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Abstract: 

In this paper, we introduce some special classes of ideals in Γ-semirings called prime k-ideal, 
prime full k-ideal, prime ideals, maximal and strongly irreducible ideals. Considering and 
investigating properties of the collection A , T , M , B  and S  of all proper prime k-ideals, proper 
prime full k-ideals, maximal ideals, prime ideals and strongly irreducible ideals, respectively, of a Γ-
semiring R, we construct the respective topologies on them by means of closure operator defined in 
terms of intersection and inclusion relation among these ideals of Γ-semiring R. The respective 
obtained topological spaces are called the structure spaces of the Γ-semiring R. We study a several 
principal topological axioms and properties in those structure spaces of Γ-semiring such as separation 
axioms, compactness and connectedness etc. 
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Introduction and preliminaries 
 Algebraic structures play a prominent role in mathematics with wide ranging applications in 
many disciplines such as theoretical physics, computer sciences, control engineering, information 
sciences, coding theory etc. 
            The theory of semiring was first developed by H. S. Vandiver [33] and he has obtained 
important results of the objects. Semiring constitute a fairly natural generalization of rings, with board 
applications in the mathematical foundation of computer science. Also, semiring theory has many 
applications to other branches. For example, automata theory, optimization theory, algebra of formal 
process, combinatorial optimization, Baysian networks and belief propagation (cf. [12, 13, 14]). 
           It is well known that the concept of Γ-rings was first introduced and investigated by Nobusawa 
in 1964 [27], which is a generalization of the concept of rings. The class of Γ -rings contains not only 
all rings but also all Hestenes ternary rings. Later Barnes [2] weakened slightly the conditions in the 
definition of Γ-ring in the sense of Nobusawa. After these two papers were published, many 
mathematicians obtained interesting results on Γ-rings in the sense of Barnes and Nobusawa 
extending and generalizing many classical notions and results of the theory of rings. Γ-semirings were 
first studied by M. K. Rao [28] as a generalization of Γ-ring as well as of semiring. The concepts of Γ-
semirings and its sub-Γ-semirings with a left(right) unity was studied by J. Luh [26] and M. K. Rao in 
[28]. The ideals, prime ideals, semiprime ideals, k -ideals and h -ideals of a Γ-semiring, regular Γ-
semiring, respectively, were extensively studied by S. Kyuno [21, 22, 24] (cf. [23]) and M. K. Rao 
[28, 29]. 
           In Γ-semirings, the properties of their ideals, prime ideals, semiprime ideals and their 
generalizations play an important role in their structure theory, however the properties of an ideal in 
semirings and Γ-semirings are somewhat differerent from the properties of the usual ring ideals. In 
order to amend these differs, the concepts of k-ideals and h-ideals in a semiring were introduced and 
considered by D. R. LaTorre [25] in 1965. For the properties of some h-ideals in Γ-semirings, the 
reader is referred to the recent papers of T. K. Dutta and S. K. Sardar, K. P. Shum in [7,8,9, 10, 31]. 
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            The notion of Γ-semiring not only generalizes the notions of semiring and Γ -ring but also the 
notion of ternary semiring. We point out here that this notion provides an algebraic background to the 
non-positive cones of the totally ordered rings. We recall here that the non-negative cones of the 
totally ordered rings form semirings but the non-positive cones do not form semirings because the 
induced multiplication is no longer closed. For further study of semirings, Γ-semirings and their 
generalization and examples, the reader is referred to [7, 8, 9, 10, 16, 28, 29, 31]. 
            In this paper, we introduce some special classes of ideals in Γ-semirings called prime k-ideal, 
prime full k-ideal, prime ideals, maximal and strongly irreducible ideals. Considering and 
investigating properties of the collection A , T , M , B  and S  of all proper prime k-ideals, proper 
prime full k-ideals, maximal ideals, prime ideals and strongly irreducible ideals, respectively, of a Γ-
semiring R , we construct the respective topologies on them by means of closure operator defined in 
terms of intersection and inclusion relation among these ideals of Γ-semiring R . The respective 
obtained topological spaces are called the structure spaces of the Γ-semiring R . In fact we define this 
topology on A  and topology on T  will be the subspace topology from A  since T  is a subset of 
A . This topological space has been studied in different algebraic structures [1, 3, 4, 5, 6, 11, 18, 19, 
20,32]. Recently, in [17] we have studied the topological structure on semihypergroups. We study 
several principal topological axioms and properties in those structure spaces of Γ-semiring such as 
separation axioms, compactness and connectedness etc. 
            Recall first the basic terms and definitions from the Γ-semiring theory. 
            Let R and Γ be two additive commutative semigroups. Then R is called a Γ-semiring if there 
exists a mapping RRR →×Γ×  (the image to be denoted by baα , for Rba ∈,  and Γ∈α ) 
satisfying the following conditions:   
    1.  cabacba ααα ++ =)( ;  
    2.  cbcacba ααα ++ =)( ;  
    3.  cacaca βαβα ++ =)( ;  
    4.  cbacba βαβα )(=)(  for all Rcba ∈,,  and Γ∈βα , .  
            Obviously, every semiring R  is a Γ-semiring with R=Γ  where baα  denotes the product of 
elements Rba ∈;;α , but not conversely. 
            If R  contains an element 0  such that 0==0 ++ xxx  and 0=0=0 αα xx  for all Rx∈ , 
for all Γ∈α , then 0  is called the zero element (absorbing zero) or simply the zero of the Γ-semiring 
R . A non-empty subset T  of R  is said to be a sub-Γ-semiring of R  if ),( +T  is a subsemigroup of 

),( +R  and Tba ∈α ; for all Tba ∈;  and for all Γ∈α . A non-empty subset I  of a Γ-semiring R  
is called an ideal of R  if IIRIRIIII ⊆Γ⊆Γ⊆+ ,, , where for subsets VU ;  of R  and Θ of Γ,  

 Θ∈∈∈Θ ∑ iiiiii

n

i
VvUuvuVU γγ ,,:{=

1=

 and n  is a positive integer}.  

