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Abstract:

In this paper, we introduce some special classes of ideals in I'-semirings called prime k-ideal,
prime full k-ideal, prime ideals, maximal and strongly irreducible ideals. Considering and
investigating properties of the collection A, T, M, B and S of all proper prime k-ideals, proper
prime full k-ideals, maximal ideals, prime ideals and strongly irreducible ideals, respectively, of a I'-
semiring R, we construct the respective topologies on them by means of closure operator defined in
terms of intersection and inclusion relation among these ideals of I'-semiring R. The respective
obtained topological spaces are called the structure spaces of the I'-semiring R. We study a several
principal topological axioms and properties in those structure spaces of I'-semiring such as separation
axioms, compactness and connectedness etc.
__________________________________________________________________________________________________________________________________________________|
Key Words: T'-Semiring; Prime k-ideal (ideal); (strongly) irreducible ideal; Hull-Kernel topology;
Structure space

Introduction and preliminaries

Algebraic structures play a prominent role in mathematics with wide ranging applications in
many disciplines such as theoretical physics, computer sciences, control engineering, information
sciences, coding theory etc.

The theory of semiring was first developed by H. S. Vandiver [33] and he has obtained
important results of the objects. Semiring constitute a fairly natural generalization of rings, with board
applications in the mathematical foundation of computer science. Also, semiring theory has many
applications to other branches. For example, automata theory, optimization theory, algebra of formal
process, combinatorial optimization, Baysian networks and belief propagation (cf. [12, 13, 14]).

It is well known that the concept of I'-rings was first introduced and investigated by Nobusawa
in 1964 [27], which is a generalization of the concept of rings. The class of I"-rings contains not only
all rings but also all Hestenes ternary rings. Later Barnes [2] weakened slightly the conditions in the
definition of T-ring in the sense of Nobusawa. After these two papers were published, many
mathematicians obtained interesting results on T-rings in the sense of Barnes and Nobusawa
extending and generalizing many classical notions and results of the theory of rings. I'-semirings were
first studied by M. K. Rao [28] as a generalization of T"-ring as well as of semiring. The concepts of T'-
semirings and its sub-TI"-semirings with a left(right) unity was studied by J. Luh [26] and M. K. Rao in
[28]. The ideals, prime ideals, semiprime ideals, K -ideals and h-ideals of a I'-semiring, regular I'-
semiring, respectively, were extensively studied by S. Kyuno [21, 22, 24] (cf. [23]) and M. K. Rao
[28, 29].

In T-semirings, the properties of their ideals, prime ideals, semiprime ideals and their
generalizations play an important role in their structure theory, however the properties of an ideal in
semirings and I"-semirings are somewhat differerent from the properties of the usual ring ideals. In
order to amend these differs, the concepts of k-ideals and h-ideals in a semiring were introduced and
considered by D. R. LaTorre [25] in 1965. For the properties of some h-ideals in I'-semirings, the
reader is referred to the recent papers of T. K. Dutta and S. K. Sardar, K. P. Shum in [7,8,9, 10, 31].
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The notion of I'-semiring not only generalizes the notions of semiring and I" -ring but also the
notion of ternary semiring. We point out here that this notion provides an algebraic background to the
non-positive cones of the totally ordered rings. We recall here that the non-negative cones of the
totally ordered rings form semirings but the non-positive cones do not form semirings because the
induced multiplication is no longer closed. For further study of semirings, I'-semirings and their
generalization and examples, the reader is referred to [7, 8, 9, 10, 16, 28, 29, 31].

In this paper, we introduce some special classes of ideals in T'-semirings called prime k-ideal,
prime full k-ideal, prime ideals, maximal and strongly irreducible ideals. Considering and
investigating properties of the collection A, T , M , B and S of all proper prime k-ideals, proper
prime full k-ideals, maximal ideals, prime ideals and strongly irreducible ideals, respectively, of a I'-
semiring R, we construct the respective topologies on them by means of closure operator defined in
terms of intersection and inclusion relation among these ideals of I'-semiring R . The respective
obtained topological spaces are called the structure spaces of the I'-semiring R . In fact we define this
topology on A and topology on T will be the subspace topology from A since T is a subset of
A . This topological space has been studied in different algebraic structures [1, 3, 4, 5, 6, 11, 18, 19,
20,32]. Recently, in [17] we have studied the topological structure on semihypergroups. We study
several principal topological axioms and properties in those structure spaces of I'-semiring such as
separation axioms, compactness and connectedness etc.

Recall first the basic terms and definitions from the I'-semiring theory.

