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Abstract: 
 This work deals with a domain decomposition approach for non stationary non linear 
advection diffusion equation. The domain of calculation is decomposed into q≥2 non-overlapping 
sub-domains. On each sub-domain the linear part of the equation is descretized using implicit  finite 
volumes scheme and the  non linear advection term is integrated explicitly into the scheme. As non-
overlapping domain decomposition, we propose the Schur Complement (SC) Method. The proposed 
approach is applied for solving the local boundary sub-problems. The numerical experiments applied 
to Burgers equation show the interest of the method compared to the global calculation. The proposed 
algorithm has both the properties of stability and efficiency. It can be applied to more general non 
linear PDEs and can be adapted to different FV schemes. 
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The system of equations  
 Let us consider the following initial boundary value problem:  
 Find  𝑐:  Ω x (0, T) → ℝ    such that 
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 Where   Ω ⊆ ℝ2   is a bounded polygonal domain and (0; T), where T > 0, time interval. By 
Ω�  and 𝜕Ω we denote the closure and boundary of  Ω, respectively. 
 We assume that the data have the following properties [6, 7, 8]:  

a)  𝑓𝑠 ∈ 𝐶1 (ℝ),   𝑓𝑠 (0) = 0, |𝑓𝑠| ≤ 𝐶𝑓′, 𝑠 = 1,2,     
b) 0,ν >  
c)  [ ] 2( 0, ; ( ))g C T L∈ Ω   

d)  DC  is the trace of some [ ]* 1( 0, ; ( )) ( (0, )) (0, ),C C T H L T on T∞∈ Ω ∩ Ω× ∂Ω×  

e)  2
0 ( )c L∈ Ω . 

 In virtue of assumption a), the functions 𝑓𝑠 satisfy the Lipschitz condition with constant  𝐶𝑓′ , 
the functions  𝑓𝑠  are fluxes of the quantity c in the direction 𝑥𝑠, its represent convective terms, the 
constant  𝜈 > 0  is the diffusion coefficient. 
 We use the standard notation for function spaces (see, e.g. [9]):  𝐿𝑝(Ω),  𝐿𝑝(Ω × (0,𝑇)) 
denote the Lebesgue spaces, 𝑊𝑘,𝑝(Ω),  𝐻𝑘(Ω) =  𝑊𝑘,2(Ω)  are the Sobolev spaces, 𝐿𝑝(0,𝑇;𝑋) is 
the Bochner space of functions p-integrable over the interval (0, T) with values in a Banach space X, 
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𝐶([0,𝑇];𝑋) (𝐶1([0,𝑇];𝑋)) is the space of continuous (continuously differentiable) mappings of 
the interval [0,T] into X. 
 We shall assume that problem (1.1) has a weak solution (cf. [6,7]), satisfying the regularity 
conditions: 
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2(1.2) , , (0, ; ( ))pc cc L T H
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 where an integer p ≥ 1 will denote a given degree of polynomial approximations. Such a 
solution satisfies problem (1.1)  pointwise.  Under  (1.2), 
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Finite volume approach 
 The finite volumes approach consists in dividing the domain of calculation Ω into a finite 

number of control volumes (CVs) Vi (i=1,.., N×M) with 
1

N M

i
i

V
×

=

Ω =  .  

 For a general CV we use the notation of the distinguished points (mid-point, midpoints of 
faces) and the unit normal vectors according to the notation as indicated in  Figure 1 (right) . The 
midpoints of neighboring CVs we denote with capital letters W, S, etc. (see Figure 1 left), these 
notations are given in [3]. 

 

 
Figure 1. FV structured mesh of domain Ω 

 By integrating the equation (1.1) over an arbitrary CV  𝑉𝑃 and applying the Green formula, 
we obtain: 
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 where 𝑆𝑎,𝑃 (𝑎 = 𝑒,𝑛,𝑤, 𝑠) are the four faces of volume 𝑉𝑃 (see Figure 1), ,1 ,2( , )a a an n n=  

are the unit normal vectors to the face 𝑆𝑎,𝑃 and  µ(𝑉𝑃) is the volume of cell 𝑉𝑃.  
 Approximating the linear operator t ν∂ − ∆   by the implicit Euler method and the non-linear 
term by an explicit approximation, we get: 

(2.2)       
, ,

1 2
1

, , ,
1

( ) ( ) ( ) ,
a P a P

n n
n n nP P

P s a s a P a a P P PS S
a s a

c cV f c n dS c n dS V g
t

µ ν µ
+

+

=

−
+ − ∇ =

∆ ∑ ∑ ∑∫ ∫  

where  
1 ( , ) ,
( ) P

n n
P PV

P

g g x t dV
Vµ

= ∫  

and 

      0 0
0 0

1 ( ) , ( ).
( ) P

p P P PV
P

c c x dV or c c x
Vµ

= =∫  



1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal               - Proceedings- 