            An ideal I  of a Γ-semiring R  is called a k -ideal if for IyxRyx ∈+∈ ;;  and Iy∈  
implies that Ix∈ . For a Γ-semiring R , let }=|{=)( xxxRxRE +∈+ . A k -ideal I  of R  is said 
to be full if IRE ⊆+ )( . A proper ideal P  of a Γ-semiring R  is called a prime ideal of R  if 

Pba ⊆Γ  implies Pa∈  or Pb∈  for all ba,  of R . An ideal I  of a Γ-semiring R  is called proper 
iff RI ⊂  holds, where ⊂  denotes proper inclusion, and a proper ideal I  is called maximal iff there 
is no ideal A  of R  satisfying RAI ⊂⊂ . An element e  of a Γ-semiring R  is called identity 
element of R  if exxxe αα == , for all Γ∈∈ α;Rx . 
            Throughout this paper, R will always denote a Γ-semiring with zero and unless otherwise 
stated a Γ-semiring means a Γ-semiring with zero. 
On topological space of prime k -hyperideals of Γ-semiring 
             Let we denote with A  the collection of all prime k -ideals and T  the collection of all prime 
full k -ideals of a Γ-semiring R . For any subset A  of A , we define  
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 }:{= IIIA i
AiI

⊆∈
∈
A .  

            It can be easily seen that ∅∅ = . 
Theorem 2.1 Let BA,  be any two subsets of A . Then   

    1.  AA⊆ .  

    2.  AA = .  
    3.  BABA ⊆⇒⊆ .  
    4.  BABA ∪∪ = .  
            Proof. (1). It is clear that iiAiI

II ⊆
∈  for each i  and hence AA⊆ . 

            (2). By (1), we have AA⊆ . Conversely, let AI j ∈ . Then jiAiI
II ⊆

∈ . Now AIi ∈  

implies that itAtI
II ⊆

∈  for all Λ∈i . Thus  

 ji
AiI

t
AtI

III ⊆⊆
∈∈
   

 So AI j ∈  and hence AA⊆ . Consequently, AA = . 

             (3). Let us suppose that BA⊆ . Let AIi ∈ . Then ijAjI
II ⊆

∈ . Since BA⊆ , it follows 

that  
 ij

AjI
j

AjI

III ⊆⊆
∈∈
 .  

             This implies that BIi ∈  and hence BA⊆ . 

            (4). It is clear that BABA ∪⊆∪ . 

            Conversely, let BAIi ∪∈ . Then ijBAjI
II ⊆

∪∈ . It can be easily seen that  

 












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




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∈∈∪∈
j

BjI
j

AjI
j
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III  = .  

            Since jAjI
I ∈

 and jBjI
I ∈

 are ideals of R , we have  

 ij
BAjI

j
BjI

j
AjI

j
BjI

j
AjI

IIIIII ⊆
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

∪∈∈∈∈∈
 = .  

           We have iI  is a prime ideal of R  and hence either ijAjI
II ⊆

∈  or ijBjI
II ⊆

∈  i.e. either 

AIi ∈  or BIi ∈  i.e. BAIi ∪∈ . Consequently, BABA ∪⊆∪  and hence BABA ∪∪ = .  

Definition 2.2 The closure operator AA→  gives a topology Aτ  on A . This topology Aτ  is called 
the hull-kernel topology and the topological space AA τ,( ) is called the structure space of the Γ-
semiring R .  
           Let I  be a k -ideal of a Γ-semiring R . We define 

 }:{=)( IIII ′⊆∈′∆ A  and }:{=)(\=)( IIIIIC ′∈′∆∆ ÚAA .  
Proposition 2.3 Let R  be a Γ-semiring and I  a k -ideal of R . Then any closed set in A  is of the 
form )(I∆ .  
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            Proof. Let A  be any closed set in A , where A⊆A . Let }:{= Λ∈iIA i  and iAiI
II  ∈

= . 

Then I  is a k -ideal of R . Let AI ∈′ . Then IIiAiI
′⊆

∈ . This implies that II ′⊆ . Consequently, 

)(II ∆⊆′ . So )(IA ∆⊆ . 

            Conversely, let )(II ∆∈′ . Then II ′⊆  i.e. IIiAiI
′⊆

∈ . Consquently, AI ∈′  and hence 

AI ⊆∆ )( . Thus )(= IA ∆ .  
Corollary 2.4 Let R  be a Γ-semiring and I  a k -ideal of R . Then any open set in A  is of the form 

)(IC∆ .  
            Let R  be a Γ-semiring and Ra∈ . We define 

 }:{=)( IaIa ∈∈∆ A  and }:{=)(\=)( IaIaaC ∉∈∆∆ AA .  
Proposition 2.5 Let R  be a Γ-semiring and Ra∈ . Then }:)({ RaaC ∈∆  forms an open base for 
the hull-kernel topology Aτ  on A .  
              Proof. Let Aτ∈U . Then )(= ICU ∆ , where I  is a k -ideal of R . Let )(= ICUJ ∆∈ . 
Then JIÚ . This implies that there exists Ia∈  such that Ja∉ . Thus )(aCJ ∆∈ . It remains to 
show that UaC ⊂∆ )( . Let )(aCK ∆∈ . Then Ka∉ . This implies that KIÚ . Consequently, 

UK ∈  and hence UaC ⊂∆ )( . So we find that UaCJ ⊂∆∈ )( . Thus }:)({ RaaC ∈∆  is an open 
base for the hull-kernel topology Aτ  on A .  
Theorem 2.6 Let R  be a Γ-semiring. The structure space ),( AA τ  is a 0T -space.  
              Proof. Let 1I  and 2I  be two distinct elements of A . Then there is an element a  either in 

21 \ II  or in 12 \ II . Let us suppose that 21 \ IIa∈ . Then )(aC∆  is a neighbourhood of 2I  not 
containing 1I . Hence ),( AA τ  is a 0T -space.  