Let R and I' be two additive commutative semigroups. Then R is called a I'-semiring if there
exists a mapping RxI'xR — R (the image to be denoted by aab, for a,beR and aecl)
satisfying the following conditions:

1. aa(b+c)=aab+aac;

2. (a+b)ac =aac+bac;
3. a(a+ p)c=aac+apc;
4. aa(bpc) = (aab)pc forall a,b,ceR and a, BT
Obviously, every semiring R is a I'-semiring with I' = R where aab denotes the product of
elements a; ;b € R, but not conversely.
If R contains an element O such that 0+ X =X=X+0 and Oax = xa¢0=0 forall xeR,
forall o €T", then O is called the zero element (absorbing zero) or simply the zero of the I'-semiring
R . A non-empty subset T of R is said to be a sub-I'-semiring of R if (T ,+) is a subsemigroup of
(R,+) and aab eT ; forall a;beT and forall @ €T". A non-empty subset | of a I'-semiring R
iscalledanidealof R if | +1 < I,ITRc |,RI'l < |, where for subsets U;V of R and ® of T,

n
UeV = UV :u,eU,v, eV,y €O and n is a positive integer}.
i=1
An ideal | of a I'-semiring R is called a k-ideal if for x;yeR;x+yel and yel
implies that X € | . For a -semiring R, let E"(R) ={xe R|x=x+x}. A k-ideal | of R is said
to be full if E"(R) < |. A proper ideal P of a I'-semiring R is called a prime ideal of R if

al'lb < P implies ae P or be P forall a,b of R. Anideal | of a-semiring R is called proper

iff 1 < R holds, where < denotes proper inclusion, and a proper ideal | is called maximal iff there
is no ideal A of R satisfying | c Ac R. An element e of a I'-semiring R is called identity
elementof R if eaXx=x=Xae, forall xeR;ax el .

Throughout this paper, R will always denote a I'-semiring with zero and unless otherwise
stated a I"-semiring means a I"-semiring with zero.
On topological space of prime k -hyperideals of I'-semiring

Let we denote with A the collection of all prime K -ideals and T the collection of all prime
full k -ideals of a I'-semiring R . For any subset A of A , we define
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A={leA: I, c1}.

IieA

It can be easily seen that D=0 .
Theorem 2.1 Let A, B be any two subsets of A . Then

1. Agx.
2. A=A,
3. AgB:Z\gg.
4, AUB=AUB.

Proof. (1). It is clear that ﬁl_eAIi c |, foreach i and hence AcA.

(2). By (1), we have Kgi Conversely, let | ei. Then ﬂu.exli c ;. Now I eA

implies that ﬂlteAIt c |, forallieA.Thus
NleNlicl,
IteA IieA
So I e A and hence igﬂ. Consequently, f\ = A.
(3). Let us suppose that Ac B. Let I, e A. Then ﬂ I. < I,. Since Ac B, it follows

J
i eA

that

ALic <t

I EA I EA
This implies that I, e B and hence Kgg.

(4). Itis clear that AUBc AUB.
Conversely, let I, e AUB . Then ﬂl A BIj c |;. It can be easily seen that
je )

() =[] N

IjeAUB I eA I EB

Since ﬂljeAIj and ﬂljeBIj are ideals of R, we have

AL A lsl A1 O el

I eA I eB I eA I EB IjeAuB

We have |, is a prime ideal of R and hence either ﬂl Jdiclor ﬂl |y <1 e either
J-e J-e

l, €A or I, eBie. Il e AUB. Consequently, AUB < AUB and hence AUB=AUB.
Definition 2.2 The closure operator A=A gives a topology 7, on A . This topology 7, is called
the hull-kernel topology and the topological space (A,z, ) is called the structure space of the I'-
semiring R.
Let | bea k -ideal of a I'-semiring R . We define
A ={l"eA:lcl}Fand CA(I)=A\A(l)={l"€eA :IU"}.

Proposition 2.3 Let R be a I'-semiring and | a k -ideal of R. Then any closed set in A is of the
form A(l).
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Proof. Let A be any closed set in A , where Ac A . Let A={l,:ieA} and | = ﬂ I

i
IieA

Then | isa k -ideal of R. Let '€ A. Then ﬂl»eAIi c |". This implies that | < I". Consequently,

I"'c A(1). S0 Ac A(l).
Conversely, let 1"'e A(l). Then 1 <1’ i.e. ﬂ I, < I'. Consquently, I’e A and hence

IieA !