9 
 

 -   For the discretization of diffusion term, we have considered a centred difference scheme. 
 - For the convective terms we use the numerical flux, for the CV 𝑉𝑃 and 𝑆𝑎,𝑃 (𝑎 =
𝑒,𝑛,𝑤, 𝑠): 

(2.3)      
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 - For the approximation of the volume and surface integrals, we have employed the midpoint 
rule. 
 Let us denote that 𝑐𝐼𝑛 is the concentration on the volume 𝑉𝑃 (I=P, E, W, N or S) at time 𝑡𝑛. 
The concentration variables 𝒸𝐼𝑛+1  and 𝑐𝐼𝑛 (I=P, E, W, N or S) in equation (2.2) can be arranged as 
follows: 

(2.4)      1 1 1 1 1 ,n n n n n
P P E E W W N N S S Pa c a c a c a c a c b+ + + + ++ + + + =  

 𝑏𝑃 is a constant depending on, the source term g𝑃𝑛, 𝑐𝑃𝑛, the discretized convection flux, the 
boundary and the initial conditions. 
 Finally, the numerical scheme is expressed as the linear system: 

𝐴𝐶𝑃𝑛+1 = 𝑏, 
 where A is a (N × M , N × M)  type matrix of coefficients 𝑎𝐼 (I=P, E, W, N or S), 𝐶𝑃𝑛+1 and b 
are the vectors of 𝒸𝑃𝑛+1 and 𝑏𝑃 respectively. 
Schur complement method 
Domain decomposition 
 The domain Ω is decomposed into multi-domain nonoverlapping strip decomposition 
Ω1, … , Ω𝑞 where  Ω� = ⋃ Ω�𝑖

𝑞
𝑖=1   and Ω𝑖 ∩ Ω𝑗 = ∅ when i ≠ j (figure 2). 

 Let Γ𝑖𝑗 denote the interface between Ω𝑖 and Ω𝑗 and Γ =∪ Γ𝑖𝑗, and by 𝑛𝑖 the normal 
direction (oriented outward) on Γ𝑖𝑗 for i=1, …, q-1 and j=i+1.  
 For simplicity of notation we also set 𝑛 = 𝑛𝑖. 

Ω1 Ω2 Ω3    .…     Ωq 

Figure 2. Non-overlapping strip decomposition 
Considering a rectangular mesh of Ω, each subdomain Ω𝑖 is partitioned into 𝑛𝑖  (i=1,…,q) 

cells in X direction and m cells in Y direction (figure 3). 

 
Figure 3. Domain decomposition and structured conforming mesh of domain Ω 
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 The problem (1.1) can then be expressed as : 

(3.1)     
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 The last two interface conditions are known as transmission conditions on  Γ𝑖𝑗. 
 The decomposed problem (3.1) is discretized on each sub-domain Ω𝑖, i=1,…,q using the 
implicit finite volume scheme described in Section 2. For the interface conditions we have used the 
centred differences scheme. We obtain the following system for  i=1, …, q-1 and  j=i+1: 

(3.2)      

1 1 1 1

1 1 1 1

1 1

1 1 1 1

( )

( )

( )

0 ( )

i i i i i i i i i

j j j j j j j j j

i j

i j i j

n n n n
P P W W N N S S P i

n n n n
P P E E N N S S P j

n n
e w ij

n n n n
e e p p ij

a c a c a c a c b in a

a c a c a c a c b in b

c c on c

c c c c on d

+ + + +

+ + + +

+ +

+ + + +

 + + + = Ω


+ + + = Ω


= Γ


+ − − = Γ

 

where 

�
𝜎𝑖 =  𝑒𝑖 𝑎𝑛𝑑 𝜎𝑗 =  𝑒𝑗       𝑖𝑓 𝑉𝑃𝑖⋂ Γ𝑖𝑗 ≠  ∅ (𝑖 = 1, … , 𝑞 − 1) 
𝜎𝑖 =  𝐸𝑖 𝑎𝑛𝑑 𝜎𝑗 =  𝑊𝑗    𝑒𝑙𝑠𝑒                                                         