Theorem 2.7 Let R  be a Γ-semiring. ),( AA τ  is a 1T -space if and only if no element of A  is 
contained in any other element of A .  
             Proof. Let ),( AA τ  be a 1T -space. Let us suppose that 1I  and 2I  be any two distinct 
elements of A . Then each of 1I  and 2I  has a neighbourhood not containing the other. Since 1I  and 

2I  are arbitrary elements of A , it follows that no element of A  is contained in any other element of 
A . 
            Conversely, let us suppose that no element of A  is contained in any other element of A . Let 

1I  and 2I  be any two distinct elements of A . Then by hypothesis, 21 II ⊂/  and 12 II ⊂/ . This 
implies that there exist Rba ∈,  such that 1Ia∈ , but 2Ia∉  and 2Ib∈ , but 1Ib∉ . Consequently, 
we have )(1 bCI ∆∈ , but )(1 aCI ∆∉  and )(2 aCI ∆∈ , but )(2 bCI ∆∉  i.e. each of 1I  and 2I  has a 
neighbourhood not containing the other. Hence ),( AA τ  is a 1T -space.  
Corollary 2.8 Let M  be the set of all proper maximal k -ideals of a Γ-semiring R  with identity. 
Then ),( MM τ  is a 1T -space, where Mτ  is the induced topology on M  from ),( AA τ .  
Theorem 2.9 Let R  be a Γ-semiring. ),( AA τ  is a Hausdorff space if and only if for any two distinct 
pair of elements JI ,  of A , there exist Rba ∈,  such that JbIa ∉∉ ,  and there does not exist any 
element K  of A  such that Ka∉  and Kb∉ .  
             Proof. Let ),( AA τ  be a Hausdorff space. Then for any two distinct elements JI ,  of A , 
there exist basic open sets )(aC∆  and )(bC∆  such that )(aCI ∆∈ , )(bCJ ∆∈  and 

∅∆∩∆ =)()( bCaC . Now )(aCI ∆∈  and )(bCJ ∆∈  imply that Ia∉  and Jb∉ . If possible, let 
A∈K  such that Ka∉  and Kb∉ . Then )(aCK ∆∈  and hence )()( bCaCK ∆∩∆∈ . It is 
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impossible, since ∅∆∩∆ =)()( bCaC . Thus there does not exist any element A∈K  such that 
Ka∉  and Kb∉ . 

            Conversely, let us suppose that the given condition holds and A∈JI ,  such that JI ≠ . Let 
Rba ∈,  be such that JbIa ∉∉ ,  and there does not exist any A∈K  such that Ka∉  and Kb∉ . 

Then )(),( bCJaCI ∆∈∆∈  and ∅∆∩∆ =)()( bCaC . This implies that ),( AA τ  is a Hausdorff 
space.  
Corollary 2.10 Let R  be a Γ-semiring. If ),( AA τ  is a Hausdorff space, then no proper prime k -
ideal contains any other proper prime k -ideal. If ),( AA τ  contains more than one element, then 
there exist Rba ∈,  such that )()()(= IbCaC ∆∪∆∪∆A , where I  is the k -ideal generated by 

ba, .  
              Proof. Let us suppose that ( ),( AA τ  is a Hausdorff space. Since every Hausdorff space is a 

1T -space, ),( AA τ  is a 1T -space. Hence by Theorem 2.7, it follows that no proper prime k -ideal 
contains any other proper prime k -ideal. Now let A∈KJ ,  be such that KJ ≠ . Since ),( AA τ  is a 
Hausdorff space, there exist basic open sets )(aC∆  and )(bC∆  such that )(),( bCKaCJ ∆∈∆∈  
and ∅∆∩∆ =)()( bCaC . Let I  be the k -ideal generated by ba, . Then I  is the smallest k -ideal 
containing a  and b . Let A∈K . Then either KbKa ∉∈ ,  or KbKa ∈∉ ,  or Kba ∈, . The case 

KbKa ∉∉ ,  is not possible, since ∅∆∩∆ =)()( bCaC . Now in the first case, )(aCK ∆∈  and 
hence )()()( IbCaC ∆∪∆∪∆⊆A . In the second case, )(aCK ∆∈  and hence 

)()()( IbCaC ∆∪∆∪∆⊆A . In the third case, )(IK ∆∈  and hence )()()( IbCaC ∆∪∆∪∆⊆A . 
So we find that )()()( IbCaC ∆∪∆∪∆⊆A . Again, clearly A⊆∆∪∆∪∆ )()()( IbCaC . Hence 

)()()(= IbCaC ∆∪∆∪∆A .  
Theorem 2.11 Let R  be a Γ-semiring. ),( AA τ  is a regular space if and only if for any A∈I  and 