A(l)c A. Thus A= A(l).
Corollary 2.4 Let R be a I'-semiring and | a k -ideal of R. Then any open setin A is of the form
CA(l).

Let R be aTI'-semiringand a € R . We define

A(a)={l eA:ael}and CA(a)=A\A(@)={l €A :agl}.

Proposition 2.5 Let R be a I'-semiring and a € R. Then {CA(a):a € R} forms an open base for
the hull-kernel topology 7, on A .

Proof. Let U ez, . Then U = CA(l), where | is a k-ideal of R. Let J eU =CA(l).
Then 1UJ . This implies that there exists a | such that ag¢ J. Thus J € CA(a). It remains to
show that CA(a) cU . Let K eCA(a). Then ag¢ K. This implies that 1UK . Consequently,
K eU and hence CA(a) cU . So we find that J € CA(a) cU . Thus {CA(a):a e R} is an open
base for the hull-kernel topology 7, on A .
Theorem 2.6 Let R be a I'-semiring. The structure space (A,7,) isa T,-space.

Proof. Let |, and |, be two distinct elements of A . Then there is an element a either in
[,\1, orin I,\I,. Let us suppose that a1, \1,. Then CA(a) is a neighbourhood of I, not
containing I,. Hence (A,7,) isa T,-space.
Theorem 2.7 Let R be a I'-semiring. (A,z,) is a T,-space if and only if no element of A is
contained in any other element of A .

Proof. Let (A,z,) be a T, -space. Let us suppose that |, and |, be any two distinct
elements of A . Then each of |, and |, has a neighbourhood not containing the other. Since I, and

|, are arbitrary elements of A , it follows that no element of A is contained in any other element of
A.

Conversely, let us suppose that no element of A is contained in any other element of A . Let
I, and I, be any two distinct elements of A . Then by hypothesis, |, ¢ 1, and I, & I,. This
implies that there exist a,b e R such that ael,, but a¢l, and bel,, but b ¢ I,. Consequently,
we have |, € CA(b), but |,  CA(a) and I, € CA(a), but I, ¢ CA(b) i.e.eachof I, and I, hasa
neighbourhood not containing the other. Hence (A,z, ) isa T, -space.
Corollary 2.8 Let M be the set of all proper maximal Kk -ideals of a I'-semiring R with identity.
Then (M ,z,,) isa T, -space, where z,, is the induced topology on M from (A,z,).
Theorem 2.9 Let R be a I'-semiring. (A,z, ) is a Hausdorff space if and only if for any two distinct
pair of elements 1,J of A , there exist a,b e R suchthat a¢l,bg J and there does not exist any

element K of A suchthat ag K and bg K .
Proof. Let (A,z,) be a Hausdorff space. Then for any two distinct elements 1,J of A,

there exist basic open sets CA(a) and CA(b) such that | eCA(a), JeCA(b) and
CA(@)NCA(b) =. Now | e CA(a) and J € CA(b) imply that a¢ | and b ¢ J. If possible, let
KeA such that agK and bg K. Then K eCA(a) and hence K e CA(a)NCA(b). It is
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impossible, since CA(a) WCA(b) = Q. Thus there does not exist any element K € A such that

agKandbegK.
Conversely, let us suppose that the given condition holds and 1,J € A such that | #J . Let

a,beR besuchthat agl,bg J and there does not existany K € A suchthat ag K and bg K.
Then 1 e CA(a),J e CA(b) and CA(a) "CA(b) =<. This implies that (A,z,) is a Hausdorff
space.
Corollary 2.10 Let R be a I'-semiring. If (A,z,) is a Hausdorff space, then no proper prime Kk -
ideal contains any other proper prime K -ideal. If (A,z,) contains more than one element, then
there exist a,b e R such that A = CA(a) UCA(b) UA(l), where | is the k -ideal generated by
a,b.

Proof. Let us suppose that ((A,z,) is a Hausdorff space. Since every Hausdorff space is a
T, -space, (A,z,) is a T, -space. Hence by Theorem 2.7, it follows that no proper prime K -ideal

