
1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal               - Proceedings- 

49 
 

ON USING SAGE TO SOLVE CONSTRAINED OPTIMIZATION 
PROBLEMS APPLYING THE LAGRANGE MULTIPLIERS METHOD 

 
 

 
Maria do Carmo Martins,  PhD 

CMATI & Department of Mathematics, University of Azores, Portugal 
Francisco Martins, PhD 

LaSIGE & Department of Informatics, Faculty of Sciences, University of Lisbon, Portugal 
 
 

 
Abstract: 
 This paper combines Calculus and Programming to solve constrained optimization problems 
common in many areas, notably in Economics. It uses Lagrange multipliers, a well-known technique 
for maximizing (or minimizing) functions, and the free open-source mathematics software system 
Sage to compute the maximum (minimum) automatically. Moreover, Sage can be used interactively to 
work out the solution and to graphically interpret the results, which we find a valuable and practical 
approach in teaching such techniques to the undergraduate level. In this paper we carry out an 
exercise describing how these three interdisciplinary areas can work together. 

 
Key Words: Constrained optimization problems; Octave programming language; Lagrange 
multipliers method 
 
Introduction 
 Finding the extrema of a function subjected to some restriction is a well-studied problem in 
Mathematics with multiple, direct applications in Economics. For instance, it is plausible for a 
company to determine the amount of units of each product it must produce in order to maximizing its 
profits. Mathematical Analysis and Operational Research come into the rescue by providing tools for 
solving this kind of problems. Techniques like computing function derivatives or the Dantzig's 
Simplex algorithm [1] are the recurrent candidates, depending on the problem at hand (i.e., linear vs. 
non-linear problem). In this paper we stick to the methods provided by Mathematical Analysis, which 
are usually part of the undergraduate Calculus curricula. The novelty we propose is the using of 
mathematical software, in particular Sage, to interactively solve the problem and to help in visualizing 
the solution. We believe that using this approach is more appealing and enlightening for 
undergraduate students to grasp both the theoretical and the practical aspects of these methods. 

Sage [2] is a high-level, open-source programmable system targeted to symbolic computation 
(amongst other things). Unlike the programming languages Fortran, C, or Java, Sage positions itself at 
a much higher level of abstraction, providing an environment for finding the exact roots of systems of 
non-linear equations, compute matrix inverses, integrate and differentiate functions, or plotting 
solutions’ graph of a differential equation, to name a few of its features. We find that mastering such a 
tool (free of costs) can be of invaluable help, not just for the application we propose in this paper, but 
for many other subjects (e.g., Algebra, Statistics). 

We use a very simple example throughout the paper: 
A company wants to find its maximum production level that is modeled by the Cobb-
Douglas function [3] 

, 
where  represents the units of labor and  represents the units of capital. Each labor 
unit costs €150 and each capital unit costs €250. The total expenses for labor and 
capital cannot exceed €40 000.  

In this paper we recall how to solve this problem using the Lagrange multipliers [4, 5] and then 
illustrate how Sage becomes very handy in computing and illustrating how the method works. 



1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal               - Proceedings- 

50 
 

The main text of the paper is organized as follows. The first section sets the mathematical 
grounds for the problem and recalls the application of the Lagrange multipliers method; the second 
section gives a brief introduction to Sage presenting the features needed for solving the running 
problem; finally, the third section illustrates the usage of Sage to solve, to visualize, and to understand 
the solution to the problem. 
Main Text 
Optimizing using Lagrange multipliers method 
 In general, a problem of finding the local maximum (resp. minimum) of a function  
subjected to some restriction equation  can be directly solved by using two systems of 
equations, one for and , another for its first derivatives, provided that both functions have 
continuous first derivatives. Then, inspecting the second derivative of both functions we can decide 
whether the critical points correspond to a local maximum or minimum. However, this approach is 
rather cumbersome.  

The Lagrange multipliers method presents a much more elegant solution and can easily be applied 
in this situation. The Lagrange function  (the Lagrangian) assumes the general form  

,            (1) 

 where  is a new variable, denoted the Lagrange multiplier. Briefly, if  is a 
maximum of function , there exists some  such that the triple  is a stationary point of 
the Lagrangian, i.e., a point where the first partial derivatives of  are zero. The multiplier  
represents the rate of change in  with respect to . The interested reader may refer to [4, 5] 
for further details on the Lagrange multipliers method. 