RaIa ∈∉ , , there exists a k -ideal J  of R  and Rb∈  such that )()()( aCJbCI ∆⊆∆⊆∆∈ .  
            Proof. Let ),( AA τ  be a regular space. Let A∈I  and Ia∉ . Then )(aCI ∆∈  and 

)(\ aC∆A  is a closed set not containing I . Since ),( AA τ  is a regular space, there exist disjoints 
open sets U  and V  such that UI ∈  and VaC ⊆∆ )(\A . This implies that )(\ aCV ∆⊆A . Since 
V  is open, V\A  is closed and hence there exists a k -ideal J  of R  such that )(=\ JV ∆A , by 
Proposition 2.3. So we find that )()( aCJ ∆⊆∆ . Again, since ∅∩ =VU , we have UV \A⊆ . 
Since U  is open, U\A  is closed and hence there exists a k -ideal K  of R  such that 

)(=\ KU ∆A  i.e. )(KV ∆⊆ . Since )(=\, KUIUI ∆∉∈ A . This implies that IKÚ . Thus there 
exists )( RKb ⊂∈  such that Ib∉ . So )(bCI ∆∈ . Now we show that )(bV ∆⊆ . Let 

)(KVM ∆⊆∈ . Then MK ⊆ . Since Kb∈ , it follows that Mb∈  and hence )(bM ∆∈ . 
Consequently, )(bV ∆⊆ . This implies that )()()(=\)(\ JbCJVb ∆⊆∆⇒∆⊆∆ AA . Thus we 
find that )()()( aCJbCI ∆⊆∆⊆∆∈ . 
            Conversely, let us suppose that the given condition holds. Let A∈I  and )(K∆  be any 
closed set not containing I . Since )(KI ∆∉ , we have IK ⊂/ . This implies that there exists Ka∈  
such that Ia∉ . Now by the given condition, there exists a k -ideal J  of R  and Rb∈  such that 

)()()( aCJbCI ∆⊆∆⊆∆∈ . Since ∅∆∩∆∈ =)()(, KaCKa . This implies that 
)(\)(\)( JaCK ∆⊆∆⊆∆ AA . Since )(J∆  is a closed set, )(\ J∆A  is an open set containing the 

closed set )(K∆ . Clearly, ∅∆∩∆ =))(\()( JbC A . So we find that )(bC∆  and )(\ JA  are two 
disjoints open sets containing I  and )(K∆  respectively. Consequently, ),( AA τ  is a regular space.  



1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal               - Proceedings- 

22 
 

Theorem 2.12 Let R  be a Γ-semiring. ),( AA τ  is a compact space if and only if for any collection 
Ra ⊂Λ∈αα}{ , there exists a finite subcollection }1,2,...,=:{ niai  in R  such that for any A∈I , 

there exists ia  such that Iai ∉ .  
            Proof. Let ),( AA τ  be a compact space. Then the open cover }:)({ RaaC ii ∈∆  of ),( AA τ  
has a finite subcover }1,2,...,=:)({ niaC i∆ . Let A∈I . Then )( iaCI ∆∈  for some Rai ∈ . This 
implies that Iai ∉ . Hence }1,2,...,=:{ niai  is the required finite subcollection of elements of R  
such that for any A∈I , there exists ia  such that Iai ∉ . 
            Conversely, let us suppose that the given condition holds. Let }:)({ RaaC ii ∈∆  be an open 
cover of A . Suppose to the contrary that no finite subcollection of }:)({ RaaC ii ∈∆  covers A . 
This means that for any finite set },...,,{ 21 naaa  of elements of R ,  
 ⇒≠∆∪∪∆∪∆ A)(...)()( 21 naCaCaC  
 ⇒∅≠∆∩∩∆∩∆⇒ )(...)()( 21 naaa  
 ⇒∆∩∩∆∩∆∈∈⇒ )(...)()(thatsuchexiststhere 21 naaaII A  
 .hypothesisourscontradictwhich,,...,, 21 Iaaa n ∈⇒  
           So the open cover }:)({ RaaC ii ∈∆  has a finite subcover and hence ),( AA τ  is compact.  
Corollary 2.13 If the Γ-semiring R  is finitely generated, then ),( AA τ  is a compact space.  
            Proof. Let }1,2,...,=:{ niai  be a finite set of generators of R . Then for any A∈I , there 
exists ia  such that Iai ∉ , since I  is a proper prime k -ideal of R . Hence by Theorem 2.12, 

),( AA τ  is a compact space.  

Proposition 2.14 Let R  be a Γ-semiring. ),( AT τ  is compact space if {0})( ≠+ RE .  
           Proof. Let }|)({ Λ∈∆ iIi  be any collection of closed sets in T  with finite intersection 

property. Let I  be the proper prime k -ideal which is also full k -ideal generated by )(RE + . Since 
any prime, full k -ideal J  of R  contains )(RE + , then J  contains I . Hence ∅≠∆∈

Λ∈

)( i
i

II  . 

Consequently, ),( TT τ  is compact.  
Definition 2.15 A Γ-semiring R  is called a k -Noetherian Γ-semiring if it satisfies the ascending 
chain condition on k -ideals of R  i.e. if ......21 ⊆⊆⊆⊆ nIII  is an ascending chain of k -ideals of 
R , then there exists a positive integer m  such that mn II =  for all mn ≥ .  
Theorem 2.16 If R  is a k -Noetherian Γ-semiring, then ),( AA τ  is countably compact.  