contains any other proper prime K -ideal. Now let J, K € A be such that J = K. Since (A,z,) isa
Hausdorff space, there exist basic open sets CA(a) and CA(b) such that J € CA(a), K € CA(b)
and CA(a) "CA(b) = . Let | be the Kk -ideal generated by a,b. Then | is the smallest k -ideal
containing @ and b. Let K e A . Theneither ac K,bgK or ag K,beK or a,be K. The case
ag K,bg K is not possible, since CA(a) "CA(b) =<. Now in the first case, K e CA(a) and
hence A cCA(a)UCA(b)UA(l). In the second case, KeCA(a) and hence
A c CA(a) UCA(b) UA(I). In the third case, K € A(l) and hence A < CA(a) uCA(b) UA(I).
So we find that A < CA(a) UCA(b) UA(l). Again, clearly CA(a) wCA(b) UA(l) < A . Hence
A =CA(a)UCA(b) UA(I).
Theorem 2.11 Let R be a I'-semiring. (A, 7, ) is a regular space if and only if for any | € A and
agl,aeR, thereexistsa k-ideal J of R and be R suchthat | e CA(b) c A(J) = CA(a).
Proof. Let (A,z,) be a regular space. Let | €A and ag¢l. Then | eCA(a) and

A \CA(a) is a closed set not containing | . Since (A,z,) is a regular space, there exist disjoints
open sets U and V suchthat | eU and A \CA(a) <V . This implies that A \V < CA(a) . Since
V is open, A \V is closed and hence there exists a k -ideal J of R such that A \V =A(J), by
Proposition 2.3. So we find that A(J) < CA(a). Again, since U NV =, we have V c A \U .
Since U is open, A\U s closed and hence there exists a k-ideal K of R such that
A\U =A(K) ie. V c A(K).Since | eU, 1 ¢ A\U = A(K). This implies that KUI . Thus there
exists be K(cR) such that bgl. So | eCA(b). Now we show that V < A(b). Let
M eV cA(K). Then K< M. Since beK, it follows that be M and hence M e A(b).
Consequently, V < A(b) . This implies that A\A(b) c A \V =A(J) = CA(b) c A(J). Thus we
find that | € CA(b) c A(J) = CA(a).

Conversely, let us suppose that the given condition holds. Let | e A and A(K) be any
closed set not containing | . Since | ¢ A(K), we have K ¢ | . This implies that there exists a € K
such that a ¢ | . Now by the given condition, there exists a k -ideal J of R and bR such that
| eCA(b)cA(J)cCA(a). Since aeK,CA(@QNAK)=Z. This implies that
A(K)c A\CA(@)c A\A(J). Since A(J) isaclosed set, A \A(J) is an open set containing the
closed set A(K). Clearly, CA(b) (A \A(J)) = . So we find that CA(b) and A \(J) are two
disjoints open sets containing | and A(K) respectively. Consequently, (A,z,) isa regular space.
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Theorem 2.12 Let R be a I'-semiring. (A, 7z, ) is a compact space if and only if for any collection
{a,},.» © R, there exists a finite subcollection {a; :i =1,2,...,n} in R such that for any |1 €A,
there exists a; suchthat a, ¢ | .

Proof. Let (A,7,) be a compact space. Then the open cover {CA(a,):a, € R} of (A,7,)
has a finite subcover {CA(a,):1=1,2,...,.,n}. Let | € A . Then | € CA(a,) for some a, € R. This
implies that &, ¢ | . Hence {a, :1=1,2,...,n} is the required finite subcollection of elements of R
such that for any | € A, there exists a; such that a; ¢ I .

Conversely, let us suppose that the given condition holds. Let {CA(a,):a, € R} be an open
cover of A . Suppose to the contrary that no finite subcollection of {CA(a,):a, € R} covers A .
This means that for any finite set {a,,a,,...,a,} of elements of R,

CA(a,)) WCA(a,)u...uCA(a,) =#A =
=A(@)NA@,)N..NA(a,) D=

—there exists | € A such that 1 e A(a;) "A(a,) N...nA(a,) =
= a,,a,,...,a, € I,which contradicts our hypothesis.

So the open cover {CA(a;) : &, € R} has a finite subcover and hence (A,7, ) is compact.
Corollary 2.13 If the I'-semiring R is finitely generated, then (A, 7, ) is a compact space.

Proof. Let {a, :1 =1,2,...,n} be a finite set of generators of R. Then for any | € A, there
exists @, such that a ¢ I, since | is a proper prime k-ideal of R. Hence by Theorem 2.12,
(A,7,) isacompact space.

Proposition 2.14 Let R be a I'-semiring. (T ,z, ) is compact space if E*(R) ={0}.