 𝑏𝑃𝑖is a constant depending on, the source term g𝑃𝑖
𝑛 , 𝑐𝑃𝑖

𝑛 , the discritized convection flux, the 
boundary and the initial conditions in Ωi, i=1,...,q. 
Schur complement 
 The methods based on Schur Complement exists in two versions. The first one uses the 
Steklov Poincaré operator and the second one is an algebraic version.  
 For exemple in [1, 2, 4]  and in [5] , one finds presentations of these methods (for linear 
advection diffusion equation) used in the context of a finite elements method  and finite volumes  
method, respectively. 
 In this work, we have used an algebraic version of Schur Complement technique.  
 Let 𝐶𝑖𝑛+1 and 𝐶Γ𝑛+1 denote the vector of the unknowns of Ωi (i=1,…, q)  and Г at time 𝑡𝑛+1 
(respectively),  and 𝑏𝑖  denote the vector of 𝑏𝑃𝑖. 
 The decomposed problem (3.2) can be written in the following matrix form: 

(3.3)    
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with  
  𝐴𝑖,  𝐴𝑖Γ describe respectively (a) and (b) of system (3.2),  and 𝐴Γ𝑖, 𝐴ΓΓ (i=1,…,q) describe 
respectively (c) and (d) of system (3.2). 
 The matrix 𝐴𝑖 present the coupling of the unknowns in Ωi, 𝐴ΓΓ it is related to the unknowns 
on the interface, 𝐴Γ𝑖 and 𝐴𝑖Γ representing the coupling of the unknowns of each sub-domain Ωi with 
those of the interface Γ𝑖,𝑖+1 for (i=1,…, q-1). 
 The system (3.3) can be sought formally by block Gaussian elimination.  
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 Eliminating 𝐶𝑖𝑛+1 (i=1,…,q) in the system (3.3),  yields the following reduced linear system 
for 𝐶Γ𝑛+1: 

(3.4)      𝑆𝐶Γ𝑛+1 = χΓ, 
where 

χΓ =  −  � 𝐴Γ𝑖𝐴𝑖−1𝑏𝑖,
i=1,…,q

 

and 

S = 𝐴ΓΓ  − � 𝐴Γ𝑖𝐴𝑖−1𝐴𝑖Γ,
i=1,…,q

 

S is the Schur Complement matrix.  
 After calculating,   𝐶Γ𝑛+1, 𝐶𝑖𝑛+1 can be obtained immediately and independently (in parallel) 
by solving 

(3.5)          𝐴𝑖𝐶𝑖𝑛+1 = 𝑏𝑖 − 𝐴𝑖Γ𝐶Γ𝑛+1 (i=1,…,q) 
Numerical Simulations 
 In this section, we shall verify the proposed approach by numerical experiments. 
 Let us apply FV mono-domain (FV-MonoD) and the combined FV method Schur 
Complement (FV-SC) to the 2D viscous Burgers equation [6, 7, 8]: 

(4.1)        𝜕𝑐
𝜕𝑡
− 𝜈Δ𝒸 + 𝒸 𝜕𝑐

𝜕𝑥1
+ 𝒸 𝜕𝑐

𝜕𝑥2
= g, 

 The spatial domain is the square  Ωi = (−1,1)2, the time interval 𝑇 = (0,1),   𝜈 = 0.01, the 
initial data 𝒸0 = 0 and the Dirichlet conditions 𝒸D = 0. The right-hand side g is chosen so that it 
conforms to the exact solution [8]: 

𝒸(𝑥, 𝑡) = (1 − 𝑒−2𝑡)(1 − 𝑥12)2(1− 𝑥22)2 
 As we want to examine the error of the space discretization, we overkill the time step so that 
the time discretization error is negligible. 
 Figure 4 (a,b,c,d) show respectively the analytical, the numerical mono-domain, the multi-
domain (q=2) and the multi-domain (q=9) solutions. 
 Figure 5  shows the convergence of the proposed algorithm when varying the mesh of 
calculation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

Figure 4a. Analytical solution Figure 4b.  Numerical mono-
domain solution 
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   Figure 4c.  Numerical multi-domain          Figure 4d.  Numerical multi-domain  
                    (q=2) solution      (q=9) solution    
 

Figure 4.  Numerical and analytical solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Convergence of numerical scheme 

Conclusion 
 A new approach coupling implicit  FV and   Algebraic Schur Complement methods applied to 
a semi linear advection-diffusion equation, on 2D structured and conforming mesh, is presented.   
 The numerical experiments show  that the  proposed  algorithm  applied to a non-overlapping 
multi-subdomain decomposition has both the properties of stability and accuracy. 
 On the other hand , its reduces the calculation cost  compared to global FV calculation. 
 As perspective of this work we project to develop a new algorithm integrating the non linear 
advection part implicitly. This algorithm will include for example  Newton method to compute the 
advection term after each time step of the numerical scheme.  
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