              Proof. Let ∞∆ 1=}({ nnI  be a countable collection of closed sets in A  with finite intersection 
property (FIP). Let us consider the following ascending chain of prime k -ideals of R : 

...><><>< 321211 ⊆∪∪⊆∪⊆ IIIIII . 
             Since R  is a k -Noetherian Γ-semiring, there exists a positive integer m  such that 

...>=...>=<...< 12121 +∪∪∪∪ mm IIIIII  Thus it follows that )(>...<
1=21 nnm IIII ∆∈∪∪

∞
 . 

Consequently, ∅≠∆
∞ )(

1= nn
I  and hence ),( AA τ  is countably compact.  

Corollary 2.17 If R  is a k -Noetherian Γ-semiring and ),( AA τ  is second countable, then ),( AA τ  
is compact.  
              Proof. The proof follows by Theorem 2.16 and the fact that a second countable space is 
compact if it is countably compact.  
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Remark 2.18 Let }{ iI  be a collection of prime k -ideals of a Γ-semiring R . Then iI  is a k -ideal 
of R  but it may not be a prime k -ideal of R , in general.  
             For this we have the following proposition: 
Proposition 2.19 Let R  be a Γ-semiring and }{ iI  be a collection of prime k -ideals of R  such that 

}{ iI  forms a chain. Then iI  is a prime k -ideal of R .  

             Proof. It is clear that iI  is a k -ideal of R . Let iIBA ⊆Γ )  for any two k -ideals BA,  

of R . If possible, let iIBA Ú, . Then there exist i , j  such that iIAÚ , jIBÚ . Since iI  is a chain, 

let ji II ⊆ . This implies that iIBÚ . Since iIBA ⊆Γ  and iI  is prime, we must have either iIA⊆  or 

iIB ⊆ . It is impossible. Therefore, either iIA ⊆  or iIB ⊆ . Consequently, iI  is a prime k -
ideal of R .  
Theorem 2.20 Let R  be a Γ-semiring. ),( AA τ  is disconnected if and if there exist a k -ideal I  of 
R  and a collection of points Λ∈iia }{  of R  not belonging to I  such that if A∈′I  and 

Λ∈∀′∈ iIai , , then ∅≠′II \ .  
             Proof. Let ),( AA τ  be not connected. Then there exists a non-trivial open and closed subset 

of A . Let I  be the k -ideal of R  for which )(I∆  is closed as well as open. Then )(=)( i
i

aCI ∆∆
Λ∈
  

where Λ∈iia }{  is a collection of points of R . Now since Λ∈∀∆⊆∆ iIaC i ),()(  for any 
)( ii aCI ∆∈  we have iII ⊆ , therefore Iai ∉  as Λ∈∀∉ iIa ii , . For any A∈′I  and 
Λ∈∀′∈ iIa ,α  we have )(II ∆∉′ , consequently II ′Ú , i.e. ∅≠′II \ . 

            Conversely, let us suppose the the given condition holds. Then )(=)( i
i

aCI ∆∆
Λ∈
  is an open 

and closed non-trivial subset of A  and hence ),( AA τ  is disconnected.  
 Definition 2.21 Let R  be a Γ-semiring. The structure space ),( AA τ  of R  is called irreducible if 
for any decomposition 21= AAA ∪ , where 1A , 2A  are closed subsets of A , we have either 

1= AA  or 2= AA .  
Theorem 2.22 Let R  be a Γ-semiring and A  be a closed subset of A . Then A  is irreducible if and 
only if iAiI

I ∈
 is a prime k -ideal of R .  

             Proof. Let A  be irreducible. Let QP,  be two k -ideals of R  such that iAiI
IQP  ∈

⊆Γ . 

Then iIQP ⊆Γ  for all i . Since iI  is prime, we have iIP ⊆  or iIQ ⊆  which implies for AIi ∈ , 

}{PIi ∈  or }{QIi ∈ . Hence )()(= QAPAA ∩∪∩ . Since A  is irreducible and 

)(),( QAPA ∩∩ , are closed, it follows that PAA ∩=  or QAA ∩=  and hence PA⊆  or 

QA⊆ . This implies that iAiI
IP  ∈

⊆  or iAiI
IQ  ∈

⊆ . Consequently, iAiI
I ∈

 is a prime k -ideal 

of R . 
            Conversely, let us suppose that iAiI

I ∈
 is a prime k -ideal of R . Let 21= AAA ∪ , where 

21, AA  are closed subsets of A . Then iAiIiAiI
II 

1∈∈
⊆ , iAiIiAiI

II 
2∈∈

⊆ . We have  

 













∩














∈∈∪∈
∈ 

2121

==
AiI

i
AiI

i
AAiI

iAiI
III .  
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             Also  

 













⊆














Γ














∈∈∈
i

AiI
i

AiI
i

AiI

III 
121

, 













⊆














Γ














∈∈∈
i

AiI
i

AiI
i

AiI

III 
221

.  

             Thus we have  

 













∩













⊆














Γ














∈∈∈∈


2121 AiI
i

AiI
i

AiI
i

AiI

III .  

             Since iAiI
I ∈

 is prime, it follows that  

 i
AiI

i
AiI

II 
∈∈

⊆
1

 or i
AiI

i
AiI

II 
∈∈

⊆
2

.  

             So we find that  
 i

AiI
i

AiI

II 
1

=
∈∈

 or i
AiI

i
AiI

II 
2

=
∈∈

.  

             Let AI ∈β . We have  

 βIIi
AiI

⊆
∈


1

 or βIIi
AiI

⊆
∈


2

.  

             Since AAA ⊆21, , so βIIi ⊆  for all 1AIi ∈  or βIIi ⊆  for all 2AIi ∈ . Thus 11 = AAI ∈β  

or 22 = AAI ∈β , since 1A  or 2A  are closed, i.e. 1= AA  or 2A .  