Proof. Let {A(l,)|i€ A} be any collection of closed sets in T with finite intersection
property. Let | be the proper prime K -ideal which is also full k -ideal generated by E*(R). Since
any prime, full k-ideal J of R contains E*(R), then J contains | . Hence IeﬂA(Ii);t@.

ieA
Consequently, (T ,z;) is compact.
Definition 2.15 A I'-semiring R is called a k -Noetherian I'-semiring if it satisfies the ascending
chain condition on k -ideals of R i.e.if I, =1, ... |, <... isan ascending chain of k -ideals of
R, then there exists a positive integer m such that |, =1  foralln>m.
Theorem 2.16 If R isa k -Noetherian I'-semiring, then (A, 7, ) is countably compact.

Proof. Let {A(l,},-, be a countable collection of closed sets in A with finite intersection
property (FIP). Let us consider the following ascending chain of prime k-ideals of R:
<l >c<ljul,>c<lLul,ul;>c....

Since R is a k-Noetherian I'-semiring, there exists a positive integer m such that

<hul,u..l >=<lul,u..l_,>=.. Thus it follows that <l,Ul,U..l >e ﬂ:;lA(ln).

m+1
Consequently, ﬂ:zlA(ln) # (J and hence (A, 7, ) is countably compact.

Corollary 2.17 If R is a k -Noetherian I'-semiring and (A,z, ) is second countable, then (A,z,)

is compact.
Proof. The proof follows by Theorem 2.16 and the fact that a second countable space is
compact if it is countably compact.
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Remark 2.18 Let {I,} be a collection of prime k -ideals of a I'-semiring R . Then ﬂli isa k-ideal

of R but it may not be a prime k -ideal of R, in general.
For this we have the following proposition:

Proposition 2.19 Let R be a I'-semiring and {1.} be a collection of prime k -ideals of R such that
{I.} forms a chain. Then ﬂli is a prime Kk -ideal of R.

Proof. It is clear that ﬂli isa k -ideal of R. Let AI'B) gﬂli for any two k -ideals A, B
of R. If possible, let A, BL'JﬂIi . Then there exist i, j such that AUI., BUIJ.. Since 1, is a chain,
let I, < I;. This implies that BUI, . Since AI'B < |; and I, is prime, we must have either Ac I or
B c I,. It is impossible. Therefore, either Ac mli or Bc ﬂli . Consequently, ﬂli is a prime K -

ideal of R.
Theorem 2.20 Let R be a I'-semiring. (A,z,) is disconnected if and if there exist a k -ideal | of

R and a collection of points {a},_, of R not belonging to | such that if 1'e A and
g, el \VieA, then I\I'#D.

Proof. Let (A,7,) be not connected. Then there exists a non-trivial open and closed subset
of A . Let | bethe k-ideal of R for which A(l) is closed as well as open. Then A(l) = UCA(ai)

ieA
where {a,},_, is a collection of points of R. Now since CA(a)cA(l),VieA for any
I, €CA(a;) we have Icl,, therefore a, ¢l as a¢l,VieA. For any I'eA and
a, el’,VieA wehave I"¢A(l), consequently 1UI",ie. I\1'#Q.

Conversely, let us suppose the the given condition holds. Then A(l) = UCA(ai) is an open
ieA

and closed non-trivial subset of A and hence (A, 7, ) is disconnected.
Definition 2.21 Let R be a I'-semiring. The structure space (A,z,) of R is called irreducible if
for any decomposition A = A, UA,, where A, A, are closed subsets of A, we have either
A=A or A=A,.
Theorem 2.22 Let R be a I'-semiring and A be a closed subset of A . Then A is irreducible if and
only if ﬂ I, isaprime k -ideal of R.

Proof Let A be irreducible. Let P,Q be two K -ideals of R such that PFQcﬂ

L A'
Then PI'Q c I; forall i. Since I, is prime, we have P — I; or Q < I; which implies for I, € A,
I, E{E} or I 6{6}. Hence A=(ANP)U(ANQ). Since A is irreducible and
(ANP),(ANQ), are closed, it follows that A= AnP or A= AnQ and hence AcP or
Ac Q. This implies that P gﬂlieAli or nguieAli' Consequently, ﬂlieAIi is a prime K -ideal

of R.

Conversely, let us suppose that ﬂ is a prime k-ideal of R. Let A=A UA,, where

A, A, are closed subsets of A. Then ﬂ e, il ﬂl e ﬂ . We have

(ko)
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Also

e okl

Thus we have
el o)

Since ﬂ| I, s prime, it follows that
i€

Alicor L

Iieﬁl IieA IieA2 IieA

AL=ho (="

IieA IieAl IieA IieA2

Nliclor (licl,.

