whether attack signatures appear in
the queries.

Research Methodology

A new prevention mechanism is introduced to combat SQL injection
attacks using Stellar Keypair algorithm. The keypair consists a public and

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

96

private key. This method mimics the SQLRand method developed by (Boyd
& Keromytis, 2004) using a random key on every SQL keyword, but this time,
we’re not just using a random key. Instead, we will use the public key and then
verify the public key with the private key later on in the query process. To
achieve this, we have decided to use a popular concept in programming known
as separation of concerns; thus having three (3) tier architecture.

Figure 3.Three-tier Architectural Model

Stellar Keypair

Stellar is a blockchain that tens of thousands of people use every day.
It is decentralized, open-source, and developer-friendly, so anyone can issue
assets, settle payments, and trade. It uses Ed25519 public-key signature
system. From Stellar, only the Keypair is needed. In public-key cryptography,
Edwards curve Digital Signature Algorithm (EdDSA) is a digital signature
scheme using a variant of Schnorr signature based on Twisted Edwards curves
(SHA512 and Curve25519). It is designed to be faster than existing digital
signature schemes without sacrificing security. Public keys are 256 bits in
length and signatures are twice that size.
To make it more difficult for attackers to brute force the entire process, the
private key is used to validate the public key. First, we design a proxy server
(an external server) that is located between the client and the database server
where the keypair is generated. Since SQL keywords don’t change, we can list
them all out in an array to work with them further. The client requests the
public key from the proxy server, joins the public key to every SQL keyword
used in the query, splits the entire SQL statement including user inputs into
tokens, checks every token that all SQL keywords have the public key, checks
if there is a private key for that public key. If yes, send the full SQL statement
to the DB server.

Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) can be used to build digital
signature algorithms with a smaller key size than the Digital Signature

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

97

Algorithm (DSA) with the same level of security(Dinu et al., 2015; Romailler
& Pelissier, 2017). With security in mind, such algorithms are generally based
on the Discrete Logarithm Problem (DLP), currently, the best known
algorithms to solve this problem over elliptic curves are less efficient than ones
over finite groups. To provide security in the embedded ecosystem, the
adoption of ECC was important where resources are constrained. The most
widely used signature algorithm is ECDSA.

Keypair Generation

An entity A’s key pair is associated with a particular set of EC domain
parameters D. This association can be assured cryptographically (e.g., with
certificates) or by context (e.g., all entities use the same domain parameters)
(Don Johnson, 2001). The entity A must have the assurance that the domain
parameters are valid
Each entity A does the following;

1. Select a random or pseudorandom integer d in the interval [1, n-1]
2. Computer Q = dG.
3. A’s public key is Q; A’s private key is d.

Algorithm 1 EdDSA Signature
Require: M, (h0, h1,...,h2b−1), B and A
1: a ← 2b−2 + ∑ 2𝑖𝑖ℎ𝑖𝑖3≤𝑖𝑖≤𝑏𝑏−3
2: h ← H(hb,...,h2b−1, M)
3: r ← h mod
4: R ← r · B
5: h ← H(R, A, M)
6: S ← (r + ah) mod ℓ
7: return (R, S)

The Client App

The client application developed with php 7.2 is responsible for sending
the necessary requests in order to complete this process. The processes are as
follows;

• Requests Public Key from the proxy server; this process is made
possible via an HTTP client known as Guzzle. Guzzle is a PHP HTTP
client that makes it easy to send HTTP requests and trivial to integrate
with web services. (Guzzle, 2020) Simple interfaces for building query
strings and can send synchronous and asynchronous requests using the
same interface.
$client = new GuzzleHttp\Client();
$res = $client->request('GET', 'https://api.github.com/user', ['auth' =>
['user', 'pass']]); echo $res->getStatusCode();

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

98

• Joins public key with every SQL keyword used in the query; since
we have listed every SQL keyword into any array, first we can split
the query to get only the SQL keywords using explode(separator,
string, limit), hereafter we can check the query for SQL keywords
against the array using the in_array(array1, array2) function and
merge the public key from the first step to every keyword.
For example; if the public key is 4wdflasdxsdfsdfSEA
SELECT * FROM shopping WHERE username=‘$username’ AND
password=‘$password’;
The result thereafter is
SELECT4wdflasdxsdfsdfSEA * FROM4wdflasdxsdfsdfSEA
shopping WHERE4wdflasdxsdfsdfSEA username=‘$username’
AND4wdflasdxsdfsdfSEA password=‘$password’;

• Split the entire SQL statement including user inputs into tokens; this
is to ensure that the public key is attached to every SQL keyword this
time. The tokens are stored in a different array.