Theorem 2.23 Let R  be a Γ-semiring. ),( AA τ  is disconnected if and if there exist a k -ideal I  of 
R  and a collection of points Λ∈iia }{  of R  not belonging to I  such that if A∈′I  and 

Λ∈∀′∈ iIai , , then ∅≠′II \ .  
            Proof. Let ),( AA τ  be not connected. Then there exists a non-trivial open and closed subset of 

A . Let I  be the k -ideal of R  for which )(I∆  is closed as well as open. Then )(=)( i
i

aCI ∆∆
Λ∈
  

where Λ∈iia }{  is a collection of points of R . Now since Λ∈∀∆⊆∆ iIaC i ),()(  for any 
)( ii aCI ∆∈  we have iII ⊆ , therefore Iai ∉  as Λ∈∀∉ iIa ii , . For any A∈′I  and 
Λ∈∀′∈ iIai ,  we have )(II ∆∉′ , consequently II ′Ú , i.e. ∅≠′II \ . 

            Conversely, let us suppose the the given condition holds. Then )(=)( i
i

aCI ∆∆
Λ∈
  is an open 

and closed non-trivial subset of A  and hence ),( AA τ  is disconnected.  

Proposition 2.24 Let R  be a Γ-semiring. ),( AT τ  is connected space if {0})( ≠+ RE .  

            Proof. Let I  be the proper prime k -ideal generated by )(RE + . Since any full k -ideal of R  
contains )(RE + , then I  belongs to any closed set )(I ′∆  of A . Consequently, any two closed sets 
of A  are not disjoint. Hence ),( TT τ  is connected 
On topological space of maximal ideals of Γ-semiring 
           In this section, the structure space of all maximal ideals of a Γ-semiring R  with identity e  is 
considered and studied. 
           An ideal is maximal if there is no ideal containing properly it. Let M  be the set of all 
maximal ideals in a Γ-semiring R . We shall define two topologies on M . For every Rx∈ , we 
denote by x∆  the set of all maximal ideals containing x , by xΩ  the set x∆−M , i.e. the set of all 
maximal ideals not containing x . Let I  be an ideal of R , we denote by I∆  the set of all maximal 
ideals containing I . 
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           We choose the family }|{ Rxx ∈∆  as a subbase for open sets of M . We shall refer to the 

resulting topology on M  as ∆ -topology (in symbol, ∆M ). Similarly, we shall take the family 
}|{ Rxx ∈Ω  as a subbase for open sets of M  (in symbol, ΩM ). 

            Let 21, MM  be two distinct elements of ∆M . Then we have RMM =21 + . Therefore there 
are ba,  such that bae +=  and 21, MbMa ∈∈ , so we have 21, MM ba ∋∆∋∆  and ∅∆∩∆ =ba

. Hence we have  
Theorem 3.1 The topological space ∆M  is a 2T -space.  
           Let now M  be an element of ΓM , and Ω∈≠ M1MM , then there is an element a  such that 

1Ma∈  and Ma∉ . Therefore aM Ω∉1  and x
Mx

M Ω∉
∉
1 . This implies x

Mx

M Ω
∉
= . Hence we 

obtain the following  
Theorem 3.2 The topological space ΩM  is a 1T -space.  
            Let I  be an ideal of R  and }{ λa  a generator of I , then we have  

 
λ

λ
aI ∆∆ = .  

            Therefore, the closed sets for the topological space ΩM  have the form 
nIII ∆∪∪∆∪∆ ...

21
, 

where iI  are ideals of R . Let i

n

i

II 
1=

= , if 
iIM ∆∈  for some i , then iIM ⊃  and IM ⊃ . This 

implies MI ∋∆  and we have IiI

n

i

∆⊂∆
1=

. Let us suppose that there is a maximal ideal M  such that 

iI

n

i

IM ∆−∆∈ 
1=

, then IM ∆∈  and 
iI

n

i

M ∆∉
1=

. Hence IM ⊃  and M  does not contain every 

)1,2,...,=( niIi . Therefore, since M  is a maximal ideal, there are elements ii Ia ∈  and Mmi ∈  
such that  

 )1,2,...,=(= nimae ii + .  
          Thus, we have  

 Mmmaaae n ∈++++ ,...= 21   
          and Iaaa n ∈+++ ....21 . This implies RMI =+ . Hence, by MI ⊂ , we have RM = , 
which is a contradiction. This shows the following relation:  

 IiI

n

i

∆∆ =
1=
   

          and we have the following:  
Theorem 3.3 The closed sets for ΩM  are expressed by sets I∆ , where I  is an ideal of R .  
         By Theorem 3.3, we prove the following  
Theorem 3.4 The space ΩM  is a compact 1T -space.  
         Proof. Let }{

λI
∆  be a family of closed sets in ΩM  with the finite intersection property, where 

λI  are ideals in R . Therefore, any finite family of λI  does not contain the Γ -semiring R . Hence the 
ideal I  generated by }{ λI  does not contain the identity e  of R . This shows that I  is contained in a 

maximal ideal M . Hence 
λ

λ
IM ∆∈ . Therefore, since 

λ
λ

I∆  is non-empty, ΩM  is a compact 

space.  
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On topological space of prime ideals of Γ-semiring 
           In this section, the structure space B  of all prime ideals of a Γ-semiring R  with identity e  is 
considered and the relation of B  and the structure space M  of all maximal ideals of R  is 
investigated. Throughout the section, we shall treat a commutative Γ-semiring R  with identity e . An 
ideal P  of R  is prime if and only if Pba ⊆Γ  implies Pa∈  or Pb∈ . Since R  has an identity e , 
any maximal ideal is prime, therefore MB ⊇ . 
          To introduce a topology τ  on B , we shall take },|{= B∈∉ PPxPxτ  for every Rx∈  as an 
open base of B . We have the following  
Theorem 4.1 Let U  be a subset of B , then  

