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Abstract: 

A general fixed point theorem for commuting mappings on quasimetric spaces is proved. Let 
 be a complete quasimetric space with a constant  and let  be commuting mappings 

form X into itself. If f is continuous and satisfies the following condition:  

 .  

and further, there exist  such that for all ,  

  max   
then f and g have a unique common fixed point in X. 
This result generalizes and extends the main theorem from [1] and [2]. Some new results concerning 
fixed points for commuting mappings on quasimetric spaces are obtained too which extend the results 
obtained in [3].  
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Introduction and preliminaries 
           In [1], Jungck proved the following fixed point theorem: 
Theorem 1.1 Let  be a complete metric space. Let  and  be commuting continuous self-
mappings on  such that  

 .  
            Further, let there exist a constant  such that for all :  

 .  
           Then  and  have a unique common fixed point in .   
           In [2], iri  proved the following fixed point theorem:   
Theorem  1.2( iri ) Let  be a complete metric space. Let  be a self-mapping on  
such that for some constant  and for every   

  max .  
            Then  possesses a unique fixed point in .   
            In [3] some results concerning fixed points on a metric space are obtained, which generalize 
and unify fixed point theorems in [1] and [2]. 
            In this paper we obtain some new results concerning fixed points for mappings on quasimetric 
spaces. We generalize and extend the results of the Theorem 1.1 and 1.2 for commuting mappings on 
quasimetric spaces. We also extend the results established in [3] for commuting mappings on 
quasimetric spaces. 
          First, we give a standard definition and notation which will be used in the sequel. 
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Definition 1.3 [4] Let  be an arbitrary set and  the set of nonnegative real numbers. A function 
 is called a quasidistance on  if and only if there exists a constant , such 

that for all  and  the following conditions hold:   
     (1)  and   
     (2)   
     (3) .  

          Inequality (3) is often called quasitriangular inequality and  is often called the 
quasitriangular constant of . Of course,  is called a metric when . 
           A pair  is called quasimetric space if  is a set and  is a quasidistance on . It is 
clear that for  we obtain the metric space. 
         The following example illustrate the existence of the quasidistance. 
Example 1.4 Let  and . The function  
such that 

 

          is a quasidistance with . 
          Let we verify the satisfying of the tree conditions of the definiton 1.3. 

   

 

   since  and . 
   

. 

Main results 
           Let  be a complete quasimetric space with a constant  and let  be 
commuting mappings from  into itself. Let  be continuous and satisfies the following condition:  

   

           and further, there exist  such that for all ,  

  max .  
 

          Let  be an arbitrary point in  and define the sequence  in  as follows: By the 
condition  it follows that there exists  such that . In the same way 
we define succesively . Let  such that  

 .  
        We denote  

 .  
          We denote by  the diameter of the set . 
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          We shall prove the following lemma which is necessary to prove our main theorem. 
  

Lemma 2.1 If , then   
     (1)  with .  

     (2) .  

     (3) .  

           Proof. For  and  such that , we have  

 

           Thus  
   

          By using the notion of the superior of a finite number distances we have  
   

for some pair  such that . 
          If , by (3) we have  

   
with  and . Then  

   

a contradiction, since . 

          Thus we have  and this completes the proof of (a). Further, during the proof of lemma is 
proved that  

 .  
          Thus, (b) holds too. Now, let we prove (c). 
          By (a) and using quasitriangular inequality on quasimetric spaces we have  

 

with . 
          Using (b) we have  

   
which implies that  

   

since . 
           Using again (b) we have  

   
           For  and , by (4) we have  

 .  
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 .  

            This completes the proof of Lemma. 
            Now we give and prove our theorem as follows   
Theorem 2.2 Let  be a complete quasimetric space with a constant , quasidistance  
continuous and let  be commuting mappings form  into itself. If  is continuous and satisfies 
the following condition:  

 .  

           and further, there exist  such that for all ,  max

. Then  and  have a unique common 
fixed point in .   
           Proof. It is enough to find a point  such that  

 .  
           Applying (2) for  we have  

 

           By the inequality , since  it follows  

 .  
           This shows that . Thus,  is a fixed point of . On the other hand, since  and 

 commute we have  
   

which implies that  is also a fixed point of . 
Case 1. Let  for some  and . Then we have  or  

 .  
             It is clear that  is a common fixed point of  and . 
Case 2. Let . 
             For  we consider the distance  

   

and . Thus,  is a Cauchy sequence with a limit  in , since  is a 

complete quasimetric space. 
             Since  is continuous it follows that  

   

and using the equality  we have  

 .  

             On the other hand we have  

 

             Letting  tend to infinity, we get  
   

which holds only for , since . By (2) it follows that  is a unique common fixed point 
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of  and . 
Corollary 2.3 The Theorem 1.2 ( iri ) is a corollary of the Theorem 2.2. If , where  is 
the identity mapping in , then the condition (2) just as in Lemma 2.1 can be written in the following 
form:  

  max   
             If we replace  by  we obtain the condition of the Theorem 1.2( iri ) 
Corollary 2.4 The Theorem 1.1 is a corollary of the Theorem 2.2.   
             It is obvious that whenever the condition  is satisfied, the condition 
(2) is satisfied and so the corollary follows. 
Corollary 2.5 The Theorem 2.2 is a generalization of the Banach Theorem.   
            If we take  and  then by Corollary 2.4 the corollary follows. 
Corollary 2.6 The Theorems 1.1 and 1.2 can be proved on the quasimetric spaces with the constant 

, where . 

            In the following theorem, as the domain of  is considered . We also replace the 
continuously condition of  by the continuously of  as an weakly condition. 
Theorem 2.7 Let  be a complete quasimetric space with the constant , quasidistance  
continuous, let  be a mapping from  into itself such that  is continuous. Let  

   
be a mapping such that  

   

and for all  from the domain of  and , . Further, there exist  such that 

for all  the condition (2) is satisfied. 
            Then,  and  have a unique common fixed point in .   
Proof. Let  be an arbitrary point in . Let  be a point in  such that  

 .  
             This follows by (5). In the same way we define succesively . Let  such 
that  

 .  
            We denote:  

 .  
              For  and , one can prove, just as in Lemma 2.1, that  

 .  

              Therefore,  is a Cauchy sequence with a limit  in . 

              Since  is continuous it follows that  

   

              Further, we have  
   

which implies that  
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             Now by the condition (2) of the Theorem 2.2 we have  

 

             Letting  tend to infinity, we get  
   

which holds only in the case when . 
             Finally, by  

 

it follows that . Therefore,  is a fixed point of . 
             On the other hand, since we have  

   
then  is also a fixed point of . Therefore  and  have a common fixed point. By the 
condition (2) it follows that it is the unique common fixed point of  and . 
Theorem 2.8 Let  be a complete quasimetric space with the constant , quasidistance  
continuous. If  are commuting mappings form  into itself such that  is continuous 
satisfying the following condition  

   

 and further, there exist  such that for all   

  max ,  
then  and  have a unique common fixed point in .   
Proof.  By the condition  follows  

   
which is the condition (5) of the Theorem 2.7. Since the condition (2) is satisfied, then by Theorem 
2.2 and Theorem 2.7 it follows that  and  have a unique common fixed point. 
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