 For applying the Lagrange multipliers method to our running example, we start by 
determining the Lagrangian. The constraint in this problem comes from the fact that “The total 
expenses for labor and capital cannot exceed €40 000” that can be captured by the equation 𝑔(𝑥,𝑦) 
defined as follows 

150𝑥 + 250𝑦 = 40000 
 Then combining functions 𝑓 and 𝑔 as defined in (1), we get the Lagrangian 

Λ(𝑥, 𝑦, 𝜆) = 50𝑥3/4𝑦1/4 − 𝜆(150𝑥 + 250𝑦 − 40000) 
 To solve the problem we need to compute the partial derivatives of Λ, provided below 

𝜕Λ
𝜕𝑥

= −150𝜆 +
75𝑦

1
4

2𝑥
1
4

 

𝜕Λ
𝜕𝑦

= −250𝜆 +
25𝑥

3
4

2𝑥
3
4

 

𝜕Λ
𝜕𝜆

= −150𝑥 − 250𝑦 + 40000 
 and determine the stationary point of the Lagrangian by solving the system of non-linear 
equation formed by the partial derivatives (i.e., 𝜕Λ/𝜕𝑥 = 𝜕Λ/𝜕𝑦 = 𝜕Λ/𝜕𝜆 = 0) in order to 𝑥, 𝑦, and 
𝜆. Solution to the system is when 𝑥 = 200, 𝑦 = 40, and 𝜆 = 0.167185. The economical 
interpretation of the Lagrange multiplier is that it represents the percentage of each additional Euro 
spent on capital that will turn into production. For example, if an additional €10 000 were spent on 
capital, then it would be translated into 0.167185 ×  10 000 = 1671.85 additional units of 
production. If the problem has more than one constraint, then equation (1) needs to account for the 
additional restriction function and its multiplier. For a new constraint ℎ(𝑥, 𝑦) = 𝑑 equation (1) would 
be rewritten as  

Λ(𝑥,𝑦, 𝜆, 𝜇) = 𝑓(𝑥,𝑦) + 𝜆(𝑔(𝑥,𝑦) − 𝑐) + 𝜇(ℎ(𝑥, 𝑦) − 𝑑) 
Sage in a nutshell  
 Sage convers many areas of Mathematics, namely Algebra, Calculus, Combinatorics, 
Numerical mathematics, and Number Theory. It is available on Linux, Windows, and Mac OS X 
operating systems; it is simple to install and present a clean and intuitive environment, making it ideal 



1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal               - Proceedings- 

51 
 

for interactive sessions. Its usage can range from a sophisticated calculator to an advanced computer 
algebra system. Sage is an open source alternative to, and rivals with, Magma [6], Maple [7], 
Mathematica [8], and MATLAB [9], commercial systems widely used in engineering, science, and 
economics. 
 We cover variable and function definitions in order to be able to illustrate some symbolic 
manipulations, in particular for computing partial derivatives, solving systems of equations, and 
plotting two and three dimension graphics. Symbolic variables are introduced using the var function. 
For instance, xVar = var (‘x’), introduces a symbolic name x and binds it to variable xVar, possibly 
creating xVar. Then, whenever xVar is used, it refers to the symbolic name x. We usual bind the 
symbolic name to a variable with the same name. The assignment, yVar = xVar, introduces a new 
variable yVar that is bound to the same symbolic name x. So, expression yVar + xVar evaluates to 2x.  
 A function is a binding of a name to an expression. (More advanced functions can be created 
using the Python language.) The function tripleSquare that computes the triple of the square of x can 
be defined as tripleSquare = 3 * xVar ^ 2. Expression tripleSquare (2) applies function tripleSquare 
to argument 2, yielding number 12.  
 A more interesting feature is plotting the graph of tripleSquare between 0 and 5. The task can 
be easily achieved using plot (tripleSquare, (x, 0, 5)). Many additional arguments may be supplied to 
function plot, like defining colors, graph title, various captions, but we omit such complexity in this 
paper. 
 Function differentiation and system solving finalize out brief tour on Sage. As for the former, 
we simply ask Sage tripleSquare.diff(xVar). This computes the derivative of tripleSquare in order to 
xVar (symbolic name x), yielding the expected result 6x. The latter is a bit more involved; Function 
solve accepts as its first argument an equation to be solved. For instance, let us find when tripleSquare 
is zero; Expression solve (tripleSquare == 0, xVar) will do the trick and solve yields x = 0. There are 
two things to notice: the usage of == (double equal sign) to define an equation; the second argument 
of solve (xVar) indicates the variable in order to which the equation must be solved. In order to solve 
systems of equations, the first argument is a list of functions. Lists are comma-separated sequences of 
items (in this case of equations) enclosed in square brackets. The following example is self-
explanatory. 