 }|{= PPP
P

′⊂∈′
∈


U

BU ,  

          where U  is the closure of U  by the topology τ .  
          Proof. Let }|{ PPPP

P

′⊂∈′∈′
∈


U

B  and let xτ  be a neighbourhood of P′ , then Px ′∉ , and 

we have Px
P


U∈

∉ . Therefore, there is a prime ideal U∈P  such that P  does not contain x  and 

Px ∋τ . This shows that U∈P . Thus we have proved that the U  contains }|{ PPP
P

′⊂∈′
∈


U

B . 

          If a prime ideal P′  is not in }|{ PPP
P

′⊂∈′
∈


U

B , then ∅≠′−
∈

PP
P


U

. Hence, for 

PPx
P

′−∈
∈


U

, we have U∈∈ PPx ,  and Px ′∉ . This shows U∈∉ PP x ,τ  and xP τ∉′ . 

Therefore ∅∩ =Uxτ  and hence U∉′P . The proof is complete.  
           A similar argument for M  relative to Ω -topology implies the following  
Proposition 4.2 Let U  be a subset of M , then  

 }|{= MMM
M

′⊂∈′
∈


U

MU ,  

             where U  is the closure of U  by the topology Ω .  
          In a similar way to the proof of the Theorem 2.1, we can prove the following  
Theorem 4.3 The closure operation UU →  of B  satisfies the following relations:   
    1.  UU ⊆ .  

    2.  UU = .  
    3.  BUBU ∪∪ = .  
           Proof. We shall prove only the last relation (3). By Theorem 4.1, BU ⊂  implies BU ⊂  and 
hence BUBU ∪⊂∪ . Let BU∪∉P , then U∉P  and B∉P . Hence U

U

PPP
P

=′⊃/
∈′
  and 

B
B

PPP
P

=′⊃/
∈′
 . The sets UB  and BB  are ideals. If PPP ⊂Γ BU , for any elements ba,  such that 

PPbPPa −∈−∈ BU , , we have Pba ⊆Γ  and since P  is a prime ideal, Pa∈  or Pb∈ , which is 

a contradiction. Therefore, BUBUBU ∪∩⊇Γ⊃/ PPPPPP = . Hence BU∪∉P .  
Theorem 4.4 The topological space B  is a 0T -space.  

          Proof. It is sufficient to prove that )(=)( 21 PP  implies 21 = PP . By )( 12 PP ∈ , then 12 PP ⊃ . 
Similarly 21 PP ⊃  and we have 21 = PP .  
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Theorem 4.5 The topological space B  is a compact 1T -space.  
           Proof. Let λU  be a family of closed sets such that ∅=λ

λ

U , then we have RP =
λU∑ , 

where PP
P


λ
λ

U
U

∈

= . Let us suppose that RP ≠∑ λU . Then there is a maximal ideal M  containing 

λUP∑ . Therefore MP ⊂∑ λU  for every λ . Hence M∋λU  for every λ , and we have 

M∋λ
λ

U , which is a contradiction. By RP =
λU∑ , we have there exit Γ∈nγγγ ,...,, 21 , such that 

)1,2,...,=(,...= 2211 niPaaaae
i

inn λ
γγγ U∈ . Hence RP

i

n

i
=

1=
λU∑ . If ∅≠

i

n

i
λU

1=

, then for a prime 

ideal P  of 
i

n

i
λU

1=

, we have )1,2,...,=( niPP
iλ

U⊃  and hence 
i

n

i
PP

λU∑⊃
1=

. Therefore we have 

∅=
1=

i

n

i
λU .  

           By the B -radical )(Br  of the Γ -semiring R , we mean the intersection of all prime ideals of 

R , that is, P
P


B∈

. By the M -radical )(Mr  of R , we mean the intersection of all maximal ideals of 

R , that is, M
M


M∈

. 

           From BM ⊆ , we have )()( MB rr ⊆ . In the following proposition we give a condition to 
be )(=)( MB rr .  
Theorem 4.6 The subset M  of B  is dense in B , if and only if, )(=)( MB rr .  

          Proof. Let BM =  for the topology τ . Then we have  
 B

M

=}|{ PMP
M

⊂
∈
 .  

          Hence  
 )(==)( BM

BM

rPMr
PM

∈∈

⊆ .  

          Since )()( MB rr ⊆ , therefore we have )(=)( MB rr . 