• Checks each token that all SQL keywords have the public key
• Queries the Proxy server for the private key of the public key used;

this is an extra layer of security incase an attacker has enough
computing power to get generate a key that is similar to the public
key.

• If private key exists, send full SQL statement to DB server

The Proxy Server

The implementation of this server done with ASP.NET Core 2.1 could
have been done easily on the application server but this separation provides a
layer of security. This ensures that this part is not exposed together with the
application, even if the application is attacked. The proxy server is located
between the client application and the database server. It serves as to;

• Generates keypair and Send Public Key to the Client App; With the
keypair class in Stellar, we are able to generate two keys, 256 bits
long.

• Stores private key of the public key sent
• Retrieves private key for the client app to verify the public key
The test tool used for this purpose is SQLMAP. SQLMAP is an open-

source penetration testing tool written in python that automates the process of
detecting and exploiting SQL injection flaws and taking over of database
servers. It comes with a powerful detection engine, a number of niche features
for the ultimate penetration tester and a wide range of switches from database
fingerprinting, database collection of data to access to the underlying file
system and commands execution on the operating system via out-of-band

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

99

connections. It is capable of detecting six (6) SQL injection attack techniques;
boolean-based blind, time-based blind, error-based, UNION query-based,
stacked queries and out-of-band. SQLMAP works by passing a potentially
vulnerable parameter into the query link.

Performance Evaluation

To evaluate the performance of this model, metrices such as the
response time, processing time and overhead imposed by the additional server
in the middle tier are used. To achieve this, a separate study was created to
simulate a number of users using round-robin to login at the same time. The
response time of the proxy server and the database server was evaluated for 1
user, 10 users, 50 and 100.

Users Proxy Server
(Time in seconds)

Database Server
(Time in seconds)

Overall time in
seconds

1 0.0010 0.00034 0.00134
10 0.012 0.005 0.017
50 0.049 0.023 0.072

100 0.13 0.09 0.22
Table 1.Response Time Evaluation

In comparison with other techniques like AMNESIA, SQLRAND and

AUTORAND, there is a slight improvement as shown in the table below

Figure 4. Detection rate of preventive schemes

Although the response times for the proxy server are subjective

because they really depend on the speed of the internet connection at the time
of implementation. Its overhead ranges from 120 to 490 microseconds for 10
to 100 concurrent users respectively. We also measured the response time
needed to detect the SQL injection attack for the type of attack.

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

100

Figure 5.Response time of preventive schemes

The table below shows the ways in which different prevention

techniques are used against the attacks and their effectiveness are compared
with each other. These comparisons are important for us to make a better
choice. The table shows the results of the comparison.

Table 2.Efficiency of various techniques

Conclusion
This study presents the results of a methodological and systematic

review of different literatures on the different types of SQL injection attacks,
effects of SQLIA techniques and preventive techniques. We were able to
successfully create a new method for SQLIA prevention using the stellar
keypair by expanding existing well-known models. These models (SQLRand
and AutoRand) could not prevent second-order injection attacks, stored
procedures and logically incorrect queries. This method contains details of the
implementation using the Ed25519 keys (public and private keys) which is the
improvement model mentioned above. Its architecture has also been explained

Schemes Tautology Logically
Incorrect
Queries

Union
Query

Stored
Procedure

Piggy-
backed
queries

Inference
Attack

AMNESIA YES YES YES NO YES YES
SQLRand YES NO YES NO YES YES
AutoRand YES NO YES NO YES YES
CANDID YES NO NO NO NO NO

SQLGuard YES YES NO NO NO NO
SQLIPA YES YES YES NO YES YES
Negative
Tainting

YES YES YES NO YES YES

Positive
Tainting

YES YES YES YES YES YES

Stellar
Keypair

YES YES YES YES YES YES

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

101

extensively and explicitly using a proxy server. Finally, an evaluation was
carried out to check the effectiveness of this model and to compare it with
other similar models in implementation. However, there is still room for
extensibility i.e. if there is enough computing power to break down the
Ed25519 keys, a stronger keypair algorithm is needed. For better
implementation, a stronger internet connection should be implored to make
connection between the client application and the proxy server. After
imploring this method, sensitive data on the database could still be encrypted
to provide another layer of security.

References:

1. Alazab, A., & Khresiat, A. (2016). New Strategy for Mitigating of
SQL Injection Attack. International Journal of Computer Applications,
154(11), 1-10. doi:10.5120/ijca2016911974

2. Appiah, B., Opoku-Mensah, E., & Qin, Z. (2017, 24-26 Nov. 2017).
SQL injection attack detection using fingerprints and pattern matching
technique. Paper presented at the 2017 8th IEEE International
Conference on Software Engineering and Service Science (ICSESS).