solve([x + y == 6, x – y == 4], x, y), yielding x = 5 and y = 1 
Applying Sage to solve the problem using the Lagrange multipliers method 
 Figure 1 shows an excerpt of a Sage interactive session for addressing the running example. 
First we introduce three symbolic names x, y, l and bind them to three variables of the same name. 
Thereafter, we functions f and g. Notice that we define a function for the constraint, not an equation. 
This way is easier for dealing with g later in the session. However, we can rewrite equation g(x,y) == 
40 000 in order to y easily using the solve function. Now we are ready to define the Lagrangian L, 
which is straightforwardly written using f and g. This line ends with ; L. It is just a form of asking 
Sage to print the expression in a more convenient and standard notation. The three partial derivatives 
are obtained from expression L, asking Sage to derive according to some expression variable. In the 
present case, for instance, L.diff(y), computes 𝜕𝐿/𝜕𝑦. Determining the stationary point results from 
the direct application of the solve function. We provide the three equations involving the partial 
derivatives and ask for the system to be solved in order to x, y, and l. The expecting result appears 
clean and easy on the screen. The computation could be further condensed and written in a function 
that just receives L and returns the result. To additionally explore Sage we could plot graphs for the 
functions in order to better understand and visualize even the mathematical concepts underneath the, 
sometimes, not well understood notions of partial derivative, system solving, etc.  
  
 
 
 
 
 
 
 



1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal               - Proceedings- 

52 
 

 

 
 
  Figure 1: Sage interactive session to solve the running problem 

  
We present in Figure 2 a picture that, we believe, illustrates the solution to the problem. The 

figure is composed of four graphs: in green there is function f; function g is depicted in red; in blue 
there is a plane marking the €40 000 restricting; and, finally, there is a black circle spotting the 
maximum. Notice that the mark is in the surface of f, and in the plane that is perpendicular to the blue 
plane and that passes in the intersection between the red and the blue planes. More graphs could be 
plotted to investigate the solution, but we leave it to the interested reader. For that reason we decided 
to include (top of Figure 2) the source code for producing and depicted the graph we present, so the 
reader can further explore the tool. 
 



1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal               - Proceedings- 

53 
 

 

 
Figure 2: Graph interpreting the solution to the running example 

 
Conclusion 
 We conducted a small experiment to illustrate the use of a tool, notably Sage, to aid in solving 
a maximization problem using Lagrange multipliers method. It happens that the problem comes from 
yet a third area of knowledge and that the mathematical solution can be interpreted using terms from 
that application domain: Economics. These interdisciplinary quests happen to be important for all the 
involved areas, since Economics benefits from the tools, both theoretical and practical, that have been 
researched over the years in Mathematics and Computer Science. On the other hand, Mathematics 
also benefic from this joint venture, since it gets inspiration in real world problems and then can try to 
come up with problem drove solutions. Computer Science benefits as well: first there is the 
opportunity for researching these computed aided systems that tackle all sorts of things automatically; 
moreover, there is the opportunity to disseminate software by different areas and get actual users 
performing complex tasks with the tools. Often, and unfortunately, the end users discover most of the 
bugs, performance issues, etc.  

 It is our conviction that this kind of tools should be used when teaching undergraduate and 
graduate courses, since mastering them constitutes a real benefit for expert end users. 
 
 
 



1st Annual International Interdisciplinary Conference, AIIC 2013, 24-26 April, Azores, Portugal               - Proceedings- 

54 
 

References: 
[1] Murty, Katta G. Linear Programming. John Wiley & Sons, 2002. 
[2] Sage web site. http://www.sagemath.org. 
[3] Douglas, Paul, The Cobb-Douglas Production Function Once Again: Its History, Its Testing, and 
Some New Empirical Values. Journal of Political Economy, 84(5):903-916, 1976. 
[4] Bertsekas, Dimitri P. Nonlinear Programming (Second ed.). Athena Scientific, 1999. 
[5] Vapnyarskii, I. B. Lagrange multipliers, in Hazewinkel, Michiel, Encyclopedia of Mathematics, 
Springer, 2001.  
[6] Magma web site. http://magma.maths.usyd.edu.au/magma/. 
[7] Maple web site. http://www.maplesoft.com. 
[8] Mathematica web site. http://www.wolfram.com/mathematica/. 
[9] MatLab web site. http://www.mathworks.com/products/matlab/. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


