WEAK SEPARATION AXIOMS VIA $D_{\omega}, D_{\alpha-\omega}, D_{pre-\omega}, D_{b-\omega}$, AND $D_{\beta-\omega}$ -SETS

Mustafa Hasan Hadi

University of Babylon, Colledge Of Education For Ap;ied Sciences, Mathematics Department, Iraq

Abstract:

this define call paper new types of sets we them D_{ω} , $D_{\alpha-\omega}$, $D_{pre-\omega}$, $D_{pre-\omega}$, $D_{b-\omega}$, and $D_{\beta-\omega}$ —sets and use them to define some associative separation axioms. Some theorems about the relation between them and the weak separation axioms introduced by M. H. Hadi in [1] are proved, with some other simple theorems. Throughout this paper , (X,T) stands for topological space. Let (X,T) be a topological space and A a subset of X. A point x in X is called *condensation point* of A if for each U in T with x in U, the set $U \cap A$ is uncountable [10]. In 1982 the ω -closed set was first introduced by H. Z. Hdeib in [10], and he defined it as: A is ω -closed if it contains all its condensation points and the ω -open set is the complement of the ω -closed set. Equivalently. A sub set W of a space (X,T), is ω -open if and only if for each $x \in W$, there exists $U \in T$ such that $x \in U$ and $U \setminus W$ is countable. The collection of all ω -open sets of (X,T) denoted T_{ω} form topology on X and it is finer than T. Several characterizations of ω -closed sets were provided in [3, 4, 5, 6].

Key Words: Axioms, weak separation

In [7,8,9] some authors introduced α -open , pre -open , b -open , and β -open sets. On the other hand in [2] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced the notions $\alpha-\omega$ -open, pre - ω -open, $\beta-\omega$ -open, and $b-\omega$ -open sets in topological spaces. They defined them as follows: A subset A of a space X is called: $\alpha-\omega$ -open [2] if $A\subseteq int_{\omega}\left(cl(int_{\omega}(A))\right)$ and the complement of the $\alpha-\omega$ -open set is called $\alpha-\omega$ -closed set, $pre-\omega$ -open [2] if $A\subseteq int_{\omega}(cl(A))$ and the complement of the $pre-\omega$ -open set is called $pre-\omega$ -closed set, $pre-\omega$ -open [2] if $pre-\omega$ -open [2] if $pre-\omega$ -open [2] if $pre-\omega$ -open set is called $pre-\omega$

Now let recall some condition introduced by M. H. Hadiin [1]: Let (X,T) be topological space. It said to be satisfy: The ω -condition if every ω -open set is ω - t -set. 2. The ω - B_{α} -condition if every α - ω -open set is ω - B -condition if every t - t -open is t - t -set.

In Our paper we **firstly** introduce our dominion and some results related to it.

Proposition 2. In any topological space satisfies ω –condition. Any D_{ω} –set is D –set.

Proposition 3. In any topological space satisfies $\omega - B_{\alpha}$ -condition. Any $D_{\alpha-\omega}$ -set is D -set.

Proposition 4. In any topological space satisfies $\omega-B$ -condition. Any $D_{pre-\omega}$ -set is D -set.

Proposition 5. In any topological space. Any $D_{b-\omega}$ –set with empty ω –interior is $D_{pre-\omega}$ –set .

<u>Secondly</u> now utilizing the weak D_{ω} sets we can define our separation axioms and a rather simple theorem related to it as follows:

Definition 6. Let X be a topological space. If $x \neq y \in X$, either there exists a set U, such that $x \in U$, $y \notin U$, or there exists a set U such that $x \notin U$, $y \in U$. Then X called

- 1. ωD_0 space, whenever U is D_{ω} -set in X.
- 2. $\alpha \omega D_0$ space, whenever *U* is $D_{\alpha \omega}$ -set in *X*.
- 3. $pre-\omega D_0$ space, whenever *U* is $D_{pre-\omega}$ -set in *X*.
- **4.** $b \omega D_0$ space, whenever *U* is $D_{b-\omega}$ -set in *X*.
- **5**. $\beta \omega D_0$ *space*, whenever *U* is $D_{\beta \omega}$ –set in *X*.