          Conversely, if MB −∈P , then B∈P  and M∈P . Therefore, there is a neighbourhood xτ  

of P  such that ∅∩ =Mxτ . Hence Pr
P


B

B
∈

=)(  is a proper subset of M
M


M∈

. Therefore 

)()( MB rr ≠ , which completes the proof.  
Definition 4.7 If )(Mr  is the zero ideal (0), then A  is said to be semisimple−M .  
          From the Theorem 4.6, we have the following  
Theorem 4.8 If R  is M -semisimple, M  is dense in B .  
On topological space of strongly irreducible ideals of Γ -semiring 
          In this section, the structure space S  of all strongly irreducible ideals of a commutative Γ-
semiring R  with identity e  is investigated. 
          An ideal I  of a Γ-semiring R  is called irreducible, if and only if IBA =∩  for two ideals 

BA,  implies IA =  or IB = . An ideal I  of a Γ -semiring R  is called strongly irreducible, if and 
only if IBA ⊂∩  for any two ideals BA,  implies IA⊂  or IB ⊂ . From BABA ∩⊂Γ  for any 
two ideals BA, , it follows that any prime ideals are strongly irreducible and any strongly irreducible 
ideals are irreducible. 
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          Let S  be the set of all strongly irreducible ideals of R . From the above, it is clear that 
SBM ⊂⊂ . To give a topology σ  on S , we shall take }|{= SxSx ∉∈Sσ  for every Rx∈  as 

an open base of S .  
Theorem 5.1 Let U  be a subset of S , then we have  

 }|{= SSS
S

′⊂∈′
∈


U

SU   

          where U  is the closure of U  by σ .  
          Proof. Let }|{= SSS

S

′⊂∈′
∈


U

SF  and let F∈′S . Let xσ  be an open base of S ′ , then, by 

the definition of the topology σ , Sx ′∉ . Hence, we have Sx
S


U∈

∉ . It follows from this that there is 

a strongly irreducible ideal S  of U  such that x  is not contained in S . Hence Sx ∋σ . Therefore 

U∈′S  and UF ⊂ . 
          To prove that UF ⊃ , take a strongly irreducible ideal S ′  such that F∉′S . Then 

∅≠′−
∈

SS
S


U

. For an element SSx
S

′−∈
∈


U

, we have )( U∈∈ SSx  and Sx ′∈ . Hence xS σ∈′  

and xS σ∉  for all S  of U . Therefore ∅∩ =xσU  and then we have U∉′S . Hence UF ⊃ . The 
proof of the theorem is complete.  
           We shall prove that the topological space S  for the topology σ  is a compact 0T -space. To 
prove that S  is a 0T -space, it is sufficient to verify the following conditions:   

    1.  UU ⊆ .  

    2.  UU = .  
    3.  BUBU ∪∪ =   
    4.  21 = SS  implies 21 = SS .  

           The conditions (1) and (2) are clear, and FU∪  implies FU ⊂ . From this relation, we have 
FUFU ∪⊂∪ . For some element of S  of FU∪ , suppose that U∉S  and F∉S . From 

Theorem 5.1, we have  
 U

U

SSS
S

=′⊃/
∈′
  and F

F

SSS
S

=′⊃/
∈′
 .  

           US  and FS  are ideals. If SSS ⊂∩ FU , by the definition of S , SS ⊂U  or SS ⊂F . Hence 

FUFU ∪∩⊃/ SSSS = . This showa FU∪∉S . 

            To prove that 21 = SS  implies 21 = SS , we shall use the condition (1). Then 21 SS ∋  and by 
the definition of closure operation, we have 21 SS ⊂ . Similarly we have 21 SS ⊃  and 21 = SS . 
Therefore we complete the proof that S  is a 0T -space. 
            We shall prove that S  is a compact space. Let tU  be a family of closed sets with empty 

intersection. Let SS
tS

t 
U

U
∈

= , suppose that SS
t

t
≠∑ U , then there is a maximal ideal M  containing 

the ideal 
t

t
SU∑ . Therefore we have MS

t
⊂U  for every t . By the definition of MS tt

∋UU ,  for 

every t . Hence Mt
t

∋U , which contradicts our hypothesis of tU . Therefore RS
t

t
=U∑ . Hence 

we have there exist Γ∈nγγγ ,...,, 21 , such that ))1,2,...,=((...= 2211 niSaaaae
it

inn U∈γγγ . Hence 
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we have 
it

n

i
SR U∑

1=
= . If ∅≠

it

n

i

U
1=

, for every strongly irerducible ideal S  of 
it

n

i

U
1=

, 

)1,2,...,=( niSS
it

U⊃  and 
it

n

i
SS U∑⊃

1=

. If R
it

n

i

=
1=

U , we can prove easily that S  is a compact 

space. If 
it

n

i

U
1=

 contains a proper strongly irreducible ideal S , we have 
it

n

i
SS U∑⊃

1=

, which is a 

contradiction to 
it

n

i
SR U∑

1=
= . Therefore ∅=

1= it

n

i
UU . Hence S  is a compact space. Thus we have 

proved the following  
Theorem 5.2 The topological space ),( σS  is compact 0T -space.  
             By the radical−S  )(Sr  of a Γ-semiring, we mean the intersection of all strongly 

irreducible ideals of it, i.e., S
S


S∈

. from SBM ⊂⊂ , we have )()()( SBM rrr ⊃⊃ .  

Theorem 5.3 The subset B  of S  is dense in S , if and only if )(=)( SB rr .  

            Proof. Let SB =  for the topology σ , then we have  
 S

B

=}|{ SPS
P

⊂
∈
 .  

            Hence, we have  
 )(==)( SB

SB

rSPr
SP

∈∈

⊂ .  

            On the other hand, )()( SB rr ⊃ . This shows )(=)( BS rr . 

            Conversely, suppose that ∅≠−BS , then there is a strongly irreducible ideal S  such that 
B∉S  and S∈S . Therefore there is a neighbourhood xσ  of S  which does not meet B . Hence 

Sr
S


S

S
∈

=)(  is a proper subset of P
P


B∈

, and we have )()( BS rr ≠ .  

Corollary 5.4 The subset M  of S  is dense in S , if and only if )(=)( SM rr .  
Corollary 5.5 Let R  be a Γ-semiring with 0. If R  is M -semisimple, then M  and B  are dense in 
S . 
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