3. Bandhakavi, S., Bisht, P., Madhusudan, P., & Venkatakrishnan, V. N.
(2007). CANDID: Preventing SQL Injection Attacks using Dynamic
Candidate Evaluations. Paper presented at the Proceedings of the 2007
ACM Conference on Computer and Communications Security, CCS,
Alexandria, Virginia, USA,.

4. Boyd, S. W., & Keromytis, A. D. (2004, 2004). SQLrand: Preventing
SQL injection attacks, Columbia.

5. Chinchu, M. M., Yeldose, A., & Kumar, D. S. (2015). An Analysis of
SQL Injection Prevention using the Algorithms RSA , RC4 and RC5.
International Journal of Current Engineering and Technology, 5(6),
3665-3670.

6. Dinu, P. S., Kumar, D. S., & Rahman, M. A. (2015). Preventing SQL
injection Attacks Using Cryptography Methods. International Journal
of Scientific Research Enginnering &Technology, 4(5), 582-585.

7. Don Johnson, A. M., Scott Vanstone (2001). The Elliptic Curve Digital
Signature Algorithm (ECDSA). Paper presented at the Certicom
Research,Canada,Canada.http://www.cs.miami.edu/home/burt/learni
ng/Csc609.142/ecdsacert.pdf

8. Elshazly, K., Fouad, Y., Saleh, M., & Sewisy, A. (2014). A Survey of
SQL Injection Attack Detection and Prevention. Journal of Computer
and Communications, 02(08), 1-9. doi:10.4236/jcc.2014.28001

9. Etienne Janot, P. Z. (2014). Preventing SQL Injections in Online
Applications: Study, Recommendations and Java Solution Prototype

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

102

Based on the SQL DOM. Paper presented at the Application Security
Conference, Belgium.

10. Faker, S. A., Muslim, M. A., & Dachlan, H. S. (2017). A Systematic
Literature Review on SQL Injection Attacks Techniques and Common
Exploited Vulnerabilities. International Journal of Computer
Engineering and Information Technology, 9(12), 284-291.

11. Garg, R., Gupta, P., & Sachdeva, R. K. (2017). Study on SQL Injection
Attacks: Detection and Prevention. International Journal for Research
in Applied Science & Engineering Technology, 5(VII), 198-203.

12. Gupta, A., Dhankhar, A., & Solanki, K. (2018). New Technique for
preventing SQL Injection Attack Based on Normal Use Model. IOSR
Journal of Computer, 20(5), 73-83.

13. Guzzle. (2020). Guzzle Releases. In Guzzle (Ed.), (pp. 1-3).
14. Halfond, W. G. J., & Orso, A. (2005). AMNESIA: Analysis and

monitoring for NEutralizing SQL-injection attacks. In (pp. 174-183).
Long Beach, California, USA.

15. Katole, R. A., Sherekar, S. S., & Thakare, V. M. (2018, 19-20 Jan.
2018). Detection of SQL injection attacks by removing the parameter
values of SQL query. Paper presented at the 2018 2nd International
Conference on Inventive Systems and Control (ICISC).

16. Khaleel Ahmad, J. S., K.P. Yadav. (2010). Classification of SQL
Injection Attacks. VSRD Technical & Non-Technical Journal, 1(4),
235-242.

17. Lawal, M. A., Sultan, A. B. M., & Shakiru, A. O. (2016). Systematic
literature review on SQL injection attack. International Journal of Soft
Computing, 11(1), 26-35.

18. Lee, I., Jeong, S., Yeo, S., & Moon, J. (2012). A novel method for SQL
injection attack detection based on removing SQL query attribute
values. Mathematical and Computer Modelling, 55(1-2), 58-68.
doi:10.1016/j.mcm.2011.01.050

19. Liangyan, Y. (2018). Summary of Key Technologies of SQL Injection
Vulnerability Detection and Defense. Journal of Anhui Vocational
College of Electronic Information, 17(03), 19-22.

20. Lianqun, M. K. W. B. H. Y. Y. (2017). New SQL injection attack
detection method based on hidden Markov model. Information
Network Security, 09(1), 115-118.

21. Lihong, K. L. Y. H. L. (2017). Web security SQL injection
vulnerability and its defense. Network Security Technology and
Applications, 11(1), 81-82.