Definition 7. We can define the spaces $\omega - D_i$, $\alpha - \omega - D_i$, $pre - \omega - D_i$, $b - \omega - D_i$, $\beta - \omega - D_i$, for i = 0,1,2. And $\omega^* - D_i$, $\alpha - \omega^* - D_i$, $\alpha - \omega^{**} - D_i$, $pre - \omega^* - D_i$, $\alpha - pre - \omega - D_i$, $pre - \omega^* - D_i$, $pre - \omega - D_i$, $pre - \omega$

Theorem 8. Let (X,T) be a topological space. Then X is $\omega-D_1$, (resp. $\alpha-\omega-D_1$, ω^*-D_1 , $\alpha-\omega^*-D_1$, $\alpha-\omega^*-D_1$, $pre-\omega-D_1$, $pre-\omega-D_2$, $pre-\omega-D_$

Thirdly we introduce the so called ω –net point and a rather theorems related to it.

Definition 9. A point $x \in X$ which has only X as ω –neighbourhood is called an ω –net point.

Proposition 10. Let (X,T) be a topological space If X is $\omega - D_1$ space, then it has no ω -net point.

Theorem 11. If $f:(X,\tau)\to (Y,\sigma)$ is ω —continuous (resp. $\alpha-\omega$ -continuous, pre $-\omega$ -continuous, $\beta-\omega$ —continuous, $b-\omega$ —continuous) onto function and A is D_{ω} —set (resp. $D_{\alpha-\omega}$ —set, $D_{pre-\omega}$ —set, $D_{b-\omega}$ —set, $D_{\beta-\omega}$ —set) in Y, then $f^{-1}(A)$ is also D_{ω} —set (resp. $D_{\alpha-\omega}$ —set, $D_{pre-\omega}$ —set, $D_{b-\omega}$ —set, $D_{\beta-\omega}$ —set) in X.

Theorem 12. For any two topological spaces (X, τ) and (Y, σ) .

- **1**. If (Y, σ) be an $\omega^* D_1$ and $f: (X, \tau) \to (Y, \sigma)$ is an ω -continuous bijection, then (X, τ) is $\omega^* D_1$.
- **2**. If (Y, σ) be an , $\alpha \omega^{**} D_1$ and $f: (X, \tau) \to (Y, \sigma)$ is an $\alpha \omega$ -continuous bijection, then (X, τ) is, $\alpha \omega^{**} D_1$.
- 3. If (Y, σ) be a, pre $-\omega^{**} D_1$ and $f:(X, \tau) \to (Y, \sigma)$ is a $pre \omega$ -continuous bijection, then (X, τ) is $pre \omega^{**} D_1$.
- **4.** If (Y, σ) be a, $b \omega^{\star\star} D_1$ and $f: (X, \tau) \to (Y, \sigma)$ is a $b \omega$ -continuous bijection, then (X, τ) is $b \omega^{\star\star} D_1$.
- **5**. If (Y, σ) be a, $\beta \omega^{**} D_1$ and $f:(X, \tau) \to (Y, \sigma)$ is a $\beta \omega$ -continuous bijection, then (X, τ) is $\beta \omega^{**} D_1$.

Theorem 13. A topological space (X,T) is $\omega^* - D_1$ (resp. $\alpha - \omega^{**} - D_1$, $pre - \omega^{**} - D_1$, $b - \omega^{**} - D_1$, $\beta - \omega^{**} - D_1$) if and only if for each pair of distinct points $x,y \in X$, there exists an ω -continuous (resp. $\alpha - \omega$ -continuous, $pre - \omega$ -continuous, $b - \omega$ -continuous, $\beta - \omega$ -continuous) onto function $f: (X,\tau) \to (Y,\sigma)$ such that f(x) and f(y) are distinct, where (Y,σ) is $\omega^* - D_1$ (resp. $\alpha - \omega^{**} - D_1$, $pre - \omega^{**} - D_1$, $b - \omega^{**} - D_1$, $\beta - \omega^{**} - D_1$) space.

References

- [1]. M. H. Hadi, "Weak forms of ω -open sets and decomposition of separation axioms", M. Sc. Thesis, Babylon University (2011).
- [2]. T. Noiri, A. Al-Omari and M. S. M. Noorani, "Weak forms of ω -open sets and decomposition of continuity", E.J.P.A.M. 2(1): 73-84 (2009).