IieAl IiEAZ
Since A,A,cA,so l; 1, forall I;eA or I, <1, forall I; € A,. Thus IﬂeE:A1

or I, GE: A, since A or A, areclosed,ie. A=A or A,.
Theorem 2.23 Let R be a I'-semiring. (A,z,) is disconnected if and if there exist a k -ideal | of

So we find that

Let Iﬂ e A. We have

R and a collection of points {a}._, of R not belonging to | such that if 1'e A and
a el VieA, then I\I'#D.

Proof. Let (A,7,) be not connected. Then there exists a non-trivial open and closed subset of
A . Let | be the k-ideal of R for which A(l) is closed as well as open. Then A(l) = UCA(ai)

where {a},_, is a collection of points of R. Now since CA(a;)<c A(l),Vie AIEAfor any
I, €CA(a;) we have |c,, therefore a, ¢l as a ¢l,,VieA. For any |I'eA and
a el’,VieA wehave "¢ A(l), consequently IUI",ie. I\l'#@.

Conversely, let us suppose the the given condition holds. Then A(l) = UCA(ai) is an open
and closed non-trivial subset of A and hence (A,z,) is disconnected. -
Proposition 2.24 Let R be aI'-semiring. (T ,z,) is connected space if E*(R) = {0}.

Proof. Let | be the proper prime k -ideal generated by E*(R) . Since any full K -ideal of R
contains E*(R), then | belongs to any closed set A(l") of A . Consequently, any two closed sets

of A are not disjoint. Hence (T ,7;) is connected

On topological space of maximal ideals of I'-semiring

In this section, the structure space of all maximal ideals of a I'-semiring R with identity e is
considered and studied.

An ideal is maximal if there is no ideal containing properly it. Let M be the set of all
maximal ideals in a I'-semiring R. We shall define two topologies on M . For every xR, we
denote by A, the set of all maximal ideals containing X, by Q, the set M —A_, i.e. the set of all

maximal ideals not containing X. Let | be an ideal of R, we denote by A, the set of all maximal
ideals containing | .
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We choose the family {A, | x € R} as a subbase for open sets of M . We shall refer to the
resulting topology on M as A-topology (in symbol, M ). Similarly, we shall take the family
{Q, | x e R} as a subbase for open sets of M (in symbol, M ).

Let M, M, be two distinct elements of M , . Then we have M, + M, = R. Therefore there
are a,b suchthat e=a+b and aeM,,beM,,sowehave A, >5M,;,A, >M, and A, "A, =
. Hence we have
Theorem 3.1 The topological space M , isa T, -space.

Letnow M be anelementof M .,and M =M, € M ,, then there is an element a such that
aeM, and ag M . Therefore M, ¢Q, and M, ¢ [)Q,. This implies M = ()€, . Hence we

xgM xgM
obtain the following

Theorem 3.2 The topological space M , isa T, -space.
Let | beanideal of R and {a,} a generator of |, then we have

A=A, -
A

Therefore, the closed sets for the topological space M , have the form All uA,2 U...UA,
n

where |, are ideals of R. Let | :ﬂli, if M eA,i for some i, then M oI, and M o | . This

i=1

implies A, > M and we have UA,_ c A, . Let us suppose that there is a maximal ideal M such that
=

M e Al _.UlA'i’ then M €A, and M gsgA,i. Hence M o1 and M does not contain every
I.(1=1,2,...,n) . Therefore, since M is a maximal ideal, there are elements a, €l, and m, e M
such that
e=a +m(i=12,..,n).
Thus, we have
e=a, +a,+..+a,+mmeM

and a, +a, +....+a, €1 . This implies 1 + M =R. Hence, by | cM , we have M =R,

which is a contradiction. This shows the following relation:

n

Uy =

i=1
and we have the following:
Theorem 3.3 The closed sets for M , are expressed by sets A,, where | isan ideal of R.
By Theorem 3.3, we prove the following
Theorem 3.4 The space M , is a compact T, -space.

Proof. Let {A,A} be a family of closed sets in M , with the finite intersection property, where

|, are ideals in R. Therefore, any finite family of |, does not contain the I"-semiring R . Hence the
ideal 1 generated by {I,} does not contain the identity @ of R. This shows that | is contained in a

maximal ideal M . Hence M EﬂA'z' Therefore, since ﬂA,l is non-empty, M , is a compact
A A

space.
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On topological space of prime ideals of I'-semiring

In this section, the structure space B of all prime ideals of a I'-semiring R with identity e is
considered and the relation of B and the structure space M of all maximal ideals of R is
investigated. Throughout the section, we shall treat a commutative I'-semiring R with identity €. An
ideal P of R is prime if and only if al’b = P implies a€ P or be P. Since R has an identity e,
any maximal ideal is prime, therefore B o M .