22. Liu, M., & Wang, B. (2018). A Web Second-Order Vulnerabilities
Detection Method. IEEE Access, 6, 70983-70988.
doi:10.1109/ACCESS.2018.2881070

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

103

23. Loughran, D. T., Salih, M. K., & Subburaj, V. H. (2018). All About
SQL Injection Attacks. Journal of The Colloquium for Information
System Security Education, 6(1), 24-24.

24. M., K. R., & Amsaveni, C. (2016). SQL Injection Attack Prevention
Using 448 Blowfish Encryption Standard. International Journal of
Computer Science Trends and Technology`, 4(4), 325-335.

25. Md. Fazlul Haque, M. B. A. M., Fuyad Al Masud. (2017).
Enhancement of Web Security Against External Attack. European
Scientific Journal, 13(15). doi:10.19044/esj.2017.v13n15p228

26. Panda, S., & Ramani, S. (2013). Protection of Web Application against
Sql Injection Attacks. International Journal of Modern Engineering
Research, 3(1), 166-168.

27. Patel, N., Mohammed, F., & Soni, S. (2011). SQL Injection Attacks:
Techniques and Protection Mechanisms. International Journal on
Computer Science & Engineering, 3(1), 199-203.

28. Patil, A., Laturkar, A., Athawale, S. V., Takale, R., & Tathawade, P.
(2017, 17-19 Aug. 2017). A multilevel system to mitigate DDOS, brute
force and SQL injection attack for cloud security. Paper presented at
the 2017 International Conference on Information, Communication,
Instrumentation and Control (ICICIC).

29. Perkins, J., Eikenberry, J., Coglio, A., Willenson, D., Sidiroglou-
Douskos, S., & Rinard, M. (2005, 2016). AutoRand: Automatic
keyword randomization to prevent injection attacks, Columbia.

30. Romailler, Y., & Pelissier, S. (2017, 25-25 Sept. 2017). Practical Fault
Attack against the Ed25519 and EdDSA Signature Schemes. Paper
presented at the 2017 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC).

31. Saravana, P. (2014). Efficient Method for Preventing SQL Injection
Attacks on Web Applications Using Encryption and Tokenization.
Internationational Journal of Latest Trends in Engineering and
Technology, 4(4), 75-84.

32. Shrivastava, S., & Tripathi, R. R. K. (2012). Attacks Due to SQL
injection & their Prevention Method for Web-Application.
International Journal of Computer Sciecne …, 3(2), 3615-3618.
Retrieved from http://ijcsit.com/docs/Volume
3/Vol3Issue2/ijcsit2012030266.pdf

33. Singh, J. P. (2017). Analysis of SQL Injection Detection Techniques
(Vol. 28). Montreal, Quebec, Canada: CIISE, Concordia University.

34. Sun, S.-T., Wei, T. H., Liu, S., & Lau, S. (2007). Classification of sql
injection attacks. University of British Columbia, …, 1(4), 1-6.
Retrieved from

http://ijcsit.com/docs/Volume

European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431
December 2020 edition Vol.16, No.36

104

https://courses.ece.ubc.ca/412/term_project/reports/2007-
fall/Classification_of_SQL_Injection_Attacks.pdf

35. Wang Degao, X. W. C., Wang Liming, Liu Xiangdong. (2019). Design
and Implementation of SQL Injection Attack and Prevention
Experiment. Journal of Dalian Nationalities University, 21(05), 441-
444.

36. Xin, Z. Y. (2017). Anti-SQL injection strategy based on HttpModule.
Network Security Technology and Applications, 11(1), 60-61 64.

37. Xuan, X. (2019). Research on SQL Anti-injection Attack. China New
Communications, 21(05), 64-64.

38. Yiğit, G., & Arnavutoğlu, M. (2017). SQL Injection Attacks Detection
& Prevention Techniques. International Journal of Computer Theory
and Engineering, 9(5), 351-356.

39. Yonghua, C. (2019). Research on SQL Injection Recognition
Algorithm Based on Random Forest. Modern Information
Technology, 3(15), 146-149.

40. Yonghui, X. J. L. Q. Y. (2019). SQL injection attack detection based
on deep convolutional neural network. Journal of Jimei University
(Natural Science Edition, 24(03), 234-240.

https://courses.ece.ubc.ca/412/term_project/reports/2007-fall/Classification_of_SQL_Injection_Attacks.pdf
https://courses.ece.ubc.ca/412/term_project/reports/2007-fall/Classification_of_SQL_Injection_Attacks.pdf

	Proxy Server Models
	Research Methodology
	Stellar Keypair
	Elliptic Curve Cryptography
	Keypair Generation

	The Client App
	The Proxy Server
	Performance Evaluation
	Conclusion