To introduce a topology 7 on B, we shall take 7, ={P |x ¢ P,P € B} forevery Xe R asan
open base of B . We have the following
Theorem 4.1 Let U be a subset of B, then
U={P'eB|[|PcP?,
PeU
where U is the closure of U by the topology 7 .
Proof. Let P'e{P'€B| ﬂP c P’} and let 7, be a neighbourhood of P’, then X & P’, and

PeU
we have X ¢ ﬂP. Therefore, there is a prime ideal P € U such that P does not contain X and
PeU

7, 3 P . This shows that P e U . Thus we have proved that the U contains {P'eB| ﬂP c P}.

PeU
If a prime ideal P’ is not in {P'eB|(|P<P7}, then [|P-P'#@. Hence, for
PeU PeU
xe[)P-P', we have xeP,PeU and xg¢P’'. This shows Pg¢r,,PeU and P'er,.
PeU

Therefore 7, MU = and hence P’ ¢ U. The proof is complete.
A similar argument for M relative to Q -topology implies the following
Proposition 4.2 Let U be a subset of M , then
U={M'eM | M cM1,
MeU

where U is the closure of U by the topology Q2.
In a similar way to the proof of the Theorem 2.1, we can prove the following

Theorem 4.3 The closure operation U — U of B satisfies the following relations:
1. Uc u.
2. U=U.
3. UUB=UUB.
Proof. We shall prove only the last relation (3). By Theorem 4.1, U < B implies UcB and
hence UUB c UUB. Let PeUuE, then P¢ U and P ¢B . Hence P» ﬂP’: P, and

P'eU
P» ﬂP' =PR,. The sets B, and By are ideals. If P,I'P, — P, for any elements a,b such that

P'eB

aeP,—P,beP, —P,wehave al'lb c P and since P isa prime ideal, ac P or be P, which is
a contradiction. Therefore, P » P,I'P, o P, "P; =P, 5. Hence P ¢ UUB.
Theorem 4.4 The topological space B is a T,-space.

Proof. It is sufficient to prove that (P,) = (P,) implies P, =P,. By P, e(P), then P, 5 P,.
Similarly P, o P, and we have P, = P,.
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Theorem 4.5 The topological space B is a compact T, -space.
Proof. Let U, be a family of closed sets such that ﬂUl =, then we have ZPU/1 =R,
A

where PU;, = ﬂ P. Let us suppose that Z:PUi # R. Then there is a maximal ideal M containing
PeUl

ZPU/I. Therefore Z“PU/1 cM for every A. Hence U,>M for every A, and we have
ﬂUl 5> M, which is a contradiction. By ZPUi =R, we have there exit y,,7,,...,7, €', such that
A

=R.If (YU, =D, then for a prime

! i=1

€= a,,8,,--7,8, 8 € Py (i=12,..n). Hence > R,
! i=1

n n
ideal P of ﬂUL, we have P o PUi (1=1,2,...,n) and hence P DZPUA . Therefore we have
i i =

i=1 i

n
(U, =9.
i=1
By the B -radical r(B) of the I"-semiring R, we mean the intersection of all prime ideals of

R, thatis, ﬂP. By the M -radical r(M ) of R, we mean the intersection of all maximal ideals of
PeB

R, that is, ﬂ M .
MeM
From M < B, we have r(B) cr(M ). In the following proposition we give a condition to
be r(B)=r(M).
Theorem 4.6 The subset M of B isdensein B, if and only if, r(B) =r(M ).

Proof. Let M =B for the topology 7. Then we have

{P| (\McP}=B.
MeM
Hence

rM)= (M c[)P=r(B).

MeM PeB

Since r(B) < r(M ), therefore we have r(B) =r(M ).
Conversely, if PeB —M ,then PeB and P eM . Therefore, there is a neighbourhood 7,
of P such that 7, M =O. Hence r(B)= ﬂP is a proper subset of ﬂ M . Therefore

PeB MeM

r(B) = r(M ), which completes the proof.
Definition 4.7 If r(M ) is the zero ideal (0), then A is said to be M —semisimple.

From the Theorem 4.6, we have the following
Theorem 4.8 If R is M -semisimple, M is dense in B.
On topological space of strongly irreducible ideals of I"-semiring

In this section, the structure space S of all strongly irreducible ideals of a commutative I'-
semiring R with identity e is investigated.

An ideal | of a I'-semiring R is called irreducible, if and only if AnB =1 for two ideals
A,B implies A=1 or B=1.Anideal | of a I'-semiring R is called strongly irreducible, if and

only if AnBc | forany two ideals A, B implies Acl or Bc|.From AITBc AnB for any

two ideals A, B, it follows that any prime ideals are strongly irreducible and any strongly irreducible
ideals are irreducible.
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Let S be the set of all strongly irreducible ideals of R. From the above, it is clear that
M B cS.Togiveatopology o on S, we shall take o, ={S € S| x & S} forevery xeR as
an open base of S.
Theorem 5.1 Let U be a subset of S, then we have

U={s'esS|[)ScS?
Seu
where U is the closure of U by o.
Proof. Let F ={S'e S| ﬂS cS}andlet S'eF . Let o, be an open base of S', then, by

SeU

the definition of the topology o, x ¢ S’. Hence, we have X ¢ ﬂS . It follows from this that there is
SeU

a strongly irreducible ideal S of U such that X is not contained in S. Hence o, > S. Therefore
S'eUand F c U.

To prove that F > U, take a strongly irreducible ideal S’ such that S'¢F . Then
[1S-S'#9. For an element xe[]S—S', we have xe S(SeU) and xeS'. Hence S'eo,

SeU SeU
and S ¢ o, forall S of U. Therefore Uno, =& and then we have S'¢U.Hence F > U. The

proof of the theorem is complete.
We shall prove that the topological space S for the topology o is a compact T,-space. To

prove that S is a T, -space, it is sufficient to verify the following conditions:
1. Uc uU.

2. U=U.
3. UUB=UUB
4. S_1 = 8_2 implies S, =§,.

The conditions (1) and (2) are clear, and U\UF implies U c F . From this relation, we have

UUF c UUF . For some element of S of UUF , suppose that S ¢U and S¢F . From
Theorem 5.1, we have

S»[)S'=S,and S»[)S'=5;.

S'eU S'eF

Sy and S; areideals. If S; NS < S, by the definitionof S, S, =S or S = S. Hence
S»S,NSg =S, ¢ . Thisshowa S ¢ UUF .

To prove that S_1 = 8_2 implies S, =S, , we shall use the condition (1). Then S_1 > S, and by
the definition of closure operation, we have S, —S,. Similarly we have S, >S, and S, =§,.
Therefore we complete the proof that S is a T, -space.

We shall prove that S is a compact space. Let U, be a family of closed sets with empty

intersection. Let SUt = ﬂ S, suppose that ZSUt # S, then there is a maximal ideal M containing
SeUt t

the ideal ZSUt. Therefore we have S, — M for every t. By the definition of S, ,U; 5 M for
t
every t. Hence ﬂUt 5> M, which contradicts our hypothesis of U, . Therefore ZSUt = R. Hence
t t

we have there exist y,,7,,...,7, €[, such that € =a,,a,7,...7,a,(a € SUt (1=1,2,..,n)). Hence
i
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we have R:ZSUI. If ﬂUt_ # (0, for every strongly irerducible ideal S of ﬂUt_,
=1 = '

i=1

So SUt- (i=1,2,..,n) and S o ZSUt Cf ﬂUt_ =R, we can prove easily that S is a compact

i=1 ! i=1

n n
space. If ﬂUt_ contains a proper strongly irreducible ideal S, we have S DZSUt , which is a
iz =1

n n
contradiction to R = ZSUt . Therefore ﬂU u, =0 Hence S is a compact space. Thus we have
i=L iz

proved the following
Theorem 5.2 The topological space (S, o) is compact T, -space.

By the S—radical r(S) of a I'-semiring, we mean the intersection of all strongly
irreducible ideals of it, i.e., ﬂS fromM cBcS,wehave r(M)>r(B)or(S).

SeS

Theorem 5.3 The subset B of S isdensein S, if and only if r(B) =r(S).
Proof. Let B = S for the topology o, then we have

{SI[\P=S}=S.
PeB
Hence, we have

rB)=(P<=(1S=r(S).

PeB SeS

On the other hand, r(B) o r(S). This shows r(S) =r(B).

Conversely, suppose that S —B=# &, then there is a strongly irreducible ideal S such that
S¢B and SeS. Therefore there is a neighbourhood &, of S which does not meet B . Hence

r(S) =[S isaproper subset of (|P, and we have r(S)=r(B).

SeS PeB

Corollary 5.4 The subset M of S isdensein S, ifandonlyif r(M ) =r(S).

Corollary 5.5 Let R be a I'-semiring with 0. If R is M -semisimple, then M and B are dense in
S.
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